Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

A Review of Molecular Imprinting Polymer for Separation of Bisphenol-A and its Analogues: Synthesis and Application

Author(s): Syed Asim Hussain Shah, Sharifah Mohamad, Noorashikin Md Saleh, Beh Shiuan Yih, Nurul Yani Rahim, Mazidatulakmam Miskam and Saliza Asman*

Volume 18, Issue 8, 2022

Published on: 02 August, 2022

Page: [867 - 891] Pages: 25

DOI: 10.2174/1573411018666220509183231

Price: $65

Abstract

Background: BPA and its analogues are poisonous and hazardous and found in water, food and environmental samples. These are a dangerous class of endocrine-disrupting chemicals (EDCs) that drastically affect the environment and human health. BPA and its analogues, such as BPS, BPF, BPE, BPB, BPAF, and BPAP, are a serious threat to human beings.

Methods: Numerous methods are available for separating bisphenols (BPs) from water, food and environmental samples. Molecularly imprinted polymers (MIPs) are a superior and eco-friendly technique that eliminates BPs due to cavities in the shape, size, and functionality complementary to the template molecule. MIPs are widely used to remove BPA and its analogues. The inexpensive MIPs are a more attractive choice for separating various BPs due to their unique properties and offer a satisfactory pathway to adsorb any BPs from water, food and environmental samples to overcome their hazardous effects on human health.

Results: This review aims to analyze and assess the recent advancements of MIPs for the separation of bisphenols. Following a concise introduction for newcomers entering the field, a comprehensive critical review of developments of MIPs and their applications for BPA and its analogues has been presented. In this review, we have discussed the MIPs with the method and constituents of synthesis. Secondly, the development of the different types of MIPs (particle, monolithic, membrane) has been presented for the BPs. Finally, the use of MIP as a stationary phase in chromatography with an emphasis on BPs is described. This section is subdivided into high-performance liquid chromatography (HPLC), capillary liquid chromatography (CLC), and capillary electrochromatography (CEC).

Conclusion: Molecular Imprinting technology (MIT) technology provides an attractive pathway for further research and improvement in more efficient MIPs, with higher adsorption capacity. The significance of applications allowed to separate the BPs and discharged from various samples, thus reducing health risks. Therefore, MIPs may contribute to future prospective water, food and environmental samples treatment processes.

Keywords: Bisphenol A, bisphenols, molecularly imprinted polymer, chromatography, separation, environment.

Graphical Abstract

[1]
Wang, R.; Huang, Y.; Dong, S.; Wang, P.; Su, X. The occurrence of bisphenol compounds in animal feed plastic packaging and migration into feed. Chemosphere, 2021, 265, 129022.
[http://dx.doi.org/10.1016/j.chemosphere.2020.129022] [PMID: 33288279]
[2]
Schug, T.T.; Janesick, A.; Blumberg, B.; Heindel, J.J. Endocrine disrupting chemicals and disease susceptibility. J. Steroid Biochem. Mol. Biol., 2011, 127(3-5), 204-215.
[http://dx.doi.org/10.1016/j.jsbmb.2011.08.007] [PMID: 21899826]
[3]
Park, J-H.; Hwang, M-S.; Ko, A.; Jeong, D-H.; Lee, J-M.; Moon, G.; Lee, K-S.; Kho, Y-H.; Shin, M-K.; Lee, H-S.; Kang, H-S.; Suh, J-H.; Hwang, I-G. Risk assessment based on urinary bisphenol A levels in the general Korean population. Environ. Res., 2016, 150, 606-615.
[http://dx.doi.org/10.1016/j.envres.2016.03.024] [PMID: 27016465]
[4]
Soares, P.I.P.; Romão, J.; Matos, R.; Silva, J.C.; Borges, J.P. Design and engineering of magneto-responsive devices for cancer theranostics: Nano to macro perspective. Prog. Mater. Sci., 2021, 116(100742), 100742.
[http://dx.doi.org/10.1016/j.pmatsci.2020.100742]
[5]
Lehel, J.; Murphy, S. Microplastics in the food chain: Food safety and environmental aspects. Rev. Environ. Contam. Toxicol., 2021, 259, 1-49.
[PMID: 34611754]
[6]
Gingrich, J.; Filipovic, D.; Conolly, R.; Bhattacharya, S.; Veiga-Lopez, A. Pregnancy-specific physiologically-based toxicokinetic models for bisphenol A and bisphenol S. Environ. Int., 2021, 147(106301), 106301.
[http://dx.doi.org/10.1016/j.envint.2020.106301] [PMID: 33360411]
[7]
Guo, R.; Du, Y.; Zheng, F.; Wang, J.; Wang, Z.; Ji, R.; Chen, J. Bioaccumulation and elimination of bisphenol a (BPA) in the alga Chlorella pyrenoidosa and the potential for trophic transfer to the rotifer Brachionus calyciflorus. Environ. Pollut., 2017, 227, 460-467.
[http://dx.doi.org/10.1016/j.envpol.2017.05.010] [PMID: 28494397]
[8]
Song, X-L.; Lv, H.; Wang, D-D.; Liao, K-C.; Wu, Y-Y.; Li, G-M.; Chen, Y. Graphene oxide composite microspheres as a novel dispersive solid-phase extraction adsorbent of bisphenols prior to their quantitation by HPLC–mass spectrometry. Microchem. J., 2022, 172(106920), 106920.
[http://dx.doi.org/10.1016/j.microc.2021.106920]
[9]
Erben, J.; Klicova, M.; Klapstova, A.; Háková, M.; Lhotská, I.; Zatrochová, S.; Šatínský, D.; Chvojka, J. New polyamide 6 nanofibrous sorbents produced via alternating current electrospinning for the on-line solid phase extraction of small molecules in chromatography sys-tems. Microchem. J., 2022, 174(107084), 107084.
[http://dx.doi.org/10.1016/j.microc.2021.107084]
[10]
Baile, P.; Medina, J.; Vidal, L.; Canals, A. Determination of four bisphenols in water and urine samples by magnetic dispersive solid-phase extraction using a modified zeolite/iron oxide composite prior to liquid chromatography diode array detection. J. Sep. Sci., 2020, 43(9-10), 1808-1816.
[http://dx.doi.org/10.1002/jssc.201901022] [PMID: 31821691]
[11]
Yoshida, T.; Horie, M.; Hoshino, Y.; Nakazawa, H.; Horie, M.; Nakazawa, H. Determination of bisphenol A in canned vegetables and fruit by high performance liquid chromatography. Food Addit. Contam., 2001, 18(1), 69-75.
[http://dx.doi.org/10.1080/026520301446412] [PMID: 11212549]
[12]
Canale, F.; Cordero, C.; Baggiani, C.; Baravalle, P.; Giovannoli, C.; Bicchi, C. Development of a molecularly imprinted polymer for selec-tive extraction of bisphenol A in water samples. J. Sep. Sci., 2010, 33(11), 1644-1651.
[http://dx.doi.org/10.1002/jssc.201000013] [PMID: 20405487]
[13]
Kubiak, A.; Biesaga, M. Application of molecularly imprinted polymers for bisphenols extraction from food samples - A review. Crit. Rev. Anal. Chem., 2020, 50(4), 311-321.
[http://dx.doi.org/10.1080/10408347.2019.1626698] [PMID: 31199164]
[14]
Zhang, K.; Banerjee, K. A review: Sample preparation and chromatographic technologies for detection of aflatoxins in foods. Toxins (Basel), 2020, 12(9), 539.
[http://dx.doi.org/10.3390/toxins12090539] [PMID: 32825718]
[15]
Kaipainen, J. Gas chromatography-tandem mass spectrometry for environmental analysis of organic compounds in water and air particulate matrices., 2015.
[16]
Ayankojo, A.G.; Reut, J.; Ciocan, V.; Öpik, A.; Syritski, V. Molecularly imprinted polymer-based sensor for electrochemical detection of erythromycin. Talanta, 2020, 209(120502), 120502.
[http://dx.doi.org/10.1016/j.talanta.2019.120502] [PMID: 31892030]
[17]
He, J.; Song, L.; Chen, S.; Li, Y.; Wei, H.; Zhao, D.; Gu, K.; Zhang, S. Novel restricted access materials combined to molecularly imprinted polymers for selective solid-phase extraction of organophosphorus pesticides from honey. Food Chem., 2015, 187, 331-337.
[http://dx.doi.org/10.1016/j.foodchem.2015.04.069] [PMID: 25977034]
[18]
Tiwari, M.P.; Prasad, A. Molecularly imprinted polymer based enantioselective sensing devices: a review. Anal. Chim. Acta, 2015, 853, 1-18.
[http://dx.doi.org/10.1016/j.aca.2014.06.011] [PMID: 25467446]
[19]
Zaidi, S.A.; Lee, S.M.; Othman, A.L.Z.A.; AL Majid, A. M.; Cheong, W. J. Examination of template structural effects on CEC chiral sepa-ration performance of molecule imprinted polymers made by a generalized preparation protocol. Chromatographia, 2011, 73(5–6), 517-525.
[http://dx.doi.org/10.1007/s10337-011-1934-5]
[20]
Schweitz, L.; Andersson, L.I.; Nilsson, S. Rapid electrochromatographic enantiomer separations on short molecularly imprinted polymer monoliths. Anal. Chim. Acta, 2001, 435(1), 43-47.
[http://dx.doi.org/10.1016/S0003-2670(00)01210-1]
[21]
Ansari, S.; Masoum, S. Molecularly imprinted polymers for capturing and sensing proteins: Current progress and future implications. Trends Analyt. Chem., 2019, 114, 29-47.
[http://dx.doi.org/10.1016/j.trac.2019.02.008]
[22]
Xing, R.; Wen, Y.; He, H.; Guo, Z.; Liu, Z. Recent progress in the combination of molecularly imprinted polymer-based affinity extraction and mass spectrometry for targeted proteomic analysis. Trends Analyt. Chem., 2019, 110, 417-428.
[http://dx.doi.org/10.1016/j.trac.2018.11.033]
[23]
Boulanouar, S.; Mezzache, S.; Combès, A.; Pichon, V. Molecularly imprinted polymers for the determination of organophosphorus pesti-cides in complex samples. Talanta, 2018, 176, 465-478.
[http://dx.doi.org/10.1016/j.talanta.2017.08.067] [PMID: 28917777]
[24]
Jia, M.; Zhang, Z.; Li, J.; Ma, X.; Chen, L.; Yang, X. Molecular imprinting technology for microorganism analysis. Trends Analyt. Chem., 2018, 106, 190-201.
[http://dx.doi.org/10.1016/j.trac.2018.07.011]
[25]
Ashley, J.; Shahbazi, M-A.; Kant, K.; Chidambara, V.A.; Wolff, A.; Bang, D.D.; Sun, Y. Molecularly imprinted polymers for sample prep-aration and biosensing in food analysis: Progress and perspectives. Biosens. Bioelectron., 2017, 91, 606-615.
[http://dx.doi.org/10.1016/j.bios.2017.01.018] [PMID: 28103516]
[26]
Orimolade, B.O.; Adekola, F.A.; Adebayo, G.B. Adsorptive removal of bisphenol a using synthesized magnetite nanoparticles. Appl. Water Sci., 2018, 8(1), 46.
[http://dx.doi.org/10.1007/s13201-018-0685-y]
[27]
Wang, H.; Song, S.; Shao, M.; Gao, Y.; Yang, C.; Li, Y.; Wang, W.; He, Y.; Li, P. Determination of bisphenol analogues in food-contact plastics using diode array detector, charged aerosol detector and evaporative light-scattering detector. Ecotoxicol. Environ. Saf., 2019, 186(109778), 109778.
[http://dx.doi.org/10.1016/j.ecoenv.2019.109778] [PMID: 31627095]
[28]
Cáceres, C.; Bravo, C.; Rivas, B.; Moczko, E.; Sáez, P.; García, Y.; Pereira, E. Molecularly imprinted polymers for the selective extraction of bisphenol a and progesterone from aqueous media. Polymers (Basel), 2018, 10(6), 679.
[http://dx.doi.org/10.3390/polym10060679] [PMID: 30966713]
[29]
Ma, Y.; Liu, H.; Wu, J.; Yuan, L.; Wang, Y.; Du, X.; Wang, R.; Marwa, P.W.; Petlulu, P.; Chen, X.; Zhang, H. The adverse health effects of bisphenol A and related toxicity mechanisms. Environ. Res., 2019, 176(108575), 108575.
[http://dx.doi.org/10.1016/j.envres.2019.108575] [PMID: 31299621]
[30]
Beausoleil, C.; Emond, C.; Cravedi, J-P.; Antignac, J-P.; Applanat, M.; Appenzeller, B.R.; Beaudouin, R.; Belzunces, L.P.; Canivenc-Lavier, M-C.; Chevalier, N.; Chevrier, C.; Elefant, E.; Eustache, F.; Habert, R.; Kolf-Clauw, M.; Le Magueresse-Battistoni, B.; Mhaouty-Kodja, S.; Minier, C.; Multigner, L.; Schroeder, H.; Thonneau, P.; Viguié, C.; Pouzaud, F.; Ormsby, J-N.; Rousselle, C.; Verines-Jouin, L.; Pasquier, E.; Michel, C. Regulatory identification of BPA as an endocrine disruptor: Context and methodology. Mol. Cell. Endocrinol., 2018, 475, 4-9.
[http://dx.doi.org/10.1016/j.mce.2018.02.001] [PMID: 29426018]
[31]
Ćwiek-Ludwicka, K.; Bisphenol, A.; Bisphenol, A. BPA) in food contact materials - new scientific opinion from EFSA regarding public health risk. Rocz. Panstw. Zakl. Hig., 2015, 66(4), 299-307.
[PMID: 26656411]
[32]
Xue, J.; Liu, W.; Kannan, K. Bisphenols, Benzophenones, and bisphenol a diglycidyl ethers in textiles and infant clothing. Environ. Sci. Technol., 2017, 51(9), 5279-5286.
[http://dx.doi.org/10.1021/acs.est.7b00701] [PMID: 28368574]
[33]
Tišler, T.; Krel, A.; Gerželj, U.; Erjavec, B.; Dolenc, M.S.; Pintar, A. Hazard identification and risk characterization of bisphenols A, F and AF to aquatic organisms. Environ. Pollut., 2016, 212, 472-479.
[http://dx.doi.org/10.1016/j.envpol.2016.02.045] [PMID: 26957022]
[34]
Shi, M.; Sekulovski, N.; MacLean, J.A., II; Hayashi, K. Effects of bisphenol A analogues on reproductive functions in mice. Reprod. Toxicol., 2017, 73, 280-291.
[http://dx.doi.org/10.1016/j.reprotox.2017.06.134] [PMID: 28676390]
[35]
Careghini, A.; Mastorgio, A.F.; Saponaro, S.; Sezenna, E.; Bisphenol, A. Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. Environ. Sci. Pollut. Res. Int., 2015, 22(8), 5711-5741.
[http://dx.doi.org/10.1007/s11356-014-3974-5] [PMID: 25548011]
[36]
Makris, K.C. Drinking water and human health challenges in the twenty‐first century. Encycl. Water, 2019, 1-5.
[37]
Wang, W.; Ndungu, A.W.; Wang, J. Monitoring of endocrine-disrupting compounds in surface water and sediments of the three gorges reservoir region, china. Arch. Environ. Contam. Toxicol., 2016, 71(4), 509-517.
[http://dx.doi.org/10.1007/s00244-016-0319-z] [PMID: 27730359]
[38]
Herrera-Chacón, A.; Cetó, X.; Del Valle, M. Molecularly imprinted polymers - towards electrochemical sensors and electronic tongues. Anal. Bioanal. Chem., 2021, 413(24), 6117-6140.
[http://dx.doi.org/10.1007/s00216-021-03313-8] [PMID: 33928404]
[39]
Yang, J.; Li, Y.; Wang, J.; Sun, X.; Shah, S.M.; Cao, R.; Chen, J. Novel sponge-like molecularly imprinted mesoporous silica material for selective isolation of bisphenol A and its analogues from sediment extracts. Anal. Chim. Acta, 2015, 853, 311-319.
[http://dx.doi.org/10.1016/j.aca.2014.09.051] [PMID: 25467474]
[40]
Adumitrăchioaie, A. Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4 pasteur St., 400349 Cluj-Napoca, Romania. Electrochemical methods based on molecularly imprinted polymers for drug detection. A review. Int. J. Electrochem. Sci., 2018, 13, 2556-2576.
[41]
Singh, M.; Singh, S.; Singh, S.P.; Patel, S.S. Recent advancement of carbon nanomaterials engrained molecular imprinted polymer for environmental matrix. Tren. Environ. Anal. Chem., 2020, 27(e00092), e00092.
[http://dx.doi.org/10.1016/j.teac.2020.e00092]
[42]
Brigante, T.A.V.; Miranda, L.F.C.; de Souza, I.D.; Acquaro, Junior V.R.; Queiroz, M.E.C. Pipette tip dummy molecularly imprinted solid-phase extraction of Bisphenol A from urine samples and analysis by gas chromatography coupled to mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1067, 25-33.
[http://dx.doi.org/10.1016/j.jchromb.2017.09.038] [PMID: 28985483]
[43]
Radi, A-E.; Eissa, A.; Wahdan, T. Impedimetric sensor for deoxynivalenol based on electropolymerised molecularly imprinted polymer on the surface of screen-printed gold electrode. Int. J. Environ. Anal. Chem., 2021, 101(15), 2586-2597.
[http://dx.doi.org/10.1080/03067319.2019.1699548]
[44]
Haupt, K. Peer reviewed: Molecularly imprinted polymers: The next generation. Anal. Chem., 2003, 75(17), 376-383.
[45]
Tang, Y.; Gao, J.; Liu, X.; Gao, X.; Ma, T.; Lu, X.; Li, J. Ultrasensitive detection of clenbuterol by a covalent imprinted polymer as a bio-mimetic antibody. Food Chem., 2017, 228, 62-69.
[http://dx.doi.org/10.1016/j.foodchem.2017.01.102] [PMID: 28317772]
[46]
Ikegami, T.; Mukawa, T.; Nariai, H.; Takeuchi, T. Bisphenol a-recognition polymers prepared by covalent molecular imprinting. Anal. Chim. Acta, 2004, 504(1), 131-135.
[http://dx.doi.org/10.1016/j.aca.2003.08.032]
[47]
Silva, M.S.; Tavares, A.P.M.; de Faria, H.D.; Sales, M.G.F.; Figueiredo, E.C. Molecularly imprinted solid phase extraction aiding the anal-ysis of disease biomarkers. Crit. Rev. Anal. Chem., 2020, 0(0), 1-16.
[http://dx.doi.org/10.1080/10408347.2020.1843131] [PMID: 33164555]
[48]
Zhang, Y.; Huang, W.; Yin, X.; Sarpong, K.A.; Zhang, L.; Li, Y.; Zhao, S.; Zhou, H.; Yang, W.; Xu, W. Computer-aided design and syn-thesis of molecular imprinting polymers based on doubly oriented functional multiwalled carbon nanotubes for electrochemically sensing bisphenol A. React. Funct. Polym., 2020, 157(104767), 104767.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104767]
[49]
Gao, M.; Gao, Y.; Chen, G.; Huang, X.; Xu, X.; Lv, J.; Wang, J.; Xu, D.; Liu, G. Recent advances and future trends in the detection of contaminants by molecularly imprinted polymers in food samples. Front Chem., 2020, 8, 616326.
[http://dx.doi.org/10.3389/fchem.2020.616326] [PMID: 33335893]
[50]
Asman, S.; Mohamad, S.; Sarih, N.M. Study of the morphology and the adsorption behavior of molecularly imprinted polymers prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization process based on two functionalized β-cyclodextrin as monomers. J. Mol. Liq., 2016, 214, 59-69.
[http://dx.doi.org/10.1016/j.molliq.2015.11.057]
[51]
Refaat, D.; Aggour, M.G.; Farghali, A.A.; Mahajan, R.; Wiklander, J.G.; Nicholls, I.A.; Piletsky, S.A. Strategies for molecular imprinting and the evolution of MIP nanoparticles as plastic antibodies-synthesis and applications. Int. J. Mol. Sci., 2019, 20(24), E6304.
[http://dx.doi.org/10.3390/ijms20246304] [PMID: 31847152]
[52]
Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: perspectives and applications. Chem. Soc. Rev., 2016, 45(8), 2137-2211.
[http://dx.doi.org/10.1039/C6CS00061D] [PMID: 26936282]
[53]
Cantarella, M.; Carroccio, S.C.; Dattilo, S.; Avolio, R.; Castaldo, R.; Puglisi, C.; Privitera, V. Molecularly imprinted polymer for selective adsorption of diclofenac from contaminated water. Chem. Eng. J., 2019, 367, 180-188.
[http://dx.doi.org/10.1016/j.cej.2019.02.146]
[54]
Cui, Y.; He, Z.; Xu, Y.; Su, Y.; Ding, L.; Li, Y. Fabrication of molecularly imprinted polymers with tunable adsorption capability based on solvent-responsive cross-linker. Chem. Eng. J., 2021, 405(126608), 126608.
[http://dx.doi.org/10.1016/j.cej.2020.126608]
[55]
Liu, Y.; Zhong, G.; Liu, Z.; Meng, M.; Liu, F.; Ni, L. Facile synthesis of novel photoresponsive mesoporous molecularly imprinted poly-mers for photo-regulated selective separation of A. Chem. Eng. J., 2016, 296, 437-446.
[http://dx.doi.org/10.1016/j.cej.2016.03.085]
[56]
Włoch, M.; Datta, J. Synthesis and polymerisation techniques of molecularly imprinted polymers. Comprehensive Analytical Chemistry; Elsevier, 2019, pp. 17-40.
[57]
Adali-Kaya, Z.; Tse Sum Bui, B.; Falcimaigne-Cordin, A.; Haupt, K. Molecularly imprinted polymer nanomaterials and nanocomposites: atom-transfer radical polymerization with acidic monomers. Angew. Chem. Int. Ed. Engl., 2015, 54(17), 5192-5195.
[http://dx.doi.org/10.1002/anie.201412494] [PMID: 25728806]
[58]
Abdollahi, E.; Abdouss, M.; Salami-Kalajahi, M.; Mohammadi, A. Molecular recognition ability of molecularly imprinted polymer nano- and micro-particles by reversible addition-fragmentation chain transfer polymerization. Polym. Rev. (Phila. Pa.), 2016, 56(4), 557-583.
[http://dx.doi.org/10.1080/15583724.2015.1119162]
[59]
Asman, S.; Mohamad, S.; Sarih, N. Effects of RAFT agent on the selective approach of molecularly imprinted polymers. Polymers (Basel), 2015, 7(3), 484-503.
[http://dx.doi.org/10.3390/polym7030484]
[60]
Söylemez, M.A.; Güven, O.; Barsbay, M. Method for preparing a well-defined molecularly imprinted polymeric system via radiation-induced RAFT polymerization. Eur. Polym. J., 2018, 103, 21-30.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.03.037]
[61]
Xiong, H.; Guo, L.; Mao, X.; Tan, T.; Wan, H.; Wan, Y. A magnetic hydrophilic molecularly imprinted material with multiple stimuli-response properties for efficient recognition of bisphenol A in beverages. Food Chem., 2020, 331(127311), 127311.
[http://dx.doi.org/10.1016/j.foodchem.2020.127311] [PMID: 32569967]
[62]
Duan, F.; Chen, C.; Zhao, X.; Yang, Y.; Liu, X.; Qin, Y. Water-compatible surface molecularly imprinted polymers with synergy of bi-functional monomers for enhanced selective adsorption of bisphenol a from aqueous solution. Environ. Sci. Nano, 2016, 3(1), 213-222.
[http://dx.doi.org/10.1039/C5EN00198F]
[63]
Shoravi, S.; Olsson, G.D.; Karlsson, B.C.G.; Bexborn, F.; Abghoui, Y.; Hussain, J.; Wiklander, J.G.; Nicholls, I.A. In silico screening of molecular imprinting prepolymerization systems: oseltamivir selective polymers through full-system molecular dynamics-based studies. Org. Biomol. Chem., 2016, 14(18), 4210-4219.
[http://dx.doi.org/10.1039/C6OB00305B] [PMID: 27043914]
[64]
Wang, L.; Yang, F.; Zhao, X.; Li, Y. Screening of functional monomers and solvents for the molecular imprinting of paclitaxel separation: a theoretical study. J. Mol. Model., 2020, 26(2), 26.
[http://dx.doi.org/10.1007/s00894-019-4277-z] [PMID: 31927620]
[65]
Wang, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater., 2020, 390(122156), 122156.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122156] [PMID: 32006847]
[66]
Pratama, K.F.; Manik, M.E.R.; Rahayu, D.; Hasanah, A.N. Effect of the molecularly imprinted polymer component ratio on analytical performance. Chem. Pharm. Bull. (Tokyo), 2020, 68(11), 1013-1024.
[http://dx.doi.org/10.1248/cpb.c20-00551] [PMID: 33132368]
[67]
Shirzaei, E.; Babaeipour, V. Molecular dynamic simulation of prepolymerization process of dipicolinic acid molecular imprinting polymer 12 th international seminar on polymer science and technology molecular dynamic simulation of pre- polymerization process of dipicolinic acid mole. 2016.
[68]
Lin, Z.; Goddard, J.M. Photocurable coatings prepared by emulsion polymerization present chelating properties. Colloids Surf. B Biointerfaces, 2018, 172, 143-151.
[http://dx.doi.org/10.1016/j.colsurfb.2018.08.020] [PMID: 30145460]
[69]
Poliwoda, A.; Mościpan, M.; Wieczorek, P.P. Application of molecular imprinted polymers for selective solid phase extraction of bi-sphenol A. Ecol. Chem. Eng. S, 2016, 23(4), 651-664.
[http://dx.doi.org/10.1515/eces-2016-0046]
[70]
Alenazi, N.A.; Manthorpe, J.M.; Lai, E.P.C. Selective extraction of BPA in milk analysis by capillary electrophoresis using a chemically modified molecularly imprinted polymer. Food Control, 2015, 50, 778-783.
[http://dx.doi.org/10.1016/j.foodcont.2014.10.026]
[71]
Bayramoglu, G.; Arica, M.Y.; Liman, G.; Celikbicak, O.; Salih, B. Removal of bisphenol A from aqueous medium using molecularly surface imprinted microbeads. Chemosphere, 2016, 150, 275-284.
[http://dx.doi.org/10.1016/j.chemosphere.2016.02.040] [PMID: 26907596]
[72]
Tetteh, E.K.; Rathilal, S.; Opoku, M.A.; Amoah, I.D.; Chollom, M.N. Molecular Imprinting Technology: A New Approach for Antibacterial Materials; Inamuddin, M.I.A.; Prasad, R.; Singapore, S., Eds.; Singapore, 2021, pp. 393-421.
[73]
Inoue, N.; Ooya, T.; Toshifumi, T. Hydrophilic molecularly imprinted polymers for bisphenol a prepared in aqueous solution. Mikrochim. Acta, 2013, 180(15-16), 1387-1392.
[http://dx.doi.org/10.1007/s00604-013-0996-5]
[74]
Huang, D.; Tang, Z.; Peng, Z.; Lai, C.; Zeng, G.; Zhang, C.; Xu, P.; Cheng, M.; Wan, J.; Wang, R. Fabrication of water-compatible molecularly imprinted polymer based on β-cyclodextrin modified magnetic chitosan and its application for selective removal of bisphenol a from aqueous solution. J. Taiwan Inst. Chem. Eng., 2021, 77, 113-121.
[75]
Zhao, B.; Jiang, L.; Jia, Q. Advances in cyclodextrin polymers adsorbents for separation and enrichment: Classification, mechanism and applications. Chin. Chem. Lett., 2022, 33(1), 11-21.
[http://dx.doi.org/10.1016/j.cclet.2021.06.031]
[76]
Zhang, C.; Shi, X.; Yu, F.; Quan, Y. Preparation of dummy molecularly imprinted polymers based on dextran-modified magnetic nanoparticles Fe3O4 for the selective detection of acrylamide in potato chips. Food Chem., 2020, 317(126431), 126431.
[http://dx.doi.org/10.1016/j.foodchem.2020.126431] [PMID: 32109657]
[77]
Hu, H.; Ren, Z.; Xi, Y.; Fang, L.; Fang, D.; Yang, L.; Shao, P.; Shi, H.; Yu, K.; Luo, X. Insights into the role of cross-linking agents on polymer template effect: A case study of anionic imprinted polymers. Chem. Eng. J., 2021, 420(129611), 129611.
[http://dx.doi.org/10.1016/j.cej.2021.129611]
[78]
Arak, H.; Karimi Torshizi, M.A.; Hedayati, M.; Rahimi, S. Comparative evaluation of aflatoxin and mineral binding activity of molecular imprinted polymer designed for dummy template using in vitro and in vivo models. Toxicon, 2019, 166, 66-75.
[http://dx.doi.org/10.1016/j.toxicon.2019.05.005] [PMID: 31125619]
[79]
Klejn, D.; Luliński, P.; Maciejewska, D. Desorption of 3,3′-diindolylmethane from imprinted particles: An impact of cross-linker structure on binding capacity and selectivity. Mater. Sci. Eng. C, 2015, 56, 233-240.
[http://dx.doi.org/10.1016/j.msec.2015.06.016] [PMID: 26249585]
[80]
Wang, T.; Li, P.; Sun, Y.; Song, X.; Li, H.; Qin, L.; Zhou, J.; Huang, Q.; Lei, F. Camptothecin-imprinted polymer microspheres with rosin-based cross-linker for separation of camptothecin from camptotheca acuminata fruit. Separ. Purif. Tech., 2020, 234(116085), 116085.
[http://dx.doi.org/10.1016/j.seppur.2019.116085]
[81]
Yoshimatsu, K.; Reimhult, K.; Krozer, A.; Mosbach, K.; Sode, K.; Ye, L. Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: the control of particle size suitable for different analytical applications. Anal. Chim. Acta, 2007, 584(1), 112-121.
[http://dx.doi.org/10.1016/j.aca.2006.11.004] [PMID: 17386593]
[82]
Kotrotsiou, O.; Kiparissides, C. Water treatment by molecularly imprinted materials. Nanoscale Materials in Water Purification; Elsevier, 2019, pp. 179-230.
[http://dx.doi.org/10.1016/B978-0-12-813926-4.00012-4]
[83]
Rahmatpour, A.; Goodarzi, N.; Moazzez, M. A novel route for synthesis of cross-linked polystyrene copolymer beads with tunable porosity using guar and xanthan gums from bioresources as alternative synthetic suspension stabilizers. Des. Monomers Polym., 2018, 21(1), 116-129.
[http://dx.doi.org/10.1080/15685551.2018.1489698] [PMID: 29988816]
[84]
Janczura, M.; Sobiech, M.; Luliński, P. Insight into the morphology, pore structure and sorption properties of 4-hydroxy-3-nitrophenylacetic acid imprinted poly(acrylic acid-co-ethylene glycol dimethacrylate) sorbent. Polym. Test., 2021, 93(106983), 106983.
[http://dx.doi.org/10.1016/j.polymertesting.2020.106983]
[85]
Parvinizadeh, F.; Daneshfar, A. Fabrication of a magnetic metal–organic framework molecularly imprinted polymer for extraction of anti-malaria agent hydroxychloroquine. New J. Chem., 2019, 43(22), 8508-8516.
[http://dx.doi.org/10.1039/C9NJ01385G]
[86]
Khan, M.S.; Pal, S.; Krupadam, R.J. Computational strategies for understanding the nature of interaction in dioxin imprinted nanoporous trappers. J. Mol. Recognit., 2015, 28(7), 427-437.
[http://dx.doi.org/10.1002/jmr.2459] [PMID: 25703338]
[87]
Alenazi, N.A.; Manthorpe, J.M.; Lai, E.P. Selectivity enhancement in molecularly imprinted polymers for binding of bisphenol A. Sensors (Basel), 2016, 16(10), 1697.
[http://dx.doi.org/10.3390/s16101697] [PMID: 27754429]
[88]
Tonucci, M.C.; Fidélis, A.L.S.; Baeta, B.E.L.; Tarley, C.R.T.; de Aquino, S.F. Influence of synthesis conditions on the production of molecularly imprinted polymers for the selective recovery of isovaleric acid from anaerobic effluents: Selective recovery of isovaleric acid from anaerobic effluents. Polym. Int., 2019, 68(3), 428-438.
[http://dx.doi.org/10.1002/pi.5726]
[89]
Lyu, H.; Hu, K.; Chu, Q.; Su, Z.; Xie, Z. Preparation of ionic liquid mediated molecularly imprinted polymer and specific recognition for bisphenol A from Aqueous Solution. Microchem. J., 2020, 158(105293), 105293.
[http://dx.doi.org/10.1016/j.microc.2020.105293]
[90]
Hiratsuka, Y.; Funaya, N.; Matsunaga, H.; Haginaka, J. Preparation of magnetic molecularly imprinted polymers for bisphenol A and its analogues and their application to the assay of bisphenol A in river water. J. Pharm. Biomed. Anal., 2013, 75, 180-185.
[http://dx.doi.org/10.1016/j.jpba.2012.11.030] [PMID: 23262418]
[91]
Mansour, F.R.; Waheed, S.; Paull, B.; Maya, F. Porogens and porogen selection in the preparation of porous polymer monoliths. J. Sep. Sci., 2020, 43(1), 56-69.
[http://dx.doi.org/10.1002/jssc.201900876] [PMID: 31589375]
[92]
Sun, X.; Peng, J.; Wang, M.; Wang, J.; Tang, C.; Yang, L.; Lei, H.; Li, F.; Wang, X.; Chen, J. Determination of nine bisphenols in sewage and sludge using dummy molecularly imprinted solid-phase extraction coupled with liquid chromatography tandem mass spectrometry. J. Chromatogr. A, 2018, 1552, 10-16.
[http://dx.doi.org/10.1016/j.chroma.2018.04.004] [PMID: 29678407]
[93]
Androvič, L.; Bartáček, J.; Sedlák, M. Recent Advances in the Synthesis and Applications of Azo Initiators. Res. Chem. Intermed., 2016, 42(6), 5133-5145.
[http://dx.doi.org/10.1007/s11164-015-2351-4]
[94]
Ren, X.; Cheshari, E.C.; Qi, J.; Li, X. Silver microspheres coated with a molecularly imprinted polymer as a SERS substrate for sensitive detection of bisphenol A. Mikrochim. Acta, 2018, 185(4), 242.
[http://dx.doi.org/10.1007/s00604-018-2772-z] [PMID: 29610992]
[95]
Peeters, M.M.; van Grinsven, B.; Foster, C.W.; Cleij, T.J.; Banks, C.E. Introducing thermal wave transport analysis (TWTA): A thermal technique for dopamine detection by screen-printed electrodes functionalized with molecularly imprinted polymer (MIP) particles. Molecules, 2016, 21(5), 552.
[http://dx.doi.org/10.3390/molecules21050552] [PMID: 27128891]
[96]
Pardeshi, S.; Singh, S.K. ChemInform abstract: Precipitation polymerization: A versatile tool for preparing molecularly imprinted polymer beads for chromatography applications. ChemInform, 2016, 47(17), 101571532.
[http://dx.doi.org/10.1002/chin.201617252]
[97]
Ekomo, V.M.; Branger, C.; Bikanga, R.; Florea, A-M.; Istamboulie, G.; Calas-Blanchard, C.; Noguer, T.; Sarbu, A.; Brisset, H. Detection of Bisphenol A in aqueous medium by screen printed carbon electrodes incorporating electrochemical molecularly imprinted polymers. Biosens. Bioelectron., 2018, 112, 156-161.
[http://dx.doi.org/10.1016/j.bios.2018.04.022] [PMID: 29704783]
[98]
(a)Miura, C.; Li, H.; Matsunaga, H.; Haginaka, J. Molecularly imprinted polymer for chlorogenic acid by modified precipitation polymerization and its application to extraction of chlorogenic acid from Eucommia ulmodies leaves. J. Pharm. Biomed. Anal., 2015, 114, 139-144.
[http://dx.doi.org/10.1016/j.jpba.2015.04.038] [PMID: 26037163]
(b)Shaikh, H.; Memon, N.; Bhanger, M.I.; Nizamani, S.M.; & Denizli, A. (2014), Core-shell molecularly imprinted polymer-based solid-phase microextraction fiber for ultra trace analysis of endosulfan I and II in real aqueous matrix through gas chromatography-micro electron capture detector. Journal of Chromatography, 1337, 179-187.
[http://dx.doi.org/10.1016/j.chroma.2014.02.035]
[99]
Su, X.; Li, X.; Li, J.; Liu, M.; Lei, F.; Tan, X.; Li, P.; Luo, W. Synthesis and characterization of core-shell magnetic molecularly imprinted polymers for solid-phase extraction and determination of Rhodamine B in food. Food Chem., 2015, 171, 292-297.
[http://dx.doi.org/10.1016/j.foodchem.2014.09.024] [PMID: 25308672]
[100]
Ding, X.; Heiden, P.A. Recent developments in molecularly imprinted nanoparticles by surface imprinting techniques: Recent developments in molecularly imprinted nanoparticles. Macromol. Mater. Eng., 2014, 299(3), 268-282.
[http://dx.doi.org/10.1002/mame.201300160]
[101]
Kalogiouri, N.P.; Tsalbouris, A.; Kabir, A.; Furton, K.G.; Samanidou, V.F. Synthesis and application of molecularly imprinted polymers using sol–gel matrix imprinting technology for the efficient solid-phase extraction of BPA from water. Microchem. J., 2020, 157(104965), 104965.
[http://dx.doi.org/10.1016/j.microc.2020.104965]
[102]
Mamman, S.; Suah, F.B.M.; Raaov, M.; Mehamod, F.S.; Asman, S.; Zain, N.N.M. Removal of bisphenol A from aqueous media using a highly selective adsorbent of hybridization cyclodextrin with magnetic molecularly imprinted polymer. R. Soc. Open Sci., 2021, 8(3), 201604.
[http://dx.doi.org/10.1098/rsos.201604] [PMID: 33959329]
[103]
Lu, Y.C.; Xiao, W.W.; Wang, J.Y.; Xiong, X.H. Rapid isolation and determination of bisphenol A in complicated matrices by magnetic molecularly imprinted electrochemical sensing. Anal. Bioanal. Chem., 2021, 413(2), 389-401.
[http://dx.doi.org/10.1007/s00216-020-03006-8] [PMID: 33145646]
[104]
Nischang, I.; Causon, T.J. Porous polymer monoliths: From their fundamental structure to analytical engineering applications. Trends Analyt. Chem., 2016, 75, 108-117.
[http://dx.doi.org/10.1016/j.trac.2015.05.013]
[105]
Yang, S.; Wang, Y.; Jiang, Y.; Li, S.; Liu, W. Molecularly imprinted polymers for the identification and separation of chiral drugs and biomolecules. Polymers (Basel), 2016, 8(6), 216.
[http://dx.doi.org/10.3390/polym8060216] [PMID: 30979312]
[106]
Wei, Z-H.; Mu, L-N.; Huang, Y-P.; Liu, Z-S. Imprinted monoliths: Recent significant progress in analysis field. Trends Analyt. Chem., 2017, 86, 84-92.
[http://dx.doi.org/10.1016/j.trac.2016.10.009]
[107]
Arabi, M.; Ghaedi, M.; Ostovan, A. Synthesis and application of in situ molecularly imprinted silica monolithic in pipette-tip solid-phase microextraction for the separation and determination of gallic acid in orange juice samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1048, 102-110.
[http://dx.doi.org/10.1016/j.jchromb.2017.02.016] [PMID: 28235747]
[108]
Huang, L.; Zhai, H.; Liang, G.; Su, Z.; Yuan, K.; Lu, G.; Pan, Y. Chip-based dual-molecularly imprinted monolithic capillary array col-umns coated Ag/GO for selective extraction and simultaneous determination of bisphenol A and nonyl phenol in fish samples. J. Chromatogr. A, 2016, 1474, 14-22.
[http://dx.doi.org/10.1016/j.chroma.2016.10.074] [PMID: 27823785]
[109]
Wang, Z.; Qiu, T.; Guo, L.; Ye, J.; He, L.; Li, X. The synthesis of hydrophilic molecularly imprinted polymer microspheres and their ap-plication for selective removal of bisphenol a from water. React. Funct. Polym., 2017, 116, 69-76.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2017.04.015]
[110]
Derazshamshir, A.; Yılmaz, F.; Denizli, A. Molecularly imprinted hydrophobic polymers as a tool for separation in capillary electrochro-matography. Anal. Methods, 2015, 7(6), 2659-2669.
[http://dx.doi.org/10.1039/C4AY03096F]
[111]
Anene, A.; Kalfat, R.; Chevalier, Y.; Hbaieb, S. Molecularly imprinted polymer-based materials as thin films on silica supports for effi-cient adsorption of patulin. Colloids Surf. A Physicochem. Eng. Asp., 2016, 497, 293-303.
[http://dx.doi.org/10.1016/j.colsurfa.2016.03.005]
[112]
Sueyoshi, Y.; Utsunomiya, A.; Yoshikawa, M.; Robertson, G.P.; Guiver, M.D. Chiral separation with molecularly imprinted polysulfone-aldehyde derivatized nanofiber membranes. J. Membr. Sci., 2012, 401–402, 89-96.
[http://dx.doi.org/10.1016/j.memsci.2012.01.033]
[113]
Wu, Y-T.; Zhang, Y-H.; Zhang, M.; Liu, F.; Wan, Y-C.; Huang, Z.; Ye, L.; Zhou, Q.; Shi, Y.; Lu, B. Selective and simultaneous determination of trace bisphenol A and tebuconazole in vegetable and juice samples by membrane-based molecularly imprinted solid-phase extraction and HPLC. Food Chem., 2014, 164, 527-535.
[http://dx.doi.org/10.1016/j.foodchem.2014.05.071] [PMID: 24996366]
[114]
Kong, Q.; Wang, Y.; Zhang, L.; Ge, S.; Yu, J. A novel microfluidic paper-based colorimetric sensor based on molecularly imprinted polymer membranes for highly selective and sensitive detection of bisphenol A. Sens. Actuators B Chem., 2017, 243, 130-136.
[http://dx.doi.org/10.1016/j.snb.2016.11.146]
[115]
Kamel, A.H.; Jiang, X.; Li, P.; Liang, R. A paper-based potentiometric sensing platform based on molecularly imprinted nanobeads for determination of bisphenol A. Anal. Methods, 2018, 10(31), 3890-3895.
[http://dx.doi.org/10.1039/C8AY01229F]
[116]
Liu, F.; Liu, Q.; Zhang, Y.; Liu, Y.; Wan, Y.; Gao, K.; Huang, Y.; Xia, W.; Wang, H.; Shi, Y.; Huang, Z.; Lu, B. Molecularly imprinted nanofiber membranes enhanced biodegradation of trace bisphenol a by Pseudomonas aeruginosa. Chem. Eng. J., 2015, 262, 989-998.
[http://dx.doi.org/10.1016/j.cej.2014.10.046]
[117]
Liu, K.; Song, Y.; Song, D.; Liang, R. Plasticizer-free polymer membrane potentiometric sensors based on molecularly imprinted polymers for determination of neutral phenols. Anal. Chim. Acta, 2020, 1121, 50-56.
[http://dx.doi.org/10.1016/j.aca.2020.04.074] [PMID: 32493589]
[118]
Zhang, H.; Yao, R.; Wang, N.; Liang, R.; Qin, W. Soluble molecularly imprinted polymer-based potentiometric sensor for determination of bisphenol AF. Anal. Chem., 2018, 90(1), 657-662.
[http://dx.doi.org/10.1021/acs.analchem.7b03432] [PMID: 29227632]
[119]
Yuan, Y.; Liu, Y.; Teng, W.; Tan, J.; Liang, Y.; Tang, Y. Preparation of core-shell magnetic molecular imprinted polymer with binary monomer for the fast and selective extraction of bisphenol A from milk. J. Chromatogr. A, 2016, 1462, 2-7.
[http://dx.doi.org/10.1016/j.chroma.2016.06.045] [PMID: 27497721]
[120]
Qu, Y.; Qin, L.; Liu, X.; Yang, Y. Reasonable design and sifting of microporous carbon nanosphere-based surface molecularly imprinted polymer for selective removal of phenol from wastewater. Chemosphere, 2020, 251(126376), 126376.
[http://dx.doi.org/10.1016/j.chemosphere.2020.126376] [PMID: 32169694]
[121]
Oh, D.K.; Yang, J.C.; Hong, S.W.; Park, J. Molecular imprinting of polymer films on 2D silica inverse opal via thermal graft copolymeriza-tion for bisphenol a detection. Sens. Actuators B Chem., 2020, 323(128670), 128670.
[http://dx.doi.org/10.1016/j.snb.2020.128670]
[122]
Wang, D.; Xu, Z.; Liu, Y.; Liu, Y.; Li, G.; Si, X.; Lin, T.; Liu, H.; Liu, Z. Molecularly imprinted polymer-based fiber array extraction of eight estrogens from environmental water samples prior to high-performance liquid chromatography analysis. Microchem. J., 2020, 159(105376), 105376.
[http://dx.doi.org/10.1016/j.microc.2020.105376]
[123]
Pizan-Aquino, C.; Wong, A.; Avilés-Félix, L.; Khan, S.; Picasso, G.; Sotomayor, M.D.P.T. Evaluation of the performance of selective M-MIP to tetracycline using electrochemical and HPLC-UV method. Mater. Chem. Phys., 2020, 245(122777), 122777.
[http://dx.doi.org/10.1016/j.matchemphys.2020.122777]
[124]
Bouvarel, T.; Delaunay, N.; Pichon, V. Molecularly imprinted polymers in miniaturized extraction and separation devices. J. Sep. Sci., 2021, 44(8), 1727-1751.
[http://dx.doi.org/10.1002/jssc.202001223] [PMID: 33480181]
[125]
Li, G.; Row, K.H. Magnetic molecularly imprinted polymers for recognition and enrichment of polysaccharides from seaweed. J. Sep. Sci., 2017, 40(24), 4765-4772.
[http://dx.doi.org/10.1002/jssc.201700947] [PMID: 29027361]
[126]
Sadeghi, M.; Nematifar, Z.; Fattahi, N.; Pirsaheb, M.; Shamsipur, M. Determination of bisphenol a in food and environmental samples using combined solid-phase extraction–dispersive liquid–liquid microextraction with solidification of floating organic drop followed by HPLC. Food Anal. Methods, 2016, 9(6), 1814-1824.
[http://dx.doi.org/10.1007/s12161-015-0357-6]
[127]
Xie, Q.; Xia, M.; Lu, H.; Shi, H.; Sun, D.; Hou, B.; Jia, L.; Li, D. Deep eutectic solvent-based liquid-liquid microextraction for the HPLC-DAD analysis of bisphenol a in edible oils. J. Mol. Liq., 2020, 306(112881), 112881.
[http://dx.doi.org/10.1016/j.molliq.2020.112881]
[128]
Tsalbouris, A.; Kalogiouri, N.P.; Kabir, A.; Furton, K.G.; Samanidou, V.F.; Bisphenol, A. Migration to alcoholic and non-alcoholic bever-ages - an improved molecular imprinted solid phase extraction method prior to detection with HPLC-DAD. Microchem. J., 2021, 162(105846), 105846.
[http://dx.doi.org/10.1016/j.microc.2020.105846]
[129]
Liu, Y.; Wang, D.; Du, F.; Zheng, W.; Liu, Z.; Xu, Z.; Hu, X.; Liu, H. Dummy-template molecularly imprinted micro-solid-phase extraction coupled with high-performance liquid chromatography for bisphenol a determination in environmental water samples. Microchem. J., 2019, 145, 337-344.
[http://dx.doi.org/10.1016/j.microc.2018.10.054]
[130]
Alnaimat, A.S.; Barciela-Alonso, M.C.; Bermejo-Barrera, P. Determination of bisphenol a in tea samples by solid phase extraction and liquid chromatography coupled to mass spectrometry. Microchem. J., 2019, 147, 598-604.
[http://dx.doi.org/10.1016/j.microc.2019.03.026]
[131]
Xie, X.; Ma, X.; Guo, L.; Fan, Y.; Zeng, G.; Zhang, M.; Li, J. Novel magnetic multi-templates molecularly imprinted polymer for selective and rapid removal and detection of alkylphenols in water. Chem. Eng. J., 2019, 357, 56-65.
[http://dx.doi.org/10.1016/j.cej.2018.09.080]
[132]
Lin, Z.; Zhang, Y.; Su, Y.; Qi, J.; Jia, Y.; Huang, C.; Dong, Q. Selective extraction of bisphenol A from water by one-monomer molecularly imprinted magnetic nanoparticles. J. Sep. Sci., 2018, 41(9), 2029-2036.
[http://dx.doi.org/10.1002/jssc.201701162] [PMID: 29333682]
[133]
Dreolin, N.; Aznar, M.; Moret, S.; Nerin, C. Development and validation of a LC-MS/MS method for the analysis of bisphenol a in poly-ethylene terephthalate. Food Chem., 2019, 274, 246-253.
[http://dx.doi.org/10.1016/j.foodchem.2018.08.109] [PMID: 30372934]
[134]
Babu, S.; Uppu, S.N.; Martin, B.; Agu, O.A.; Uppu, R.M. Unusually high levels of bisphenol A (BPA) in thermal paper cash register re-ceipts (CRs): development and application of a robust LC-UV method to quantify BPA in CRs. Toxicol. Mech. Methods, 2015, 25(5), 410-416.
[http://dx.doi.org/10.3109/15376516.2015.1045661] [PMID: 26024012]
[135]
Maragou, N.C.; Thomaidis, N.S.; Theodoridis, G.A.; Lampi, E.N.; Koupparis, M.A. Determination of bisphenol A in canned food by mi-crowave assisted extraction, molecularly imprinted polymer-solid phase extraction and liquid chromatography-mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2020, 1137(121938), 121938.
[http://dx.doi.org/10.1016/j.jchromb.2019.121938] [PMID: 31881513]
[136]
Hroboňová, K.; Lomenova, A. Molecularly imprinted polymer as stationary phase for HPLC separation of phenylalanine enantiomers. Monatsh. Chem., 2018, 149(5), 939-946.
[http://dx.doi.org/10.1007/s00706-018-2155-5]
[137]
Mu, L-N.; Wei, Z-H.; Liu, Z-S. Current trends in the development of molecularly imprinted polymers in CEC. Electrophoresis, 2015, 36(5), 764-772.
[http://dx.doi.org/10.1002/elps.201400389] [PMID: 25502791]
[138]
Rutkowska, M.; Płotka-Wasylka, J.; Morrison, C.; Wieczorek, P.P.; Namieśnik, J.; Marć, M. Application of molecularly imprinted polymers in analytical chiral separations and analysis. Trends Analyt. Chem., 2018, 102, 91-102.
[http://dx.doi.org/10.1016/j.trac.2018.01.011]
[139]
Hu, X.; Wu, X.; Yang, F.; Wang, Q.; He, C.; Liu, S. Novel surface dummy molecularly imprinted silica as sorbent for solid-phase extraction of bisphenol A from water samples. Talanta, 2016, 148, 29-36.
[http://dx.doi.org/10.1016/j.talanta.2015.10.057] [PMID: 26653420]
[140]
Mei, S.; Wu, D.; Jiang, M.; Lu, B.; Lim, J-M.; Zhou, Y-K.; Lee, Y-I. Determination of trace bisphenol a in complex samples using selective molecularly imprinted solid-phase extraction coupled with capillary electrophoresis. Microchem. J., 2011, 98(1), 150-155.
[http://dx.doi.org/10.1016/j.microc.2011.01.003]
[141]
Yang, J.; Li, Y.; Wang, J.; Sun, X.; Cao, R.; Sun, H.; Huang, C.; Chen, J. Molecularly imprinted polymer microspheres prepared by Pickering emulsion polymerization for selective solid-phase extraction of eight bisphenols from human urine samples. Anal. Chim. Acta, 2015, 872, 35-45.
[http://dx.doi.org/10.1016/j.aca.2015.02.058] [PMID: 25892067]
[142]
Dong, R.; Li, J.; Xiong, H.; Lu, W.; Peng, H.; Chen, L. Thermosensitive molecularly imprinted polymers on porous carriers: preparation, characterization and properties as novel adsorbents for bisphenol. A Talanta, 2014, 130, 182-191.
[http://dx.doi.org/10.1016/j.talanta.2014.06.055] [PMID: 25159397]
[143]
Abdollahzadeh, Y.; Yamini, Y.; Jabbari, A.; Esrafili, A.; Rezaee, M. Application of ultrasound-assisted emulsification microextraction followed by gas chromatography for determination of organophosphorus pesticides in water and soil samples. Anal. Methods, 2012, 4(3), 830.
[http://dx.doi.org/10.1039/c2ay05653d]
[144]
Xu, Z.; Yang, Z.; Liu, Z. Development of dual-templates molecularly imprinted stir bar sorptive extraction and its application for the analysis of environmental estrogens in water and plastic samples. J. Chromatogr. A, 2014, 1358, 52-59.
[http://dx.doi.org/10.1016/j.chroma.2014.06.093] [PMID: 25037774]
[145]
Wei, F.; Liu, X.; Zhai, M.; Cai, Z.; Xu, G.; Yang, J.; Du, S.; Hu, Q. Molecularly imprinted nanosilica solid-phase extraction for bisphenol a in fish samples. Food Anal. Methods, 2013, 6(2), 415-420.
[http://dx.doi.org/10.1007/s12161-012-9455-x]
[146]
Rozaini, M.N.H.; Yahaya, N.; Saad, B.; Kamaruzaman, S.; Hanapi, N.S.M. Rapid ultrasound assisted emulsification micro-solid phase extraction based on molecularly imprinted polymer for HPLC-DAD determination of bisphenol A in aqueous matrices. Talanta, 2017, 171, 242-249.
[http://dx.doi.org/10.1016/j.talanta.2017.05.006] [PMID: 28551135]
[147]
Li, Y.; Lu, P.; Cheng, J.; Zhu, X.; Guo, W.; Liu, L.; Wang, Q.; He, C.; Liu, S. Novel microporous β-cyclodextrin polymer as sorbent for solid-phase extraction of bisphenols in water samples and orange juice. Talanta, 2018, 187, 207-215.
[http://dx.doi.org/10.1016/j.talanta.2018.05.030] [PMID: 29853037]
[148]
Xu, Z.; Ding, L.; Long, Y.; Xu, L.; Wang, L.; Xu, C. Preparation and evaluation of superparamagnetic surface molecularly imprinted polymer nanoparticles for selective extraction of bisphenol a in packed food. Anal. Methods, 2011, 3(8), 1737.
[http://dx.doi.org/10.1039/c1ay05206c]
[149]
Baggiani, C.; Baravalle, P.; Giovannoli, C.; Anfossi, L.; Giraudi, G. Molecularly imprinted polymer/cryogel composites for solid-phase extraction of bisphenol A from river water and wine. Anal. Bioanal. Chem., 2010, 397(2), 815-822.
[http://dx.doi.org/10.1007/s00216-010-3591-1] [PMID: 20225052]
[150]
Alexiadou, D.K.; Maragou, N.C.; Thomaidis, N.S.; Theodoridis, G.A.; Koupparis, M.A. Molecularly imprinted polymers for bisphenol A for HPLC and SPE from water and milk. J. Sep. Sci., 2008, 31(12), 2272-2282.
[http://dx.doi.org/10.1002/jssc.200700643] [PMID: 18615828]
[151]
Zhang, J-H.; Jiang, M.; Zou, L.; Shi, D.; Mei, S-R.; Zhu, Y-X.; Shi, Y.; Dai, K.; Lu, B. Selective solid-phase extraction of bisphenol A using molecularly imprinted polymers and its application to biological and environmental samples. Anal. Bioanal. Chem., 2006, 385(4), 780-786.
[http://dx.doi.org/10.1007/s00216-006-0406-5] [PMID: 16741779]
[152]
Herrero-Hernández, E.; Carabias-Martínez, R.; Rodríguez-Gonzalo, E. Use of a bisphenol-A imprinted polymer as a selective sorbent for the determination of phenols and phenoxyacids in honey by liquid chromatography with diode array and tandem mass spectrometric detection. Anal. Chim. Acta, 2009, 650(2), 195-201.
[http://dx.doi.org/10.1016/j.aca.2009.07.043] [PMID: 19720192]
[153]
Mahony, J.O.; Nolan, K.; Smyth, M.R.; Mizaikoff, B. Molecularly imprinted polymers - potential and challenges in analytical chemistry. Anal. Chim. Acta, 2005, 534(1), 31-39.
[http://dx.doi.org/10.1016/j.aca.2004.07.043]
[154]
Sun, X.; Wang, J.; Li, Y.; Jin, J.; Yang, J.; Li, F.; Shah, S.M.; Chen, J. Highly class-selective solid-phase extraction of bisphenols in milk, sediment and human urine samples using well-designed dummy molecularly imprinted polymers. J. Chromatogr. A, 2014, 1360, 9-16.
[http://dx.doi.org/10.1016/j.chroma.2014.07.055] [PMID: 25130092]
[155]
Kawaguchi, M.; Hayatsu, Y.; Nakata, H.; Ishii, Y.; Ito, R.; Saito, K.; Nakazawa, H. Molecularly imprinted solid phase extraction using stable isotope labeled compounds as template and liquid chromatography–mass spectrometry for trace analysis of bisphenol a in water sample. Anal. Chim. Acta, 2005, 539(1–2), 83-89.
[http://dx.doi.org/10.1016/j.aca.2005.03.005]
[156]
Li, J.; Zhang, X.; Liu, Y.; Tong, H.; Xu, Y.; Liu, S. Preparation of a hollow porous molecularly imprinted polymer using tetrabromo-bisphenol A as a dummy template and its application as SPE sorbent for determination of bisphenol A in tap water. Talanta, 2013, 117, 281-287.
[http://dx.doi.org/10.1016/j.talanta.2013.09.022] [PMID: 24209342]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy