Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Commentary

On the Regulation of NF-κB Pathway by HPV Oncoproteins: Are Pathway Inhibitors a Good Alternative for the Treatment of Cervical Cancer?

Author(s): Natalia Garcia-Becerra, Adriana Aguilar-Lemarroy and Luis F. Jave-Suárez*

Volume 23, Issue 5, 2023

Published on: 20 August, 2022

Page: [492 - 497] Pages: 6

DOI: 10.2174/1871520622666220509180606

Price: $65

Abstract

Cervical cancer (CC) is one of the most prevalent cancer-related pathologies in the female population. It is considered the second leading cause of cancer-related deaths in developing countries. The most important etiological factor for the development of CC is the persistent infection with high-risk human papillomavirus. HPV-oncoproteins have evolved to modulate cellular mechanisms to permit viral replication and the generation of new infectious viral particles. When the viral infection persists, there is an uncontrolled viral protein expression essential to commence and maintain the transformation of infected cells. Different cell pathways are affected during the transformation stage, including the NF-κB signaling pathway. NF-κB controls different cellular mechanisms, and its role is critical for various processes, such as immunity, inflammation, cell differentiation, growth, and survival. NF-κB plays a double role in the development of CC. Evidence suggests that in the early stages of viral infection, the NF-κB activity impairs viral transcription and is beneficial for avoiding cellular immortalization. However, in the advanced stages of cervical carcinogenesis, the activation of the NF-κB correlates with a poor prognosis. Here, we discuss some aspects of NF-κB activity during the development of CC and the use of NF-κB inhibitors to treat this pathology.

Keywords: Cervical Cancer, HPV, NF kappa B, E6, E7, Inhibitors, Treatment

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Prendiville, W.; Sankaranarayanan, R. Colposcopy and treatment of cervical precancer. Int Agency for Res. Cancer; WHO, 2017.
[3]
Eun, T.J.; Perkins, R.B. Screening for cervical cancer. Med. Clin. North Am., 2020, 104(6), 1063-1078.
[http://dx.doi.org/10.1016/j.mcna.2020.08.006] [PMID: 33099451]
[4]
Kuhn, L.; Denny, L.; Pollack, A.; Lorincz, A.; Richart, R.M.; Wright, T.C. Human papillomavirus DNA testing for cervical cancer screening in low-resource settings. J. Natl. Cancer Inst., 2000, 92(10), 818-825.
[http://dx.doi.org/10.1093/jnci/92.10.818] [PMID: 10814677]
[5]
Guan, P.; Howell-Jones, R.; Li, N.; Bruni, L.; de Sanjosé, S.; Franceschi, S.; Clifford, G.M. Human papillomavirus types in 115,789 HPV-positive women: A meta-analysis from cervical infection to cancer. Int. J. Cancer, 2012, 131(10), 2349-2359.
[http://dx.doi.org/10.1002/ijc.27485] [PMID: 22323075]
[6]
Gheit, T. Mucosal and cutaneous human papillomavirus infections and cancer biology. Front. Oncol., 2019, 9, 355.
[http://dx.doi.org/10.3389/fonc.2019.00355]
[7]
Fischer, M.; Steiner, L.; Engeland, K. The transcription factor p53: Not a repressor, solely an activator. Cell Cycle, 2014, 13(19), 3037-3058.
[http://dx.doi.org/10.4161/15384101.2014.949083] [PMID: 25486564]
[8]
Nguyen, H.P.; Ramírez-Fort, M.K.; Rady, P.L. The biology of human papillomaviruses. Curr. Probl. Dermatol., 2014, 45(45), 19-32.
[http://dx.doi.org/10.1159/000355959] [PMID: 24643175]
[9]
Morgan, E.L. Macdonald, A Autocrine STAT3 activation in HPV positive cervical cancer through a virus-driven Rac1-NFkappaB-IL-6 signalling axis. PLoS Pathog., 2019, 15, e1007835.
[http://dx.doi.org/10.1371/journal.ppat.1007835]
[10]
Hussain, S.S.; Lundine, D. Leeman, JE Genomic signatures in HPV-associated tumors. Viruses, 2021, 13(10), 1998.
[http://dx.doi.org/10.3390/v13101998]
[11]
Liu, T. Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther., 2017, 2, 17023.
[http://dx.doi.org/10.1038/sigtrans.2017.23] [PMID: 29158945]
[12]
Kaltschmidt, B.; Greiner, J.F.W.; Kadhim, H.M. Subunit-specific role of NF-kappaB in cancer. Biomedicines, 2018, 6(2), 44.
[http://dx.doi.org/10.3390/biomedicines6020044]
[13]
Chen, L.F.; Greene, W.C. Shaping the nuclear action of NF-kappaB. Nat. Rev. Mol. Cell Biol., 2004, 5(5), 392-401.
[http://dx.doi.org/10.1038/nrm1368] [PMID: 15122352]
[14]
Taniguchi, K. Karin, M. NF-κB, inflammation, immunity and cancer: Coming of age. Nat. Rev. Immunol., 2018, 18(5), 309-324.
[http://dx.doi.org/10.1038/nri.2017.142] [PMID: 29379212]
[15]
Zinatizadeh, M.R.; Schock, B.; Chalbatani, G.M.; Zarandi, P.K.; Jalali, S.A.; Miri, S.R. The nuclear factor kappa B (NF-kB) signaling in cancer development and immune diseases. Genes Dis., 2020, 8(3), 287-297.
[http://dx.doi.org/10.1016/j.gendis.2020.06.005] [PMID: 33997176]
[16]
Baldwin, A.S. Jr Series introduction: The transcription factor NF-kappaB and human disease. J. Clin. Invest., 2001, 107(1), 3-6.
[http://dx.doi.org/10.1172/JCI11891] [PMID: 11134170]
[17]
Hoesel, B.; Schmid, J.A. The complexity of NF-kappaB signaling in inflammation and cancer. Mol. Cancer, 2013, 12(1), 1-15.
[http://dx.doi.org/10.1186/1476-4598-12-86]
[18]
Fontaine, V.; van der Meijden, E.; de Graaf, J.; ter Schegget, J.; Struyk, L. A functional NF-kappaB binding site in the human papillomavirus type 16 long control region. Virology, 2000, 272(1), 40-49.
[http://dx.doi.org/10.1006/viro.2000.0363] [PMID: 10873747]
[19]
Nees, M.; Geoghegan, J.M.; Hyman, T.; Frank, S.; Miller, L.; Woodworth, C.D. Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-kappaB-responsive genes in cervical keratinocytes. J. Virol., 2001, 75(9), 4283-4296.
[http://dx.doi.org/10.1128/JVI.75.9.4283-4296.2001] [PMID: 11287578]
[20]
Dajee, M.; Lazarov, M.; Zhang, J.Y.; Cai, T.; Green, C.L.; Russell, A.J.; Marinkovich, M.P.; Tao, S.; Lin, Q.; Kubo, Y.; Khavari, P.A. NF-kappaB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature, 2003, 421(6923), 639-643.
[http://dx.doi.org/10.1038/nature01283] [PMID: 12571598]
[21]
Vandermark, E.R.; Deluca, K.A.; Gardner, C.R.; Marker, D.F.; Schreiner, C.N.; Strickland, D.A.; Wilton, K.M.; Mondal, S.; Woodworth, C.D. Human papillomavirus type 16 E6 and E 7 proteins alter NF-kB in cultured cervical epithelial cells and inhibition of NF-kB promotes cell growth and immortalization. Virology, 2012, 425(1), 53-60.
[http://dx.doi.org/10.1016/j.virol.2011.12.023] [PMID: 22284893]
[22]
van Hogerlinden, M.; Rozell, B.L.; Ahrlund-Richter, L.; Toftgård, R. Squamous cell carcinomas and increased apoptosis in skin with inhibited Rel/nuclear factor-kappaB signaling. Cancer Res., 1999, 59(14), 3299-3303.
[PMID: 10416581]
[23]
Fichorova, R.N.; Cronin, A.O.; Lien, E.; Anderson, D.J.; Ingalls, R.R. Response to Neisseria gonorrhoeae by cervicovaginal epithelial cells occurs in the absence of toll-like receptor 4-mediated signaling. J. Immunol., 2002, 168(5), 2424-2432.
[http://dx.doi.org/10.4049/jimmunol.168.5.2424] [PMID: 11859134]
[24]
Ohshima, H.; Tazawa, H.; Sylla, B.S.; Sawa, T. Prevention of human cancer by modulation of chronic inflammatory processes. Mutat. Res., 2005, 591(1-2), 110-122.
[http://dx.doi.org/10.1016/j.mrfmmm.2005.03.030] [PMID: 16083916]
[25]
Havard, L.; Delvenne, P.; Fraré, P.; Boniver, J.; Giannini, S.L. Differential production of cytokines and activation of NF-kappaB in HPV-transformed keratinocytes. Virology, 2002, 298(2), 271-285.
[http://dx.doi.org/10.1006/viro.2002.1468] [PMID: 12127790]
[26]
Havard, L.; Rahmouni, S.; Boniver, J.; Delvenne, P. High levels of p105 (NFKB1) and p100 (NFKB2) proteins in HPV16-transformed keratinocytes: Role of E6 and E7 oncoproteins. Virology, 2005, 331(2), 357-366.
[http://dx.doi.org/10.1016/j.virol.2004.10.030] [PMID: 15629778]
[27]
James, M.A.; Lee, J.H.; Klingelhutz, A.J. Human papillomavirus type 16 E6 activates NF-kappaB, induces cIAP-2 expression, and protects against apoptosis in a PDZ binding motif-dependent manner. J. Virol., 2006, 80(11), 5301-5307.
[http://dx.doi.org/10.1128/JVI.01942-05] [PMID: 16699010]
[28]
Hussain, I.; Fathallah, I.; Accardi, R.; Yue, J.; Saidj, D.; Shukla, R.; Hasan, U.; Gheit, T.; Niu, Y.; Tommasino, M.; Sylla, B.S. NF-kappaB protects human papillomavirus type 38 E6/E7-immortalized human keratinocytes against tumor necrosis factor alpha and UV-mediated apoptosis. J. Virol., 2011, 85(17), 9013-9022.
[http://dx.doi.org/10.1128/JVI.00002-11] [PMID: 21715489]
[29]
An, J.; Mo, D.; Liu, H.; Veena, M.S.; Srivatsan, E.S.; Massoumi, R.; Rettig, M.B. Inactivation of the CYLD deubiquitinase by HPV E6 mediates hypoxia-induced NF-kappaB activation. Cancer Cell, 2008, 14(5), 394-407.
[http://dx.doi.org/10.1016/j.ccr.2008.10.007] [PMID: 18977328]
[30]
Xu, M.; Katzenellenbogen, R.A.; Grandori, C.; Galloway, D.A. NFX1 plays a role in human papillomavirus type 16 E6 activation of NFkappaB activity. J. Virol., 2010, 84(21), 11461-11469.
[http://dx.doi.org/10.1128/JVI.00538-10] [PMID: 20739528]
[31]
Nair, A.; Venkatraman, M.; Maliekal, T.T.; Nair, B.; Karunagaran, D. NF-kappaB is constitutively activated in high-grade squamous intraepithelial lesions and squamous cell carcinomas of the human uterine cervix. Oncogene, 2003, 22(1), 50-58.
[http://dx.doi.org/10.1038/sj.onc.1206043] [PMID: 12527907]
[32]
Xia, L.; Xue, X.Z. Immunohistochemical study of NF-κB p65, c-IAP2 and caspase-3 expression in cervical cancer. Oncol. Lett., 2012, 3(4), 839-844.
[http://dx.doi.org/10.3892/ol.2012.564] [PMID: 22741003]
[33]
Criswell, T.; Leskov, K.; Miyamoto, S.; Luo, G.; Boothman, D.A. Transcription factors activated in mammalian cells after clinically relevant doses of ionizing radiation. Oncogene, 2003, 22(37), 5813-5827.
[http://dx.doi.org/10.1038/sj.onc.1206680] [PMID: 12947388]
[34]
Venkatraman, M.; Anto, R.J.; Nair, A.; Varghese, M.; Karunagaran, D. Biological and chemical inhibitors of NF-kappaB sensitize SiHa cells to cisplatin-induced apoptosis. Mol. Carcinog., 2005, 44(1), 51-59.
[http://dx.doi.org/10.1002/mc.20116] [PMID: 16044419]
[35]
Veuger, S.J.; Hunter, J.E.; Durkacz, B.W. Ionizing radiation-induced NF-kappaB activation requires PARP-1 function to confer radioresistance. Oncogene, 2009, 28(6), 832-842.
[http://dx.doi.org/10.1038/onc.2008.439] [PMID: 19060926]
[36]
Tilborghs, S.; Corthouts, J.; Verhoeven, Y.; Arias, D.; Rolfo, C.; Trinh, X.B.; van Dam, P.A. The role of Nuclear Factor-kappa B signaling in human cervical cancer. Crit. Rev. Oncol. Hematol., 2017, 120(120), 141-150.
[http://dx.doi.org/10.1016/j.critrevonc.2017.11.001] [PMID: 29198328]
[37]
Gilmore, T.D.; Herscovitch, M. Inhibitors of NF-kappaB signaling: 785 and counting. Oncogene, 2006, 25(51), 6887-6899.
[http://dx.doi.org/10.1038/sj.onc.1209982] [PMID: 17072334]
[38]
Medeiros, M.; Candido, M.F.; Valera, E.T.; Brassesco, M.S. The multifaceted NF-kB: Are there still prospects of its inhibition for clinical intervention in pediatric central nervous system tumors? Cell. Mol. Life Sci., 2021, 78(17-18), 6161-6200.
[http://dx.doi.org/10.1007/s00018-021-03906-7] [PMID: 34333711]
[39]
Samlaska, C.P.; Winfield, E.A. Pentoxifylline. J. Am. Acad. Dermatol., 1994, 30(4), 603-621.
[http://dx.doi.org/10.1016/S0190-9622(94)70069-9] [PMID: 8157787]
[40]
Wang, W.; Tam, W.F.; Hughes, C.C.; Rath, S.; Sen, R. c-Rel is a target of pentoxifylline-mediated inhibition of T lymphocyte activation. Immunity, 1997, 6(2), 165-174.
[http://dx.doi.org/10.1016/S1074-7613(00)80423-9] [PMID: 9047238]
[41]
Chen, Y.M.; Tu, C.J.; Hung, K.Y.; Wu, K.D.; Tsai, T.J.; Hsieh, B.S. Inhibition by pentoxifylline of TNF-alpha-stimulated fractalkine production in vascular smooth muscle cells: Evidence for mediation by NF-kappa B down-regulation. Br. J. Pharmacol., 2003, 138(5), 950-958.
[http://dx.doi.org/10.1038/sj.bjp.0705088] [PMID: 12642397]
[42]
Li, Y.X.; Weber-Johnson, K.; Sun, L.Q.; Paschoud, N.; Mirimanoff, R.O.; Coucke, P.A. Effect of pentoxifylline on radiation-induced G2-phase delay and radiosensitivity of human colon and cervical cancer cells. Radiat. Res., 1998, 149(4), 338-342.
[http://dx.doi.org/10.2307/3579695] [PMID: 9525497]
[43]
Hernandez-Flores, G.; Ortiz-Lazareno, P.C.; Lerma-Diaz, J.M. Pentoxifylline sensitizes human cervical tumor cells to cisplatin-induced apoptosis by suppressing NF-kappa B and decreased cell senescence. BMC Cancer, 2011, 11(1), 483.
[http://dx.doi.org/10.1186/1471-2407-11-483]
[44]
Bravo-Cuellar, A.; Ortiz-Lazareno, P.C.; Sierra-Diaz, E. Pentoxifylline sensitizes cisplatin-resistant human cervical cancer cells to cisplatin treatment: Involvement of mitochondrial and NF-kappa B pathways. Front. Oncol., 2020, 10, 592706.
[http://dx.doi.org/10.3389/fonc.2020.592706]
[45]
Mannel, R.S.; Blessing, J.A.; Boike, G. Cisplatin and pentoxifylline in advanced or recurrent squamous cell carcinoma of the cervix: A phase II trial of the Gynecologic Oncology Group. Gynecol. Oncol., 2000, 79(1), 64-66.
[http://dx.doi.org/10.1006/gyno.2000.5874] [PMID: 11006033]
[46]
Singh, S.; Aggarwal, B.B. Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane). J. Biol. Chem., 1995, 270(42), 24995-25000.
[http://dx.doi.org/10.1074/jbc.270.42.24995] [PMID: 7559628]
[47]
Olivera, A.; Moore, T.W.; Hu, F.; Brown, A.P.; Sun, A.; Liotta, D.C.; Snyder, J.P.; Yoon, Y.; Shim, H.; Marcus, A.I.; Miller, A.H.; Pace, T.W. Inhibition of the NF-κB signaling pathway by the curcumin analog, 3,5-Bis(2-pyridinylmethylidene)-4-piperidone (EF31): Anti-inflammatory and anti-cancer properties. Int. Immunopharmacol., 2012, 12(2), 368-377.
[http://dx.doi.org/10.1016/j.intimp.2011.12.009] [PMID: 22197802]
[48]
Debata, P.R.; Castellanos, M.R.; Fata, J.E.; Baggett, S.; Rajupet, S.; Szerszen, A.; Begum, S.; Mata, A.; Murty, V.V.; Opitz, L.M.; Banerjee, P. A novel curcumin-based vaginal cream Vacurin selectively eliminates apposed human cervical cancer cells. Gynecol. Oncol., 2013, 129(1), 145-153.
[http://dx.doi.org/10.1016/j.ygyno.2012.12.005] [PMID: 23234806]
[49]
Alexandrow, M.G.; Song, L.J.; Altiok, S.; Gray, J.; Haura, E.B.; Kumar, N.B. Curcumin: A novel Stat 3 pathway inhibitor for chemoprevention of lung cancer. Eur. J. Cancer Prev., 2012, 21(5), 407-412.
[http://dx.doi.org/10.1097/CEJ.0b013e32834ef194] [PMID: 22156994]
[50]
Dang, Y.P.; Yuan, X.Y.; Tian, R.; Li, D.G.; Liu, W. Curcumin improves the paclitaxel-induced apoptosis of HPV-positive human cervical cancer cells via the NF-κB-p53-caspase-3 pathway. Exp. Ther. Med., 2015, 9(4), 1470-1476.
[http://dx.doi.org/10.3892/etm.2015.2240] [PMID: 25780454]
[51]
Du, G.; Liu, L.; Chen, J. Chapter 11 - White Biotechnology for Organic Acids.Industrial Biorefineries & White Biotechnology; Pandey, A.; Höfer, R.; Taherzadeh, M., Eds.; Elsevier: Amsterdam, 2015, pp. 409-444.
[http://dx.doi.org/10.1016/B978-0-444-63453-5.00013-6]
[52]
Yang, R.; Hu, X.; Xie, X. Propionic acid targets the TLR4/NF-κB signaling pathway and inhibits LPS-induced intestinal barrier dysfunction: In vitro and in vivo studies. Front. Pharmacolo., 2020, 11, 573475.
[http://dx.doi.org/10.3389/fphar.2020.573475]
[53]
Pham, C.H.; Lee, J.E.; Yu, J.; Lee, S.H.; Yu, K.R.; Hong, J.; Cho, N.; Kim, S.; Kang, D.; Lee, S.; Yoo, H.M. Anticancer effects of propionic acid inducing cell death in cervical cancer cells. Molecules, 2021, 26(16), 4951.
[http://dx.doi.org/10.3390/molecules26164951] [PMID: 34443546]
[54]
Chaudhari, S.; Patel, K.; Badole, S. Punica granatum (Pomegranate Fruit): In cancer treatment. In polyphenols in human health and disease. (pp. 1393- 1400); Academia press, 2014.
[55]
Zhang, L.; Chinnathambi, A.; Alharbi, S.A.; Veeraraghavan, V.P.; Mohan, S.K.; Zhang, G. Punicalagin promotes the apoptosis in human cervical cancer (ME-180) cells through mitochondrial pathway and by inhibiting the NF-kB signaling pathway. Saudi J. Biol. Sci., 2020, 27(4), 1100-1106.
[http://dx.doi.org/10.1016/j.sjbs.2020.02.015] [PMID: 32256171]
[56]
Xu, X.; Yin, P.; Wan, C.; Chong, X.; Liu, M.; Cheng, P.; Chen, J.; Liu, F.; Xu, J.; Xu, J. Punicalagin inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4-mediated MAPKs and NF-κB activation. Inflammation, 2014, 37(3), 956-965.
[http://dx.doi.org/10.1007/s10753-014-9816-2] [PMID: 24473904]
[57]
Huang, M.; Wu, K.; Zeng, S.; Liu, W.; Cui, T.; Chen, Z.; Lin, L.; Chen, D.; Ouyang, H. Punicalagin inhibited inflammation and migration of fibroblast-like synoviocytes through NF-κB pathway in the experimental study of rheumatoid arthritis. J. Inflamm. Res., 2021, 14, 1901-1913.
[http://dx.doi.org/10.2147/JIR.S302929] [PMID: 34012288]
[58]
Tuli, H.S.; Tuorkey, M.J.; Thakral, F. Molecular mechanisms of action of genistein in cancer: Recent advances. Front. Pharmacol., 2019, 10, 1336.
[http://dx.doi.org/10.3389/fphar.2019.01336]
[59]
Davis, J.N.; Kucuk, O.; Sarkar, F.H. Genistein inhibits NF-kappa B activation in prostate cancer cells. Nutr. Cancer, 1999, 35(2), 167-174.
[http://dx.doi.org/10.1207/S15327914NC352_11] [PMID: 10693171]
[60]
Li, Y.; Sarkar, F.H. Inhibition of nuclear factor kappaB activation in PC3 cells by genistein is mediated via Akt signaling pathway. Clin. Cancer Res., 2002, 8(7), 2369-2377.
[PMID: 12114442]
[61]
Sahin, K.; Tuzcu, M.; Basak, N. Sensitization of cervical cancer cells to cisplatin by genistein: The role of NFkappaB and Akt/mTOR signaling pathways. J. Oncol., 2012, 2012, 461562.
[http://dx.doi.org/10.1155/2012/461562]
[62]
Kim, S.H.; Kim, S.H.; Kim, Y.B.; Jeon, Y.T.; Lee, S.C.; Song, Y.S. Genistein inhibits cell growth by modulating various mitogen-activated protein kinases and AKT in cervical cancer cells. Ann. N. Y. Acad. Sci., 2009, 1171(1171), 495-500.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04899.x] [PMID: 19723095]
[63]
Hussain, A.; Harish, G.; Prabhu, S.A.; Mohsin, J.; Khan, M.A.; Rizvi, T.A.; Sharma, C. Inhibitory effect of genistein on the invasive potential of human cervical cancer cells via modulation of matrix metalloproteinase-9 and tissue inhibitors of matrix metalloproteinase-1 expression. Cancer Epidemiol., 2012, 36(6), e387-e393.
[http://dx.doi.org/10.1016/j.canep.2012.07.005] [PMID: 22884883]
[64]
Pandey, M.K.; Sung, B.; Kunnumakkara, A.B.; Sethi, G.; Chaturvedi, M.M.; Aggarwal, B.B. Berberine modifies cysteine 179 of IkappaBalpha kinase, suppresses nuclear factor-kappaB-regulated antiapoptotic gene products, and potentiates apoptosis. Cancer Res., 2008, 68(13), 5370-5379.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0511] [PMID: 18593939]
[65]
Wang, Y.X.; Liu, L.; Zeng, Q.X. Synthesis and identification of novel berberine derivatives as potent inhibitors against TNF-alpha-induced NF-kappaB activation. Molecules, 2017, 22(8), 1257.
[http://dx.doi.org/10.3390/molecules22081257]
[66]
Hu, J.P.; Nishishita, K.; Sakai, E.; Yoshida, H.; Kato, Y.; Tsukuba, T.; Okamoto, K. Berberine inhibits RANKL-induced osteoclast formation and survival through suppressing the NF-kappaB and Akt pathways. Eur. J. Pharmacol., 2008, 580(1-2), 70-79.
[http://dx.doi.org/10.1016/j.ejphar.2007.11.013] [PMID: 18083161]
[67]
Mahata, S.; Bharti, A.C. Shukla, S Berberine modulates AP-1 activity to suppress HPV transcription and downstream signaling to induce growth arrest and apoptosis in cervical cancer cells. Mol. Cancer, 2011, 10, 39.
[http://dx.doi.org/10.1186/1476-4598-10-39]
[68]
Sun, M.; Sun, M.; Zhang, J. Osthole: An overview of its sources, biological activities, and modification development. Med. Chem. Res., 2021, 2021, 1-28.
[http://dx.doi.org/10.1007/s00044-021-02775-w] [PMID: 34376964]
[69]
You, L.; Feng, S.; An, R.; Wang, X. Osthole: A promising lead compound for drug discovery from a traditional Chinese medicine (TCM). Nat. Prod. Commun., 2009, 4(2), 297-302.
[http://dx.doi.org/10.1177/1934578X0900400227] [PMID: 19370943]
[70]
Liu, L.; Wang, M.; Li, X.; Yin, S.; Wang, B. An overview of novel agents for cervical cancer treatment by inducing apoptosis: Emerging drugs ongoing clinical trials and preclinical studies. Front. Med. (Lausanne), 2021, 8, 682366.
[http://dx.doi.org/10.3389/fmed.2021.682366] [PMID: 34395473]
[71]
Liao, P.C.; Chien, S.C.; Ho, C.L.; Wang, E.I.; Lee, S.C.; Kuo, Y.H.; Jeyashoke, N.; Chen, J.; Dong, W.C.; Chao, L.K.; Hua, K.F. Osthole regulates inflammatory mediator expression through modulating NF-κB, mitogen-activated protein kinases, protein kinase C, and reactive oxygen species. J. Agric. Food Chem., 2010, 58(19), 10445-10451.
[http://dx.doi.org/10.1021/jf102812t] [PMID: 20839800]
[72]
Che, Y.; Li, J.; Li, Z.; Li, J.; Wang, S.; Yan, Y.; Zou, K.; Zou, L. Osthole enhances antitumor activity and irradiation sensitivity of cervical cancer cells by suppressing ATM/NF κB signaling. Oncol. Rep., 2018, 40(2), 737-747.
[http://dx.doi.org/10.3892/or.2018.6514] [PMID: 29989651]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy