Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Bringing the Spotlight to Tau and TDP-43 in Frontotemporal Dementia: A Review of Promising Chemical Compounds

Author(s): Karla Villalobos-Nova, Sebastián Monroy-Moya, Joaquín Maulen-Peñaloza, Gabriela C.M. Pinto and Alberto Cornejo*

Volume 29, Issue 38, 2022

Published on: 15 August, 2022

Page: [5903 - 5924] Pages: 22

DOI: 10.2174/0929867329666220508175340

Price: $65

Abstract

There is a wide variety of neurodegenerative diseases, among which frontotemporal dementia stands out. These are the second most frequent cause of dementia in the world and demand the search for an effective treatment. This disease is linked to the abnormal behavior of proteins, which group together to form insoluble aggregates. It has been shown that the tau protein and TDP-43 are the main proteins involved in these pathologies. This article details 11 compounds already used in different neuropathologies, which may serve as potential drugs against these proteins. The mechanism of how most of these molecules inhibited the tau and TDP-43 aggregation process was highlighted. Importantly, Curcumin, Proanthocyanidin B2, Oleocanthal, Oleuropein Aglycone, Thionine, and Resveratrol had been reported as direct inhibitors of tau. While 4-aminoquinoline, Dimethoxycurcumin, and Auranofin directly inhibited TDP-43. Epigallocatechin- 3- gallate and Methylene Blue were described as tau and TDP-43 inhibitors. In this review, it is proposed that future research could elucidate the detailed inhibition mechanisms of these compounds to obtain relevant data to advance in treatments search for these coexisting proteins in frontotemporal dementia.

Keywords: Frontotemporal dementia, proteinopathies, tau, TDP-43, protein aggregation, chemical compounds.

Next »
[1]
Dugger, B.N.; Dickson, D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2017, 9(7), a028035.
[http://dx.doi.org/10.1101/cshperspect.a028035] [PMID: 28062563]
[2]
Gitler, A.D.; Dhillon, P.; Shorter, J. Neurodegenerative disease: Models, mechanisms, and a new hope. Dis. Model. Mech., 2017, 10(5), 499-502.
[http://dx.doi.org/10.1242/dmm.030205] [PMID: 28468935]
[3]
World Health Organization. Global Action Plan on the Public Health Response to Dementia 2017–2025; World Health Organization, 2017.
[4]
International, A. D.; University, M. World Alzheimer report 2021: Journey through the diagnosis of dementia. 2021.
[5]
Alves, L.C.S.; Monteiro, D.Q.; Bento, S.R.; Hayashi, V.D.; Pelegrini, L.N.C.; Vale, F.A.C. Burnout syndrome in informal caregivers of older adults with dementia: A systematic review. Dement. Neuropsychol., 2019, 13(4), 415-421.
[http://dx.doi.org/10.1590/1980-57642018dn13-040008] [PMID: 31844495]
[6]
OECD. Unleashing the power of big data for Alzheimer’s disease and dementia research: Main points of the OECD expert consultation on unlocking global collaboration to accelerate innovation for Alzheimer´s disease and dementia. 2014.
[http://dx.doi.org/10.1787/20716826]
[7]
Stefani, M.; Dobson, C.M. Protein aggregation and aggregate toxicity: New insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med. (Berl.), 2003, 81(11), 678-699.
[http://dx.doi.org/10.1007/s00109-003-0464-5] [PMID: 12942175]
[8]
Forman, M.S.; Trojanowski, J.Q.; Lee, V.M-Y. Neurodegenerative diseases: A decade of discoveries paves the way for therapeutic breakthroughs. Nat. Med., 2004, 10(10), 1055-1063.
[http://dx.doi.org/10.1038/nm1113] [PMID: 15459709]
[9]
Luca, A.; Calandra, C.; Luca, M. Molecular bases of Alzheimer’s disease and neurodegeneration: The role of neuroglia. Aging Dis., 2018, 9(6), 1134-1152.
[http://dx.doi.org/10.14336/AD.2018.0201] [PMID: 30574424]
[10]
Chaves, R.S.; Melo, T.Q.; Martins, S.A.; Ferrari, M.F. Protein aggregation containing β-amyloid, α-synuclein and hyperphosphorylated τ in cultured cells of hippocampus, substantia nigra and locus coeruleus after rotenone exposure. BMC Neurosci., 2010, 11(1), 144.
[http://dx.doi.org/10.1186/1471-2202-11-144] [PMID: 21067569]
[11]
Rowe, C.C.; Villemagne, V.L. Amyloid imaging with PET in early Alzheimer disease diagnosis. Med. Clin. North Am., 2013, 97(3), 377-398.
[http://dx.doi.org/10.1016/j.mcna.2012.12.017] [PMID: 23642577]
[12]
Mikuła, E. Recent advancements in electrochemical biosensors for Alzheimer’s disease biomarkers detection. Curr. Med. Chem., 2021, 28(20), 4049-4073.
[http://dx.doi.org/10.2174/0929867327666201111141341] [PMID: 33176635]
[13]
Mikula, E.; Wyslouch-Cieszynska, A.; Zhukova, L.; Verwilst, P.; Dehaen, W.; Radecki, J.; Radecka, H. Electrochemical biosensor for the detection of glycated albumin. Curr. Alzheimer Res., 2017, 14(3), 345-351.
[PMID: 27829338]
[14]
Iannuzzi, C.; Irace, G.; Sirangelo, I. Differential effects of glycation on protein aggregation and amyloid formation. Front. Mol. Biosci., 2014, 1, 9.
[http://dx.doi.org/10.3389/fmolb.2014.00009] [PMID: 25988150]
[15]
Alonso, A. del C.; Mederlyova, A.; Novak, M.; Grundke-Iqbal, I.; Iqbal, K. Promotion of hyperphosphorylation by frontotemporal dementia tau mutations. J. Biol. Chem., 2004, 279(33), 34873-34881.
[http://dx.doi.org/10.1074/jbc.M405131200] [PMID: 15190058]
[16]
Mamun, A.A.; Uddin, M.S.; Mathew, B.; Ashraf, G.M. Toxic tau: Structural origins of tau aggregation in Alzheimer’s disease. Neural Regen. Res., 2020, 15(8), 1417-1420.
[http://dx.doi.org/10.4103/1673-5374.274329] [PMID: 31997800]
[17]
Giau, V.V.; Bagyinszky, E.; An, S.S.A.; Kim, S.Y. Role of apolipoprotein E in neurodegenerative diseases. Neuropsychiatr. Dis. Treat., 2015, 11, 1723-1737.
[http://dx.doi.org/10.2147/NDT.S84266] [PMID: 26213471]
[18]
Li, X.; Dong, C.; Hoffmann, M.; Garen, C.R.; Cortez, L.M.; Petersen, N.O.; Woodside, M.T. Early stages of aggregation of engineered α-synuclein monomers and oligomers in solution. Sci. Rep., 2019, 9(1), 1734.
[http://dx.doi.org/10.1038/s41598-018-37584-6] [PMID: 30741954]
[19]
Scherzinger, E.; Lurz, R.; Turmaine, M.; Mangiarini, L.; Hollenbach, B.; Hasenbank, R.; Bates, G.P.; Davies, S.W.; Lehrach, H.; Wanker, E.E. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell, 1997, 90(3), 549-558.
[http://dx.doi.org/10.1016/S0092-8674(00)80514-0] [PMID: 9267034]
[20]
Hergesheimer, R.C.; Chami, A.A.; de Assis, D.R.; Vourc’h, P.; Andres, C.R.; Corcia, P.; Lanznaster, D.; Blasco, H. The debated toxic role of aggregated TDP-43 in amyotrophic lateral sclerosis: A resolution in sight? Brain, 2019, 142(5), 1176-1194.
[http://dx.doi.org/10.1093/brain/awz078] [PMID: 30938443]
[21]
Knopman, D.S.; Roberts, R.O. Estimating the number of persons with frontotemporal lobar degeneration in the US population. J. Mol. Neurosci., 2011, 45(3), 330-335.
[http://dx.doi.org/10.1007/s12031-011-9538-y] [PMID: 21584654]
[22]
Merrilees, J. A model for management of behavioral symptoms in frontotemporal lobar degeneration. Alzheimer Dis. Assoc. Disord., 2007, 21(4), S64-S69.
[http://dx.doi.org/10.1097/WAD.0b013e31815bf774] [PMID: 18090427]
[23]
Cheng, S-T.; Chow, P.K.; Song, Y-Q.; Yu, E.C.S.; Chan, A.C.M.; Lee, T.M.C.; Lam, J.H.M. Mental and physical activities delay cognitive decline in older persons with dementia. Am. J. Geriatr. Psychiatry, 2014, 22(1), 63-74.
[http://dx.doi.org/10.1016/j.jagp.2013.01.060] [PMID: 23582750]
[24]
Rogalski, E.J.; Saxon, M.; McKenna, H.; Wieneke, C.; Rademaker, A.; Corden, M.E.; Borio, K.; Mesulam, M-M.; Khayum, B. Communication Bridge: A pilot feasibility study of Internet-based speech-language therapy for individuals with progressive aphasia. Alzheimers Dement. (N. Y.), 2016, 2(4), 213-221.
[http://dx.doi.org/10.1016/j.trci.2016.08.005] [PMID: 28503656]
[25]
Bang, J.; Spina, S.; Miller, B.L. Non-Alzheimer’s Dementia 1. Lancet, 2015, 386(10004), 1672-1682.
[http://dx.doi.org/10.1016/S0140-6736(15)00461-4]
[26]
Kolarova, M.; García-Sierra, F.; Bartos, A.; Ricny, J.; Ripova, D. Structure and pathology of tau protein in Alzheimer disease. Int. J. Alzheimers Dis., 2012, 2012, e731526.
[http://dx.doi.org/10.1155/2012/731526]
[27]
Martin, L.; Latypova, X.; Terro, F. Post-translational modifications of tau protein: Implications for Alzheimer’s disease. Neurochem. Int., 2011, 58(4), 458-471.
[http://dx.doi.org/10.1016/j.neuint.2010.12.023] [PMID: 21215781]
[28]
Barbier, P.; Zejneli, O.; Martinho, M.; Lasorsa, A.; Belle, V.; Smet-Nocca, C.; Tsvetkov, P.O.; Devred, F.; Landrieu, I. Role of Tau as a microtubule-associated protein: Structural and functional aspects. Front. Aging Neurosci., 2019, 11, 204.
[http://dx.doi.org/10.3389/fnagi.2019.00204] [PMID: 31447664]
[29]
Wegmann, S.; Biernat, J.; Mandelkow, E. A current view on Tau protein phosphorylation in Alzheimer’s disease. Curr. Opin. Neurobiol., 2021, 69, 131-138.
[http://dx.doi.org/10.1016/j.conb.2021.03.003] [PMID: 33892381]
[30]
Kimura, T.; Sharma, G.; Ishiguro, K.; Hisanaga, S.I. Phospho-Tau Bar Code: Analysis of Phosphoisotypes of Tau and Its Application to Tauopathy. Front. Neurosci., 2018, 12, 44.
[http://dx.doi.org/10.3389/fnins.2018.00044] [PMID: 29467609]
[31]
Šimić, G.; Babić Leko, M.; Wray, S.; Harrington, C.; Delalle, I.; Jovanov-Milošević, N.; Bažadona, D.; Buée, L.; de Silva, R.; Di Giovanni, G.; Wischik, C.; Hof, P.R. Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules, 2016, 6(1), 6.
[http://dx.doi.org/10.3390/biom6010006] [PMID: 26751493]
[32]
Grundke-Iqbal, I.; Iqbal, K.; Tung, Y.C.; Quinlan, M.; Wisniewski, H.M.; Binder, L.I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA, 1986, 83(13), 4913-4917.
[http://dx.doi.org/10.1073/pnas.83.13.4913] [PMID: 3088567]
[33]
von Bergen, M.; Barghorn, S.; Li, L.; Marx, A.; Biernat, J.; Mandelkow, E-M.; Mandelkow, E. Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local β-structure. J. Biol. Chem., 2001, 276(51), 48165-48174.
[http://dx.doi.org/10.1074/jbc.M105196200] [PMID: 11606569]
[34]
Wang, Y.; Mandelkow, E. Tau in physiology and pathology. Nat. Rev. Neurosci., 2016, 17(1), 5-21.
[http://dx.doi.org/10.1038/nrn.2015.1] [PMID: 26631930]
[35]
Goedert, M.; Spillantini, M.G. Propagation of Tau aggregates. Mol. Brain, 2017, 10(1), 18.
[http://dx.doi.org/10.1186/s13041-017-0298-7] [PMID: 28558799]
[36]
Wang, I-F.; Wu, L-S.; Shen, C-K.J. TDP-43: An emerging new player in neurodegenerative diseases. Trends Mol. Med., 2008, 14(11), 479-485.
[http://dx.doi.org/10.1016/j.molmed.2008.09.001] [PMID: 18929508]
[37]
Buratti, E.; Baralle, F. Multiple Roles of TDP-43 in Gene Expression; Splicing Regulation, and Human Disease, 2008.
[http://dx.doi.org/10.2741/2727]
[38]
Wu, L.-S.; Cheng, W.-C.; Hou, S.-C.; Yan, Y.-T.; Jiang, S.-T.; Shen, C.-K. J. TDP-43, a neuro-pathosignature factor, is essential for early mouse embryogenesis. Genesis, 2010, 48(1), 56-62.
[http://dx.doi.org/10.1002/dvg.20584]
[39]
Suzuki, H.; Lee, K.; Matsuoka, M. TDP-43-induced death is associated with altered regulation of BIM and Bcl-xL and attenuated by caspase-mediated TDP-43 cleavage. J. Biol. Chem., 2011, 286(15), 13171-13183.
[http://dx.doi.org/10.1074/jbc.M110.197483] [PMID: 21339291]
[40]
Shiga, A.; Ishihara, T.; Miyashita, A.; Kuwabara, M.; Kato, T.; Watanabe, N.; Yamahira, A.; Kondo, C.; Yokoseki, A.; Takahashi, M.; Kuwano, R.; Kakita, A.; Nishizawa, M.; Takahashi, H.; Onodera, O. Alteration of POLDIP3 splicing associated with loss of function of TDP-43 in tissues affected with ALS. PLoS One, 2012, 7(8), e43120.
[http://dx.doi.org/10.1371/journal.pone.0043120] [PMID: 22900096]
[41]
Buratti, E.; De Conti, L.; Stuani, C.; Romano, M.; Baralle, M.; Baralle, F. Nuclear factor TDP-43 can affect selected MicroRNA levels. 2010.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07643.x]
[42]
Buratti, E.; Baralle, F. The multiple roles of TDP-43. Pre-MRNA processing and gene expression regulation. RNA Biol., 2010, 7(4), 420-9.
[http://dx.doi.org/10.4161/rna.7.4.12205]
[43]
Neumann, M.; Sampathu, D.M.; Kwong, L.K.; Truax, A.C.; Micsenyi, M.C.; Chou, T.T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C.M.; McCluskey, L.F.; Miller, B.L.; Masliah, E.; Mackenzie, I.R.; Feldman, H.; Feiden, W.; Kretzschmar, H.A.; Trojanowski, J.Q.; Lee, V.M. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 2006, 314(5796), 130-133.
[http://dx.doi.org/10.1126/science.1134108] [PMID: 17023659]
[44]
Arai, T.; Hasegawa, M.; Nonoka, T.; Kametani, F.; Yamashita, M.; Hosokawa, M.; Niizato, K.; Tsuchiya, K.; Kobayashi, Z.; Ikeda, K.; Yoshida, M.; Onaya, M.; Fujishiro, H.; Akiyama, H. Phosphorylated and cleaved TDP-43 in ALS, FTLD and other neurodegenerative disorders and in cellular models of TDP-43 proteinopathy. Neuropathology, 2010, 30(2), 170-181.
[http://dx.doi.org/10.1111/j.1440-1789.2009.01089.x] [PMID: 20102522]
[45]
Laurents, D.V.; Stuani, C.; Pantoja-Uceda, D.; Buratti, E.; Mompeán, M. Aromatic and aliphatic residues of the disordered region of TDP-43 are on a fast track for self-assembly. Biochem. Biophys. Res. Commun., 2021, 578, 110-114.
[http://dx.doi.org/10.1016/j.bbrc.2021.09.040] [PMID: 34560580]
[46]
Tsuiji, H.; Inoue, I.; Takeuchi, M.; Furuya, A.; Yamakage, Y.; Watanabe, S.; Koike, M.; Hattori, M.; Yamanaka, K. TDP-43 accelerates age-dependent degeneration of interneurons. Sci. Rep., 2017, 7(1), 14972.
[http://dx.doi.org/10.1038/s41598-017-14966-w] [PMID: 29097807]
[47]
Davis, S.A.; Itaman, S.; Khalid-Janney, C.M.; Sherard, J.A.; Dowell, J.A.; Cairns, N.J.; Gitcho, M.A. TDP-43 interacts with mitochondrial proteins critical for mitophagy and mitochondrial dynamics. Neurosci. Lett., 2018, 678, 8-15.
[http://dx.doi.org/10.1016/j.neulet.2018.04.053] [PMID: 29715546]
[48]
Vanden Broeck, L.; Naval-Sánchez, M.; Adachi, Y.; Diaper, D.; Dourlen, P.; Chapuis, J.; Kleinberger, G.; Gistelinck, M.; Van Broeckhoven, C.; Lambert, J-C.; Hirth, F.; Aerts, S.; Callaerts, P.; Dermaut, B. TDP-43 loss-of-function causes neuronal loss due to defective steroid receptor-mediated gene program switching in Drosophila. Cell Rep., 2013, 3(1), 160-172.
[http://dx.doi.org/10.1016/j.celrep.2012.12.014] [PMID: 23333275]
[49]
Leverenz, J.B.; Yu, C.E.; Montine, T.J.; Steinbart, E.; Bekris, L.M.; Zabetian, C.; Kwong, L.K.; Lee, V.M-Y.; Schellenberg, G.D.; Bird, T.D. A novel progranulin mutation associated with variable clinical presentation and tau, TDP43 and alpha-synuclein pathology. Brain, 2007, 130(Pt 5), 1360-1374.
[http://dx.doi.org/10.1093/brain/awm069] [PMID: 17439980]
[50]
Larson, M.E.; Sherman, M.A.; Greimel, S.; Kuskowski, M.; Schneider, J.A.; Bennett, D.A.; Lesné, S.E. Soluble α-synuclein is a novel modulator of Alzheimer’s disease pathophysiology. J. Neurosci., 2012, 32(30), 10253-10266.
[http://dx.doi.org/10.1523/JNEUROSCI.0581-12.2012] [PMID: 22836259]
[51]
Sengupta, U.; Guerrero-Muñoz, M.J.; Castillo-Carranza, D.L.; Lasagna-Reeves, C.A.; Gerson, J.E.; Paulucci-Holthauzen, A.A.; Krishnamurthy, S.; Farhed, M.; Jackson, G.R.; Kayed, R. Pathological interface between oligomeric alpha-synuclein and tau in synucleinopathies. Biol. Psychiatry, 2015, 78(10), 672-683.
[http://dx.doi.org/10.1016/j.biopsych.2014.12.019] [PMID: 25676491]
[52]
Sengupta, U.; Puangmalai, N.; Bhatt, N.; Garcia, S.; Zhao, Y.; Kayed, R. Polymorphic α-synuclein strains modified by dopamine and docosahexaenoic acid interact differentially with Tau protein. Mol. Neurobiol., 2020, 57(6), 2741-2765.
[http://dx.doi.org/10.1007/s12035-020-01913-6] [PMID: 32350746]
[53]
Shih, Y-H.; Tu, L-H.; Chang, T-Y.; Ganesan, K.; Chang, W-W.; Chang, P-S.; Fang, Y-S.; Lin, Y-T.; Jin, L-W.; Chen, Y-R. TDP-43 interacts with amyloid-β, inhibits fibrillization, and worsens pathology in a model of Alzheimer’s disease. Nat. Commun., 2020, 11(1), 5950.
[http://dx.doi.org/10.1038/s41467-020-19786-7] [PMID: 33230138]
[54]
Yamashita, S.; Sakashita, N.; Yamashita, T.; Tawara, N.; Tasaki, M.; Kawakami, K.; Komohara, Y.; Fujiwara, Y.; Kamikawa, M.; Nakagawa, T.; Hirano, T.; Maeda, Y.; Hasegawa, M.; Takeya, M.; Ando, Y. Concomitant accumulation of α-synuclein and TDP-43 in a patient with corticobasal degeneration. J. Neurol., 2014, 261(11), 2209-2217.
[http://dx.doi.org/10.1007/s00415-014-7491-8] [PMID: 25209854]
[55]
Latimer, C.S.; Liachko, N.F. Tau and TDP-43 synergy: A novel therapeutic target for sporadic late-onset Alzheimer’s disease. Geroscience, 2021, 43(4), 1627-1634.
[http://dx.doi.org/10.1007/s11357-021-00407-0] [PMID: 34185246]
[56]
Latimer, C.S.; Burke, B.T.; Liachko, N.F.; Currey, H.N.; Kilgore, M.D.; Gibbons, L.E.; Henriksen, J.; Darvas, M.; Domoto-Reilly, K.; Jayadev, S.; Grabowski, T.J.; Crane, P.K.; Larson, E.B.; Kraemer, B.C.; Bird, T.D.; Keene, C.D. Resistance and resilience to Alzheimer’s disease pathology are associated with reduced cortical pTau and absence of limbic-predominant age-related TDP-43 encephalopathy in a community-based cohort. Acta Neuropathol. Commun., 2019, 7(1), 91.
[http://dx.doi.org/10.1186/s40478-019-0743-1] [PMID: 31174609]
[57]
Robinson, A.C.; Thompson, J.C.; Weedon, L.; Rollinson, S.; Pickering-Brown, S.; Snowden, J.S.; Davidson, Y.S.; Mann, D.M.A. No interaction between tau and TDP-43 pathologies in either frontotemporal lobar degeneration or motor neurone disease. Neuropathol. Appl. Neurobiol., 2014, 40(7), 844-854.
[http://dx.doi.org/10.1111/nan.12155] [PMID: 24861427]
[58]
Davis, S.A.; Gan, K.A.; Dowell, J.A.; Cairns, N.J.; Gitcho, M.A. TDP-43 expression influences amyloidβ plaque deposition and tau aggregation. Neurobiol. Dis., 2017, 103, 154-162.
[http://dx.doi.org/10.1016/j.nbd.2017.04.012] [PMID: 28416393]
[59]
Takeda, T. Possible concurrence of TDP-43, tau and other proteins in amyotrophic lateral sclerosis/frontotemporal lobar degeneration. Neuropathology, 2018, 38(1), 72-81.
[http://dx.doi.org/10.1111/neup.12428] [PMID: 28960544]
[60]
Montalbano, M.; McAllen, S.; Cascio, F.L.; Sengupta, U.; Garcia, S.; Bhatt, N.; Ellsworth, A.; Heidelman, E.A.; Johnson, O.D.; Doskocil, S.; Kayed, R. TDP-43 and tau oligomers in Alzheimer’s disease, amyotrophic lateral sclerosis, and frontotemporal dementia. Neurobiol. Dis., 2020, 146, 105130.
[http://dx.doi.org/10.1016/j.nbd.2020.105130] [PMID: 33065281]
[61]
Kim, E-J.; Brown, J.A.; Deng, J.; Hwang, J.L.; Spina, S.; Miller, Z.A.; DeMay, M.G.; Valcour, V.; Karydas, A.; Ramos, E.M.; Coppola, G.; Miller, B.L.; Rosen, H.J.; Seeley, W.W.; Grinberg, L.T. Mixed TDP-43 proteinopathy and tauopathy in frontotemporal lobar degeneration: Nine case series. J. Neurol., 2018, 265(12), 2960-2971.
[http://dx.doi.org/10.1007/s00415-018-9086-2] [PMID: 30324308]
[62]
Koga, S.; Zhou, X.; Murakami, A.; Castro, C. F. D.; Baker, M. C.; Rademakers, R.; Dickson, D. W. Concurrent tau pathologies in frontotemporal lobar degeneration with TDP-43 pathology. Neuropathol. Appl. Neurobiol., 2022, 48(2), e12778.
[http://dx.doi.org/10.1111/nan.12778]
[63]
Zhang, H.; Xu, L-Q.; Perrett, S. Studying the effects of chaperones on amyloid fibril formation. Methods, 2011, 53(3), 285-294.
[http://dx.doi.org/10.1016/j.ymeth.2010.11.009] [PMID: 21144901]
[64]
Cisek, K.; Cooper, G.L.; Huseby, C.J.; Kuret, J. Structure and mechanism of action of tau aggregation inhibitors. Curr. Alzheimer Res., 2014, 11(10), 918-927.
[http://dx.doi.org/10.2174/1567205011666141107150331] [PMID: 25387336]
[65]
Cristóvão, J.S.; Figueira, A.J.; Carapeto, A.P.; Rodrigues, M.S.; Cardoso, I.; Gomes, C.M. The S100B alarmin is a dual-function chaperone suppressing amyloid-β oligomerization through combined zinc chelation and inhibition of protein ACS Chem. Neurosci., 2020, 11(17), 2753-2760.
[http://dx.doi.org/10.1021/acschemneuro.0c00392] [PMID: 32706972]
[66]
Sonawane, S.K.; Ahmad, A.; Chinnathambi, S. Protein-capped metal nanoparticles inhibit tau aggregation in Alzheimer’s Disease. ACS Omega, 2019, 4(7), 12833-12840.
[http://dx.doi.org/10.1021/acsomega.9b01411] [PMID: 31460408]
[67]
Arosio, P.; Vendruscolo, M.; Dobson, C.M.; Knowles, T.P.J. Chemical kinetics for drug discovery to combat protein aggregation diseases. Trends Pharmacol. Sci., 2014, 35(3), 127-135.
[http://dx.doi.org/10.1016/j.tips.2013.12.005] [PMID: 24560688]
[68]
Alam, P.; Siddiqi, K.; Chturvedi, S.K.; Khan, R.H. Protein aggregation: From background to inhibition strategies. Int. J. Biol. Macromol., 2017, 103, 208-219.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.048] [PMID: 28522393]
[69]
Velander, P.; Wu, L.; Henderson, F.; Zhang, S.; Bevan, D.R.; Xu, B. Natural product-based amyloid inhibitors. Biochem. Pharmacol., 2017, 139, 40-55.
[http://dx.doi.org/10.1016/j.bcp.2017.04.004] [PMID: 28390938]
[70]
Berhanu, W.M.; Masunov, A.E. Atomistic mechanism of polyphenol amyloid aggregation inhibitors: Molecular dynamics study of Curcumin, Exifone, and Myricetin interaction with the segment of tau peptide oligomer. J. Biomol. Struct. Dyn., 2015, 33(7), 1399-1411.
[http://dx.doi.org/10.1080/07391102.2014.951689] [PMID: 25093402]
[71]
Alam, P.; Chaturvedi, S.K.; Siddiqi, M.K.; Rajpoot, R.K.; Ajmal, M.R.; Zaman, M.; Khan, R.H. Vitamin k3 inhibits protein aggregation: Implication in the treatment of amyloid diseases. Sci. Rep., 2016, 6(1), 26759.
[http://dx.doi.org/10.1038/srep26759] [PMID: 27230476]
[72]
Monti, M.C.; Margarucci, L.; Tosco, A.; Riccio, R.; Casapullo, A. New insights on the interaction mechanism between tau protein and oleocanthal, an extra-virgin olive-oil bioactive component. Food Funct., 2011, 2(7), 423-428.
[http://dx.doi.org/10.1039/c1fo10064e] [PMID: 21894330]
[73]
George, R.C.; Lew, J.; Graves, D.J. Interaction of cinnamaldehyde and epicatechin with tau: Implications of beneficial effects in modulating Alzheimer’s disease pathogenesis. J. Alzheimers Dis., 2013, 36(1), 21-40.
[http://dx.doi.org/10.3233/JAD-122113] [PMID: 23531502]
[74]
Yamashita, M.; Nonaka, T.; Arai, T.; Kametani, F.; Buchman, V.L.; Ninkina, N.; Bachurin, S.O.; Akiyama, H.; Goedert, M.; Hasegawa, M. Methylene blue and dimebon inhibit aggregation of TDP-43 in cellular models. FEBS Lett., 2009, 583(14), 2419-2424.
[http://dx.doi.org/10.1016/j.febslet.2009.06.042] [PMID: 19560462]
[75]
Chong, C.R.; Sullivan, D.J., Jr New uses for old drugs. Nature, 2007, 448(7154), 645-646.
[http://dx.doi.org/10.1038/448645a] [PMID: 17687303]
[76]
Jin, G.; Wong, S.T.C. Toward better drug repositioning: Prioritizing and integrating existing methods into efficient pipelines. Drug Discov. Today, 2014, 19(5), 637-644.
[http://dx.doi.org/10.1016/j.drudis.2013.11.005] [PMID: 24239728]
[77]
Durães, F.; Pinto, M.; Sousa, E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals (Basel), 2018, 11(2), 44.
[http://dx.doi.org/10.3390/ph11020044] [PMID: 29751602]
[78]
Rothstein, J.D.; Patel, S.; Regan, M.R.; Haenggeli, C.; Huang, Y.H.; Bergles, D.E.; Jin, L.; Dykes Hoberg, M.; Vidensky, S.; Chung, D.S.; Toan, S.V.; Bruijn, L.I.; Su, Z.Z.; Gupta, P.; Fisher, P.B. β-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature, 2005, 433(7021), 73-77.
[http://dx.doi.org/10.1038/nature03180] [PMID: 15635412]
[79]
Zhang, T.; Zhang, J.; Derreumaux, P.; Mu, Y. Molecular mechanism of the inhibition of EGCG on the Alzheimer Aβ(1-42) dimer. J. Phys. Chem. B, 2013, 117(15), 3993-4002.
[http://dx.doi.org/10.1021/jp312573y] [PMID: 23537203]
[80]
Sanders, O. Sildenafil for the treatment of Alzheimer’s disease: A systematic review. J. Alzheimers Dis. Rep., 2020, 4(1), 91-106.
[http://dx.doi.org/10.3233/ADR-200166] [PMID: 32467879]
[81]
Halliday, M.; Radford, H.; Zents, K.A.M.; Molloy, C.; Moreno, J.A.; Verity, N.C.; Smith, E.; Ortori, C.A.; Barrett, D.A.; Bushell, M.; Mallucci, G.R. Repurposed drugs targeting eIF2 and α;-P-mediated translational repression prevent neurodegeneration in mice. Brain, 2017, 140(6), 1768-1783.
[http://dx.doi.org/10.1093/brain/awx074] [PMID: 28430857]
[82]
Akbari, V.; Ghobadi, S.; Mohammadi, S.; Khodarahmi, R. The antidepressant drug; trazodone inhibits Tau amyloidogenesis: Prospects for prophylaxis and treatment of AD. Arch. Biochem. Biophys., 2020, 679, 108218.
[http://dx.doi.org/10.1016/j.abb.2019.108218] [PMID: 31805267]
[83]
Sharma, R. A.; Gescher, A. J.; Steward, W. P. Curcumin: The story so far. Eur. J. Cancer Oxf. Engl., 2005, 41(13), 1955-1968.
[http://dx.doi.org/10.1016/j.ejca.2005.05.009]
[84]
Rane, J.S.; Bhaumik, P.; Panda, D. Curcumin inhibits tau aggregation and disintegrates preformed tau filaments in vitro. J. Alzheimers Dis., 2017, 60(3), 999-1014.
[http://dx.doi.org/10.3233/JAD-170351] [PMID: 28984591]
[85]
Ma, Z.; Wang, N.; He, H.; Tang, X. Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. J. Control. Release, 2019, 316, 359-380.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.053] [PMID: 31682912]
[86]
Duan, W.; Guo, Y.; Xiao, J.; Chen, X.; Li, Z.; Han, H.; Li, C. Neuroprotection by monocarbonyl dimethoxycurcumin C: Ameliorating the toxicity of mutant TDP-43 via HO-1. Mol. Neurobiol., 2014, 49(1), 368-379.
[http://dx.doi.org/10.1007/s12035-013-8525-4] [PMID: 23934646]
[87]
Del Prado-Audelo, M.L.; Caballero-Florán, I.H.; Meza-Toledo, J.A.; Mendoza-Muñoz, N.; González-Torres, M.; Florán, B.; Cortés, H.; Leyva-Gómez, G. Formulations of curcumin nanoparticles for brain diseases. Biomolecules, 2019, 9(2), 56.
[http://dx.doi.org/10.3390/biom9020056] [PMID: 30743984]
[88]
Szymusiak, M.; Hu, X.; Leon Plata, P.A.; Ciupinski, P.; Wang, Z.J.; Liu, Y. Bioavailability of curcumin and curcumin glucuronide in the central nervous system of mice after oral delivery of nano-curcumin. Int. J. Pharm., 2016, 511(1), 415-423.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.027] [PMID: 27426105]
[89]
Ahmadi, M.; Agah, E.; Nafissi, S.; Jaafari, M.R.; Harirchian, M.H.; Sarraf, P.; Faghihi-Kashani, S.; Hosseini, S.J.; Ghoreishi, A.; Aghamollaii, V.; Hosseini, M.; Tafakhori, A. Safety andefficacy of nanocurcumin as add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: A pilot randomized clinical trial. Neurother. J. Am. Soc. Exp. Neurother., 2018, 15(2), 430-438.
[http://dx.doi.org/10.1007/s13311-018-0606-7] [PMID: 29352425]
[90]
Snow, A.D.; Castillo, G.M.; Nguyen, B.P.; Choi, P.Y.; Cummings, J.A.; Cam, J.; Hu, Q.; Lake, T.; Pan, W.; Kastin, A.J.; Kirschner, D.A.; Wood, S.G.; Rockenstein, E.; Masliah, E.; Lorimer, S.; Tanzi, R.E.; Larsen, L. The Amazon rain forest plant Uncaria tomentosa (cat’s claw) and its specific proanthocyanidin constituents are potent inhibitors and reducers of both brain plaques and tangles. Sci. Rep., 2019, 9(1), 561.
[http://dx.doi.org/10.1038/s41598-019-38645-0] [PMID: 30728442]
[91]
Liu, G.; Shi, A.; Wang, N.; Li, M.; He, X.; Yin, C.; Tu, Q.; Shen, X.; Tao, Y.; Wang, Q.; Yin, H. Polyphenolic Proanthocyanidin-B2 suppresses proliferation of liver cancer cells and hepatocellular carcinogenesis through directly binding and inhibiting AKT activity. Redox Biol., 2020, 37, 101701.
[http://dx.doi.org/10.1016/j.redox.2020.101701] [PMID: 32863234]
[92]
Barbe, A.; Ramé, C.; Mellouk, N.; Estienne, A.; Bongrani, A.; Brossaud, A.; Riva, A.; Guérif, F.; Froment, P.; Dupont, J. Effects of grape seed extract and proanthocyanidin B2 on in vitro proliferation, viability, steroidogenesis, oxidative stress, and cell signaling in human granulosa cells. Int. J. Mol. Sci., 2019, 20(17), 4215.
[http://dx.doi.org/10.3390/ijms20174215] [PMID: 31466336]
[93]
Bagchi, D.; Bagchi, M.; Stohs, S.J.; Das, D.K.; Ray, S.D.; Kuszynski, C.A.; Joshi, S.S.; Pruess, H.G. Free radicals and grape seed proanthocyanidin extract: Importance in human health and disease prevention. Toxicology, 2000, 148(2-3), 187-197.
[http://dx.doi.org/10.1016/S0300-483X(00)00210-9] [PMID: 10962138]
[94]
Wu, X.; Yu, H.; Zhou, H.; Li, Z.; Huang, H.; Xiao, F.; Xu, S.; Yang, Y. Proanthocyanidin B2 inhibits proliferation and induces apoptosis of osteosarcoma cells by suppressing the PI3K/AKT pathway. J. Cell. Mol. Med., 2020, 24(20), 11960-11971.
[http://dx.doi.org/10.1111/jcmm.15818] [PMID: 32914567]
[95]
Zhang, Y.-P.; Liu, S.-Y.; Sun, Q.-Y.; Ren, J.; Liu, H.-X.; Li, H. Proanthocyanidin B2 attenuates high-glucose-induced neurotoxicity of dorsal root ganglion neurons through the PI3K/Akt signaling pathway. Neural. Regen. Res., 2018, 13(9), 1628-1636.
[http://dx.doi.org/10.4103/1673-5374.237174]
[96]
Li, Q.; Xiong, C.; Liu, H.; Ge, H.; Yao, X.; Liu, H. Computational insights into the inhibition mechanism of proanthocyanidin b2 on tau hexapeptide (PHF6) oligomer. Front Chem., 2021, 9, 666043.
[http://dx.doi.org/10.3389/fchem.2021.666043] [PMID: 34336783]
[97]
Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med., 2003, 348(26), 2599-2608.
[http://dx.doi.org/10.1056/NEJMoa025039] [PMID: 12826634]
[98]
Brenes, M.; García, A.; García, P.; Rios, J.J.; Garrido, A. Phenolic compounds in Spanish olive oils. J. Agric. Food Chem., 1999, 47(9), 3535-3540.
[http://dx.doi.org/10.1021/jf990009o] [PMID: 10552681]
[99]
Ryan, D.; Prenzler, P.D.; Lavee, S.; Antolovich, M.; Robards, K. Quantitative changes in phenolic content during physiological development of the olive (Olea europaea) cultivar Hardy’s Mammoth. J. Agric. Food Chem., 2003, 51(9), 2532-2538.
[http://dx.doi.org/10.1021/jf0261351] [PMID: 12696932]
[100]
Cicerale, S.; Lucas, L.J.; Keast, R.S. Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil. Curr. Opin. Biotechnol., 2012, 23(2), 129-135.
[http://dx.doi.org/10.1016/j.copbio.2011.09.006] [PMID: 22000808]
[101]
Montedoro, G.; Servili, M.; Baldioli, M.; Miniati, E. Servili, Maurizio.; Baldioli, Maura.; Miniati, Enrico. Simple and Hydrolyzable Phenolic Compounds in Virgin Olive Oil. 1. Their extraction, separation, and quantitative and semiquantitative evaluation by HPLC. J. Agric. Food Chem., 1992, 40(9), 1571-1576.
[http://dx.doi.org/10.1021/jf00021a019]
[102]
Beauchamp, G.K.; Keast, R.S.J.; Morel, D.; Lin, J.; Pika, J.; Han, Q.; Lee, C-H.; Smith, A.B.; Breslin, P.A.S. Phytochemistry: Ibuprofen-like activity in extra-virgin olive oil. Nature, 2005, 437(7055), 45-46.
[http://dx.doi.org/10.1038/437045a] [PMID: 16136122]
[103]
Elnagar, A.Y.; Sylvester, P.W.; El Sayed, K.A. (-)-Oleocanthal as a c-Met inhibitor for the control of metastatic breast and prostate cancers. Planta Med., 2011, 77(10), 1013-1019.
[http://dx.doi.org/10.1055/s-0030-1270724] [PMID: 21328179]
[104]
Daccache, A.; Lion, C.; Sibille, N.; Gerard, M.; Slomianny, C.; Lippens, G.; Cotelle, P. Oleuropein and derivatives from olives as Tau aggregation inhibitors. Neurochem. Int., 2011, 58(6), 700-707.
[http://dx.doi.org/10.1016/j.neuint.2011.02.010] [PMID: 21333710]
[105]
Li, W.; Sperry, J.B.; Crowe, A.; Trojanowski, J.Q.; Smith, A.B., III; Lee, V.M-Y. Inhibition of tau fibrillization by oleocanthal via reaction with the amino groups of tau. J. Neurochem., 2009, 110(4), 1339-1351.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06224.x] [PMID: 19549281]
[106]
Monti, M.C.; Margarucci, L.; Riccio, R.; Casapullo, A. Modulation of tau protein fibrillization by oleocanthal. J. Nat. Prod., 2012, 75(9), 1584-1588.
[http://dx.doi.org/10.1021/np300384h] [PMID: 22988908]
[107]
Qosa, H.; Batarseh, Y.S.; Mohyeldin, M.M.; El Sayed, K.A.; Keller, J.N.; Kaddoumi, A. Oleocanthal enhances amyloid-β clearance from the brains of TgSwDI mice and in vitro across a human blood-brain barrier model. ACS Chem. Neurosci., 2015, 6(11), 1849-1859.
[http://dx.doi.org/10.1021/acschemneuro.5b00190] [PMID: 26348065]
[108]
Al Rihani, S.B.; Darakjian, L.I.; Kaddoumi, A. Oleocanthal-rich extra-virgin olive oil restores the blood-brain barrier function through nlrp3 inflammasome inhibition simultaneously with autophagy induction in TgSwDI mice. ACS Chem. Neurosci., 2019, 10(8), 3543-3554.
[http://dx.doi.org/10.1021/acschemneuro.9b00175] [PMID: 31244050]
[109]
Tajmim, A.; Cuevas-Ocampo, A.K.; Siddique, A.B.; Qusa, M.H.; King, J.A.; Abdelwahed, K.S.; Sonju, J.J.; El Sayed, K.A. (-)-Oleocanthal nutraceuticals for alzheimer’s disease amyloid pathology: Novel oral formulations, therapeutic, and molecular insights in 5xFAD transgenic mice model. Nutrients, 2021, 13(5), 1702.
[http://dx.doi.org/10.3390/nu13051702] [PMID: 34069842]
[110]
Batarseh, Y.S.; Kaddoumi, A. Oleocanthal-rich extra-virgin olive oil enhances donepezil effect by reducing amyloid-β load and related toxicity in a mouse model of Alzheimer’s disease. J. Nutr. Biochem., 2018, 55, 113-123.
[http://dx.doi.org/10.1016/j.jnutbio.2017.12.006] [PMID: 29413486]
[111]
López-Yerena, A.; Vallverdú-Queralt, A.; Mols, R.; Augustijns, P.; Lamuela-Raventós, R.M.; Escribano-Ferrer, E. Absorption and intestinal metabolic profile of oleocanthal in rats. Pharmaceutics, 2020, 12(2), 134.
[http://dx.doi.org/10.3390/pharmaceutics12020134] [PMID: 32033424]
[112]
Serra, A.; Rubió, L.; Borràs, X.; Macià, A.; Romero, M-P.; Motilva, M-J. Distribution of olive oil phenolic compounds in rat tissues after administration of a phenolic extract from olive cake. Mol. Nutr. Food Res., 2012, 56(3), 486-496.
[http://dx.doi.org/10.1002/mnfr.201100436] [PMID: 22183818]
[113]
Rigacci, S. Guidotti, V.; Bucciantini, M.; Nichino, D.; Relini, A.; Berti, A.; Stefani, M. A & #946;(1-42) Aggregates into non-toxic amyloid assemblies in the presence of the natural polyphenol oleuropein aglycon. Curr. Alzheimer Res., 2011, 8(8), 841-852.
[http://dx.doi.org/10.2174/156720511798192682] [PMID: 21592051]
[114]
Xu, F.; Li, Y.; Zheng, M.; Xi, X.; Zhang, X.; Han, C. Structure properties, acquisition protocols, and biological activities of oleuropein aglycone. Front Chem., 2018, 6, 239.
[http://dx.doi.org/10.3389/fchem.2018.00239] [PMID: 30151359]
[115]
Grossi, C.; Rigacci, S.; Ambrosini, S.; Ed Dami, T.; Luccarini, I.; Traini, C.; Failli, P.; Berti, A.; Casamenti, F.; Stefani, M. The polyphenol oleuropein aglycone protects TgCRND8 mice against Aß plaque pathology. PLoS One, 2013, 8(8), e71702.
[http://dx.doi.org/10.1371/journal.pone.0071702] [PMID: 23951225]
[116]
Luccarini, I.; Ed Dami, T.; Grossi, C.; Rigacci, S.; Stefani, M.; Casamenti, F. Oleuropein aglycone counteracts Aβ42 toxicity in the rat brain. Neurosci. Lett., 2014, 558, 67-72.
[http://dx.doi.org/10.1016/j.neulet.2013.10.062] [PMID: 24211687]
[117]
Pantano, D.; Luccarini, I.; Nardiello, P.; Servili, M.; Stefani, M.; Casamenti, F. Oleuropein aglycone and polyphenols from olive mill waste water ameliorate cognitive deficits and neuropathology. Br. J. Clin. Pharmacol., 2017, 83(1), 54-62.
[http://dx.doi.org/10.1111/bcp.12993] [PMID: 27131215]
[118]
Joohari, S.; Montazerozohori, M.; Malekhoseini, A. Photolytic and photocatalytic decolorization of lauth’s violet using nano-titanium dioxide: A kinetics study. Iran. J. Environ. Technol., 2015, 1(1), 39-48.
[http://dx.doi.org/10.22108/ijet.2015.15581]
[119]
Li, Q.; Zhang, J.; Yan, H.; He, M.; Liu, Z. Thionine-mediated chemistry of carbon nanotubes. Carbon, 2004, 42(2), 287-291.
[http://dx.doi.org/10.1016/j.carbon.2003.10.030]
[120]
Wischik, C.M.; Edwards, P.C.; Lai, R.Y.; Roth, M.; Harrington, C.R. Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc. Natl. Acad. Sci. USA, 1996, 93(20), 11213-11218.
[http://dx.doi.org/10.1073/pnas.93.20.11213] [PMID: 8855335]
[121]
Taniguchi, S.; Suzuki, N.; Masuda, M.; Hisanaga, S.; Iwatsubo, T.; Goedert, M.; Hasegawa, M. Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J. Biol. Chem., 2005, 280(9), 7614-7623.
[http://dx.doi.org/10.1074/jbc.M408714200] [PMID: 15611092]
[122]
Bulic, B.; Pickhardt, M.; Mandelkow, E. Progress and developments in tau aggregation inhibitors for Alzheimer disease. J. Med. Chem., 2013, 56(11), 4135-4155.
[http://dx.doi.org/10.1021/jm3017317] [PMID: 23484434]
[123]
Pezzuto, J.M. Resveratrol: Twenty years of growth, development and controversy. Biomol. Ther. (Seoul), 2019, 27(1), 1-14.
[http://dx.doi.org/10.4062/biomolther.2018.176] [PMID: 30332889]
[124]
Tian, B.; Liu, J. Resveratrol: A review of plant sources, synthesis, stability, modification and food application. J. Sci. Food Agric., 2020, 100(4), 1392-1404.
[http://dx.doi.org/10.1002/jsfa.10152] [PMID: 31756276]
[125]
King, R.E.; Bomser, J.A.; Min, D.B. Bioactivity of resveratrol. Compr. Rev. Food Sci. Food Saf., 2006, 5(3), 65-70.
[http://dx.doi.org/10.1111/j.1541-4337.2006.00001.x]
[126]
Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis. Oncol., 2017, 1(1), 1-9.
[http://dx.doi.org/10.1038/s41698-017-0038-6] [PMID: 28989978]
[127]
Hausenblas, H.A.; Schoulda, J.A.; Smoliga, J.M. Resveratrol treatment as an adjunct to pharmacological management in type 2 diabetes mellitus--systematic review and meta-analysis. Mol. Nutr. Food Res., 2015, 59(1), 147-159.
[http://dx.doi.org/10.1002/mnfr.201400173] [PMID: 25138371]
[128]
Saud, S.M.; Li, W.; Morris, N.L.; Matter, M.S.; Colburn, N.H.; Kim, Y.S.; Young, M.R. Resveratrol prevents tumorigenesis in mouse model of Kras activated sporadic colorectal cancer by suppressing oncogenic Kras expression. Carcinogenesis, 2014, 35(12), 2778-2786.
[http://dx.doi.org/10.1093/carcin/bgu209] [PMID: 25280562]
[129]
Yousef, M.; Vlachogiannis, I.A.; Tsiani, E. Effects of resveratrol against lung cancer: In vitro and in vivo studies. Nutrients, 2017, 9(11), 1231.
[http://dx.doi.org/10.3390/nu9111231] [PMID: 29125563]
[130]
Magyar, K.; Halmosi, R.; Palfi, A.; Feher, G.; Czopf, L.; Fulop, A.; Battyany, I.; Sumegi, B.; Toth, K.; Szabados, E. Cardioprotection by resveratrol: A human clinical trial in patients with stable coronary artery disease. Clin. Hemorheol. Microcirc., 2012, 50(3), 179-187.
[http://dx.doi.org/10.3233/CH-2011-1424] [PMID: 22240353]
[131]
Cho, S.; Namkoong, K.; Shin, M.; Park, J.; Yang, E.; Ihm, J.; Thu, V.T.; Kim, H.K.; Han, J. Cardiovascular protective effects and clinical applications of resveratrol. J. Med. Food, 2017, 20(4), 323-334.
[http://dx.doi.org/10.1089/jmf.2016.3856] [PMID: 28346848]
[132]
Iuga, C.; Alvarez-Idaboy, J.R.; Russo, N. Antioxidant activity of trans-resveratrol toward hydroxyl and hydroperoxyl radicals: A quantum chemical and computational kinetics study. J. Org. Chem., 2012, 77(8), 3868-3877.
[http://dx.doi.org/10.1021/jo3002134] [PMID: 22475027]
[133]
Zhou, Z-X.; Mou, S-F.; Chen, X-Q.; Gong, L-L.; Ge, W-S. Anti-inflammatory activity of resveratrol prevents inflammation by inhibiting NF-κB in animal models of acute pharyngitis. Mol. Med. Rep., 2018, 17(1), 1269-1274.
[http://dx.doi.org/10.3892/mmr.2017.7933] [PMID: 29115472]
[134]
Wang, F.; Cui, N.; Yang, L.; Shi, L.; Li, Q.; Zhang, G.; Wu, J.; Zheng, J.; Jiao, B. Resveratrol rescues the impairments of hippocampal neurons stimulated by microglial over-activation in vitro. Cell. Mol. Neurobiol., 2015, 35(7), 1003-1015.
[http://dx.doi.org/10.1007/s10571-015-0195-5] [PMID: 25898934]
[135]
Cai, J-C.; Liu, W.; Lu, F.; Kong, W-B.; Zhou, X-X.; Miao, P.; Lei, C-X.; Wang, Y. Resveratrol attenuates neurological deficit and neuroinflammation following intracerebral hemorrhage. Exp. Ther. Med., 2018, 15(5), 4131-4138.
[http://dx.doi.org/10.3892/etm.2018.5938] [PMID: 29725362]
[136]
Corpas, R.; Griñán-Ferré, C.; Rodríguez-Farré, E.; Pallàs, M.; Sanfeliu, C. Resveratrol induces brain resilience against alzheimer neurodegeneration through proteostasis enhancement. Mol. Neurobiol., 2019, 56(2), 1502-1516.
[http://dx.doi.org/10.1007/s12035-018-1157-y] [PMID: 29948950]
[137]
Sawda, C.; Moussa, C.; Turner, R.S. Resveratrol for Alzheimer’s disease. Ann. N. Y. Acad. Sci., 2017, 1403(1), 142-149.
[http://dx.doi.org/10.1111/nyas.13431] [PMID: 28815614]
[138]
Sun, A.Y.; Wang, Q.; Simonyi, A.; Sun, G.Y. Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol. Neurobiol., 2010, 41(2-3), 375-383.
[http://dx.doi.org/10.1007/s12035-010-8111-y] [PMID: 20306310]
[139]
He, X.; Li, Z.; Rizak, J.D.; Wu, S.; Wang, Z.; He, R.; Su, M.; Qin, D.; Wang, J.; Hu, X. Resveratrol attenuates formaldehyde induced hyperphosphorylation of tau protein and cytotoxicity in N2a cells. Front. Neurosci., 2017, 10, 598.
[http://dx.doi.org/10.3389/fnins.2016.00598] [PMID: 28197064]
[140]
Avila, J.; Santa-María, I.; Pérez, M.; Hernández, F.; Moreno, F. Tau phosphorylation, aggregation, and cell toxicity. J. Biomed. Biotechnol., 2006, 2006(3), 74539.
[http://dx.doi.org/10.1155/JBB/2006/74539] [PMID: 17047313]
[141]
Yu, K.C.; Kwan, P.; Cheung, S.K.K.; Ho, A.; Baum, L. Effects of resveratrol and morin on insoluble tau in tau transgenic mice. Transl. Neurosci., 2018, 9(1), 54-60.
[http://dx.doi.org/10.1515/tnsci-2018-0010] [PMID: 30479844]
[142]
Jhang, K.A.; Park, J-S.; Kim, H-S.; Chong, Y.H. Resveratrol ameliorates tau hyperphosphorylation at Ser396 site and oxidative damage in rat hippocampal slices exposed to vanadate: Implication of ERK1/2 and GSK-3β signaling cascades. J. Agric. Food Chem., 2017, 65(44), 9626-9634.
[http://dx.doi.org/10.1021/acs.jafc.7b03252] [PMID: 29022339]
[143]
Hu, Y.Y.; He, S.S.; Wang, X.; Duan, Q.H.; Grundke-Iqbal, I.; Iqbal, K.; Wang, J. Levels of nonphosphorylated and phosphorylated tau in cerebrospinal fluid of Alzheimer’s disease patients : An ultrasensitive bienzyme-substrate-recycle enzyme-linked immunosorbent assay. Am. J. Pathol., 2002, 160(4), 1269-1278.
[http://dx.doi.org/10.1016/S0002-9440(10)62554-0] [PMID: 11943712]
[144]
Mondragón-Rodríguez, S.; Perry, G.; Luna-Muñoz, J.; Acevedo-Aquino, M.C.; Williams, S. Phosphorylation of tau protein at sites Ser(396-404) is one of the earliest events in Alzheimer’s disease and Down syndrome. Neuropathol. Appl. Neurobiol., 2014, 40(2), 121-135.
[http://dx.doi.org/10.1111/nan.12084] [PMID: 24033439]
[145]
Walle, T. Bioavailability of resveratrol. Ann. N. Y. Acad. Sci., 2011, 1215(1), 9-15.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05842.x] [PMID: 21261636]
[146]
Manohar, S.; Khan, S.I.; Rawat, D.S. Synthesis, antimalarial activity and cytotoxicity of 4-aminoquinoline-triazine conjugates. Bioorg. Med. Chem. Lett., 2010, 20(1), 322-325.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.106] [PMID: 19910192]
[147]
de Meneses Santos, R.; Barros, P.R.; Bortoluzzi, J.H.; Meneghetti, M.R.; da Silva, Y.K.C.; da Silva, A.E.; da Silva Santos, M.; Alexandre-Moreira, M.S. Synthesis and evaluation of the anti-nociceptive and anti-inflammatory activity of 4-aminoquinoline derivatives. Bioorg. Med. Chem., 2015, 23(15), 4390-4396.
[http://dx.doi.org/10.1016/j.bmc.2015.06.029] [PMID: 26116178]
[148]
Cassel, J.A.; McDonnell, M.E.; Velvadapu, V.; Andrianov, V.; Reitz, A.B. Characterization of a series of 4-aminoquinolines that stimulate caspase-7 mediated cleavage of TDP-43 and inhibit its function. Biochimie, 2012, 94(9), 1974-1981.
[http://dx.doi.org/10.1016/j.biochi.2012.05.020] [PMID: 22659571]
[149]
Cassel, J. A.; Reitz, A. B. Ubiquilin-2 (UBQLN2) binds with high affinity to the C-terminal region of TDP-43 and modulates TDP-43 levels in H4 cells: Characterization of inhibition by nucleic acids and 4-aminoquinolines. 2013.
[http://dx.doi.org/10.1016/j.bbapap.2013.03.020]
[150]
Veldman, E.R.; Jia, Z.; Halldin, C.; Svedberg, M.M. Amyloid binding properties of curcumin analogues in Alzheimer’s disease postmortem brain tissue. Neurosci. Lett., 2016, 630, 183-188.
[http://dx.doi.org/10.1016/j.neulet.2016.07.045] [PMID: 27461789]
[151]
Teymouri, M.; Barati, N.; Pirro, M.; Sahebkar, A. Biological and pharmacological evaluation of dimethoxycurcumin: A metabolically stable curcumin analogue with a promising therapeutic potential. J. Cell. Physiol., 2018, 233(1), 124-140.
[http://dx.doi.org/10.1002/jcp.25749] [PMID: 27996095]
[152]
Lu, J.; Duan, W.; Guo, Y.; Jiang, H.; Li, Z.; Huang, J.; Hong, K.; Li, C. Mitochondrial dysfunction in human TDP-43 transfected NSC34 cell lines and the protective effect of dimethoxy curcumin. Brain Res. Bull., 2012, 89(5-6), 185-190.
[http://dx.doi.org/10.1016/j.brainresbull.2012.09.005] [PMID: 22986236]
[153]
Dong, H.; Xu, L.; Wu, L.; Wang, X.; Duan, W.; Li, H.; Li, C. Curcumin abolishes mutant TDP-43 induced excitability in a motoneuron-like cellular model of ALS. Neuroscience, 2014, 272, 141-153.
[http://dx.doi.org/10.1016/j.neuroscience.2014.04.032] [PMID: 24785678]
[154]
Kean, W.F.; Hart, L.; Buchanan, W.W. Auranofin. Br. J. Rheumatol., 1997, 36(5), 560-572.
[http://dx.doi.org/10.1093/rheumatology/36.5.560] [PMID: 9189058]
[155]
Stern, I.; Wataha, J.C.; Lewis, J.B.; Messer, R.L.W.; Lockwood, P.E.; Tseng, W.Y. Anti-rheumatic gold compounds as sublethal modulators of monocytic LPS-induced cytokine secretion. Toxicol. In Vitro, 2005, 19(3), 365-371.
[http://dx.doi.org/10.1016/j.tiv.2004.11.001] [PMID: 15713543]
[156]
Madeira, J.M.; Gibson, D.L.; Kean, W.F.; Klegeris, A. The biological activity of auranofin: Implications for novel treatment of diseases. Inflammopharmacology, 2012, 20(6), 297-306.
[http://dx.doi.org/10.1007/s10787-012-0149-1] [PMID: 22965242]
[157]
Roder, C.; Thomson, M.J. Auranofin: Repurposing an old drug for a golden new age. Drugs R D., 2015, 15(1), 13-20.
[http://dx.doi.org/10.1007/s40268-015-0083-y] [PMID: 25698589]
[158]
Hou, G-X.; Liu, P-P.; Zhang, S.; Yang, M.; Liao, J.; Yang, J.; Hu, Y.; Jiang, W-Q.; Wen, S.; Huang, P. Elimination of stem-like cancer cell side-population by auranofin through modulation of ROS and glycolysis. Cell Death Dis., 2018, 9(2), 89.
[http://dx.doi.org/10.1038/s41419-017-0159-4] [PMID: 29367724]
[159]
Peroutka-Bigus, N.; Bellaire, B.H. Antiparasitic activity of auranofin against pathogenic naegleria fowleri. J. Eukaryot. Microbiol., 2019, 66(4), 684-688.
[http://dx.doi.org/10.1111/jeu.12706] [PMID: 30520183]
[160]
Cassetta, M.I.; Marzo, T.; Fallani, S.; Novelli, A.; Messori, L. Drug repositioning: Auranofin as a prospective antimicrobial agent for the treatment of severe staphylococcal infections. Biometals, 2014, 27(4), 787-791.
[http://dx.doi.org/10.1007/s10534-014-9743-6] [PMID: 24820140]
[161]
Rothan, H.A.; Stone, S.; Natekar, J.; Kumari, P.; Arora, K.; Kumar, M. The FDA-approved gold drug auranofin inhibits novel coronavirus (SARS-COV-2) replication and attenuates inflammation in human cells. Virology, 2020, 547, 7-11.
[http://dx.doi.org/10.1016/j.virol.2020.05.002] [PMID: 32442105]
[162]
Madeira, J.M.; Renschler, C.J.; Mueller, B.; Hashioka, S.; Gibson, D.L.; Klegeris, A. Novel protective properties of auranofin: Inhibition of human astrocyte cytotoxic secretions and direct neuroprotection. Life Sci., 2013, 92(22), 1072-1080.
[http://dx.doi.org/10.1016/j.lfs.2013.04.005] [PMID: 23624233]
[163]
Madeira, J.M.; Bajwa, E.; Stuart, M.J.; Hashioka, S.; Klegeris, A. Gold drug auranofin could reduce neuroinflammation by inhibiting microglia cytotoxic secretions and primed respiratory burst. J. Neuroimmunol., 2014, 276(1-2), 71-79.
[http://dx.doi.org/10.1016/j.jneuroim.2014.08.615] [PMID: 25175064]
[164]
Oberstadt, M.; Stieler, J.; Simpong, D.L.; Römuß, U.; Urban, N.; Schaefer, M.; Arendt, T.; Holzer, M. TDP-43 self-interaction is modulated by redox-active compounds Auranofin, Chelerythrine and Riluzole. Sci. Rep., 2018, 8(1), 2248.
[http://dx.doi.org/10.1038/s41598-018-20565-0] [PMID: 29396541]
[165]
Gromer, S.; Arscott, L.D.; Williams, C.H., Jr; Schirmer, R.H.; Becker, K. Human placenta thioredoxin reductase. Isolation of the selenoenzyme, steady state kinetics, and inhibition by therapeutic gold compounds. J. Biol. Chem., 1998, 273(32), 20096-20101.
[http://dx.doi.org/10.1074/jbc.273.32.20096] [PMID: 9685351]
[166]
Chaffman, M.; Brogden, R.N.; Heel, R.C.; Speight, T.M.; Avery, G.S. Auranofin. A preliminary review of its pharmacological properties and therapeutic use in rheumatoid arthritis. Drugs, 1984, 27(5), 378-424.
[http://dx.doi.org/10.2165/00003495-198427050-00002] [PMID: 6426923]
[167]
Demeule, M.; Michaud-Levesque, J.; Annabi, B.; Gingras, D.; Boivin, D.; Jodoin, J.; Lamy, S.; Bertrand, Y.; Béliveau, R. Green tea catechins as novel antitumor and antiangiogenic compounds. Curr. Med. Chem. Anticancer Agents, 2002, 2(4), 441-463.
[http://dx.doi.org/10.2174/1568011023353930] [PMID: 12678730]
[168]
Katiyar, S.K.; Afaq, F.; Perez, A.; Mukhtar, H. Green tea polyphenol (-)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis, 2001, 22(2), 287-294.
[http://dx.doi.org/10.1093/carcin/22.2.287] [PMID: 11181450]
[169]
Mandel, S.; Weinreb, O.; Amit, T.; Youdim, M.B.H. Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: Implications for neurodegenerative diseases. J. Neurochem., 2004, 88(6), 1555-1569.
[http://dx.doi.org/10.1046/j.1471-4159.2003.02291.x] [PMID: 15009657]
[170]
Rezai-Zadeh, K.; Arendash, G.W.; Hou, H.; Fernandez, F.; Jensen, M.; Runfeldt, M.; Shytle, R.D.; Tan, J. Green tea epigallocatechin-3-gallate (EGCG) reduces β-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res., 2008, 1214, 177-187.
[http://dx.doi.org/10.1016/j.brainres.2008.02.107] [PMID: 18457818]
[171]
Nan, S.; Wang, P.; Zhang, Y.; Fan, J. Epigallocatechin-3-Gallate provides protection against alzheimer’s disease-induced learning and memory impairments in rats. Drug Des. Devel. Ther., 2021, 15, 2013-2024.
[http://dx.doi.org/10.2147/DDDT.S289473] [PMID: 34012254]
[172]
Sonawane, S.K.; Chidambaram, H.; Boral, D.; Gorantla, N.V.; Balmik, A.A.; Dangi, A.; Ramasamy, S.; Marelli, U.K.; Chinnathambi, S. EGCG impedes human Tau aggregation and interacts with Tau. Sci. Rep., 2020, 10(1), 12579.
[http://dx.doi.org/10.1038/s41598-020-69429-6] [PMID: 32724104]
[173]
Prevention of cognitive decline in apoE4 carriers with subjective cognitive decline after EGCG and a multimodal intervention - Tabular view ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/record/NCT03978052
[174]
Xu, Z.; Chen, S.; Li, X.; Luo, G.; Li, L.; Le, W. Neuroprotective effects of (-)-epigallocatechin-3-gallate in a transgenic mouse model of amyotrophic lateral sclerosis. Neurochem. Res., 2006, 31(10), 1263-1269.
[http://dx.doi.org/10.1007/s11064-006-9166-z] [PMID: 17021948]
[175]
Wang, I-F.; Chang, H-Y.; Hou, S-C.; Liou, G-G.; Way, T-D.; James Shen, C-K. The self-interaction of native TDP-43 C terminus inhibits its degradation and contributes to early proteinopathies. Nat. Commun., 2012, 3(1), 766.
[http://dx.doi.org/10.1038/ncomms1766] [PMID: 22473010]
[176]
Zhu, Q.Y.; Zhang, A.; Tsang, D.; Huang, Y.; Chen, Z-Y. Stability of Green Tea Catechins. J. Agric. Food Chem., 1997, 45(12), 4624-4628.
[http://dx.doi.org/10.1021/jf9706080]
[177]
Shi, M.; Ying, D-Y.; Hlaing, M.M.; Ye, J-H.; Sanguansri, L.; Augustin, M.A. Development of broccoli by-products as carriers for delivering EGCG. Food Chem., 2019, 301, 125301.
[http://dx.doi.org/10.1016/j.foodchem.2019.125301] [PMID: 31387032]
[178]
Ramesh, N.; Mandal, A.K.A. Pharmacokinetic, toxicokinetic, and bioavailability studies of epigallocatechin-3-gallate loaded solid lipid nanoparticle in rat model. Drug Dev. Ind. Pharm., 2019, 45(9), 1506-1514.
[http://dx.doi.org/10.1080/03639045.2019.1634091] [PMID: 31215261]
[179]
Schirmer, R.H.; Adler, H.; Pickhardt, M.; Mandelkow, E. “Lest we forget you--methylene blue...”. Neurobiol. Aging, 2011, 32(12), 2325.e7-2325.e16.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.12.012] [PMID: 21316815]
[180]
Barcia, J.J. The Giemsa stain: Its history and applications. Int. J. Surg. Pathol., 2007, 15(3), 292-296.
[http://dx.doi.org/10.1177/1066896907302239] [PMID: 17652540]
[181]
Coulibaly, B.; Zoungrana, A.; Mockenhaupt, F.P.; Schirmer, R.H.; Klose, C.; Mansmann, U.; Meissner, P.E.; Müller, O. Strong gametocytocidal effect of methylene blue-based combination therapy against falciparum malaria: A randomised controlled trial. PLoS One, 2009, 4(5), e5318.
[http://dx.doi.org/10.1371/journal.pone.0005318] [PMID: 19415120]
[182]
Oz, M.; Lorke, D.E.; Hasan, M.; Petroianu, G.A. Cellular and molecular actions of Methylene Blue in the nervous system. Med. Res. Rev., 2011, 31(1), 93-117.
[http://dx.doi.org/10.1002/med.20177] [PMID: 19760660]
[183]
Hosokawa, M.; Arai, T.; Masuda-Suzukake, M.; Nonaka, T.; Yamashita, M.; Akiyama, H.; Hasegawa, M. Methylene blue reduced abnormal tau accumulation in P301L tau transgenic mice. PLoS One, 2012, 7(12), e52389.
[http://dx.doi.org/10.1371/journal.pone.0052389] [PMID: 23285020]
[184]
Congdon, E.E.; Wu, J.W.; Myeku, N.; Figueroa, Y.H.; Herman, M.; Marinec, P.S.; Gestwicki, J.E.; Dickey, C.A.; Yu, W.H.; Duff, K.E. Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy, 2012, 8(4), 609-622.
[http://dx.doi.org/10.4161/auto.19048] [PMID: 22361619]
[185]
Vaccaro, A.; Patten, S.A.; Aggad, D.; Julien, C.; Maios, C.; Kabashi, E.; Drapeau, P.; Parker, J.A. Pharmacological reduction of ER stress protects against TDP-43 neuronal toxicity in vivo. Neurobiol. Dis., 2013, 55, 64-75.
[http://dx.doi.org/10.1016/j.nbd.2013.03.015] [PMID: 23567652]
[186]
Crowe, A.; James, M.J.; Lee, V.M-Y.; Smith, A.B., III; Trojanowski, J.Q.; Ballatore, C.; Brunden, K.R. Aminothienopyridazines and methylene blue affect Tau fibrillization via cysteine oxidation. J. Biol. Chem., 2013, 288(16), 11024-11037.
[http://dx.doi.org/10.1074/jbc.M112.436006] [PMID: 23443659]
[187]
Stack, C.; Jainuddin, S.; Elipenahli, C.; Gerges, M.; Starkova, N.; Starkov, A.A.; Jové, M.; Portero-Otin, M.; Launay, N.; Pujol, A.; Kaidery, N.A.; Thomas, B.; Tampellini, D.; Beal, M.F.; Dumont, M. Methylene blue upregulates Nrf2/ARE genes and prevents tau-related neurotoxicity. Hum. Mol. Genet., 2014, 23(14), 3716-3732.
[http://dx.doi.org/10.1093/hmg/ddu080] [PMID: 24556215]
[188]
O’Leary, J.C., III; Li, Q.; Marinec, P.; Blair, L.J.; Congdon, E.E.; Johnson, A.G.; Jinwal, U.K.; Koren, J., III; Jones, J.R.; Kraft, C.; Peters, M.; Abisambra, J.F.; Duff, K.E.; Weeber, E.J.; Gestwicki, J.E.; Dickey, C.A. Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden. Mol. Neurodegener., 2010, 5(1), 45.
[http://dx.doi.org/10.1186/1750-1326-5-45] [PMID: 21040568]
[189]
Wischik, C.M.; Staff, R.T.; Wischik, D.J.; Bentham, P.; Murray, A.D.; Storey, J.M.D.; Kook, K.A.; Harrington, C.R. Tau aggregation inhibitor therapy: An exploratory phase 2 study in mild or moderate Alzheimer’s disease. J. Alzheimers Dis., 2015, 44(2), 705-720.
[http://dx.doi.org/10.3233/JAD-142874] [PMID: 25550228]
[190]
Gauthier, S.; Feldman, H.H.; Schneider, L.S.; Wilcock, G.K.; Frisoni, G.B.; Hardlund, J.H.; Moebius, H.J.; Bentham, P.; Kook, K.A.; Wischik, D.J.; Schelter, B.O.; Davis, C.S.; Staff, R.T.; Bracoud, L.; Shamsi, K.; Storey, J.M.; Harrington, C.R.; Wischik, C.M. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: A randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet, 2016, 388(10062), 2873-2884.
[http://dx.doi.org/10.1016/S0140-6736(16)31275-2] [PMID: 27863809]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy