Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Research Article

Extracellular Vesicles From Bone Marrow Mesenchymal Stem Cells Inhibit Apoptosis and Autophagy of Ischemia-hypoxia Cardiomyocyte Line in vitro by Carrying miR-144-3p to Inhibit ROCK1

Author(s): Wenjuan Wang, Xue Peng, Li Zhao, Hongying Zhao and Qianqian Gu*

Volume 18, Issue 2, 2023

Published on: 16 August, 2022

Page: [247 - 259] Pages: 13

DOI: 10.2174/1574888X17666220503192941

Price: $65

Abstract

Introduction: Acute Myocardial Infarction (AMI) has been classified as a prevalent condition threatening human health. This study sought to explore the effects of bone marrow mesenchymal stem cells (BMSCs)-extracellular vesicles (EVs) on cardiomyocyte apoptosis and autophagy induced by ischemia- hypoxia (I/H).

Materials and Methods: EVs were isolated from BMSCs using ultracentrifugation. The I/H cardiomyocyte model was established and cultured with EVs to evaluate the internalization of EVs by the cardiomyocyte line, apoptosis, proliferation, and autophagy of the cardiomyocyte line. The targeting relationship between miR-144-3p and ROCK1 was verified. EVs were isolated after transfection of BMSCs with the miR-144-3p inhibitor to evaluate the effect of miR-144-3p on the cardiomyocyte line.

Results and Discussion: After overexpression of ROCK1 in the I/H cardiomyocyte line treated with EVs, the I/H cardiomyocyte line apoptosis and autophagy were determined. BMSCs-EVs suppressed I/Hinduced apoptosis and autophagy of the cardiomyocyte line. BMSCs-EVs carried miR-144-3p into the I/H cardiomyocyte line, and the down-regulation of miR-144-3p in EVs partially inverted the suppression of apoptosis and autophagy of the I/H cardiomyocyte line induced by EVs. Our findings denoted that miR- 144-3p targeted ROCK1. Overexpression of ROCK1 partially inverted the inhibition of EVs on I/H cardiomyocyte line apoptosis and autophagy. BMSCs-EVs-derived miR-144-3p targeted ROCK1 to radically activate the PI3K/AKT/mTOR pathway.

Conclusion: Overall, our study elicited that BMSCs-EVs carried miR-144-3p into the I/H cardiomyocyte line to target ROCK1 and stimulate the PI3K/AKT/mTOR pathway, thus inhibiting I/H-induced cardiomyocyte line apoptosis and autophagy.

Keywords: Bone marrow mesenchymal stem cells, Extracellular vesicles, AC16, miR-144-3p, ROCK1, Apoptosis, Autophagy, PI3K/AKT/mTOR

Graphical Abstract

[1]
Xie DM, Li YL, Li J, et al. CD51 distinguishes a subpopulation of bone marrow mesenchymal stem cells with distinct migratory potential: A novel cell-based strategy to treat acute myocardial infarction in mice. Stem Cell Res Ther 2019; 10(1): 331.
[http://dx.doi.org/10.1186/s13287-019-1439-y] [PMID: 31747966]
[2]
Ghartavol MM, Gholizadeh-Ghaleh Aziz S, Babaei G, Hossein Farjah G, Hassan Khadem Ansari M. The protective impact of betaine on the tissue structure and renal function in isoproterenol-induced myocardial infarction in rat. Mol Genet Genomic Med 2019; 7(4): e00579.
[http://dx.doi.org/10.1002/mgg3.579] [PMID: 30811871]
[3]
Wei X, Zheng Y, Zhang W, Tan J, Zheng H. Ultrasound targeted microbubble destruction mediated Galectin 7 siRNA promotes the homing of bone marrow mesenchymal stem cells to alleviate acute myocardial infarction in rats. Int J Mol Med 2021; 47(2): 677-87.
[http://dx.doi.org/10.3892/ijmm.2020.4830] [PMID: 33416139]
[4]
Bucholz EM, Butala NM, Ma S, Normand ST, Krumholz HM. Life expectancy after myocardial infarction, according to hospital performance. N Engl J Med 2016; 375(14): 1332-42.
[http://dx.doi.org/10.1056/NEJMoa1513223] [PMID: 27705249]
[5]
Arnold SV, Masoudi FA, Rumsfeld JS, Li Y, Jones PG, Spertus JA. Derivation and validation of a risk standardization model for bench-marking hospital performance for health-related quality of life outcomes after acute myocardial infarction. Circulation 2014; 129(3): 313-20.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.001773] [PMID: 24163068]
[6]
Li Y, Liu M, Yi J, et al. Exogenous hydrogen sulfide inhibits apoptosis by regulating endoplasmic reticulum stress-autophagy axis and improves myocardial reconstruction after acute myocardial infarction. Acta Biochim Biophys Sin (Shanghai) 2020; 52(12): 1325-36.
[http://dx.doi.org/10.1093/abbs/gmaa133] [PMID: 33210714]
[7]
Sciarretta S, Maejima Y, Zablocki D, Sadoshima J. The role of autophagy in the heart. Annu Rev Physiol 2018; 80: 1-26.
[http://dx.doi.org/10.1146/annurev-physiol-021317-121427] [PMID: 29068766]
[8]
Shirakabe A, Zhai P, Ikeda Y, et al. Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure. Circulation 2016; 133(13): 1249-63.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.020502] [PMID: 26915633]
[9]
Frangogiannis NG. Pathophysiology of myocardial infarction. Compr Physiol 2015; 5(4): 1841-75.
[http://dx.doi.org/10.1002/cphy.c150006] [PMID: 26426469]
[10]
Wu Z, Cheng S, Wang S, Li W, Liu J. BMSCs-derived exosomal microRNA-150-5p attenuates myocardial infarction in mice. Int Immunopharmacol 2021; 93: 107389.
[http://dx.doi.org/10.1016/j.intimp.2021.107389] [PMID: 33582480]
[11]
He JG, Li HR, Li BB, Xie QL, Yan D, Wang XJ. Bone marrow mesenchymal stem cells overexpressing GATA-4 improve cardiac function following myocardial infarction. Perfusion 2019; 34(8): 696-704.
[http://dx.doi.org/10.1177/0267659119847442] [PMID: 31090492]
[12]
Ji D, He Y, Lu W, et al. Small-sized extracellular vesicles (EVs) derived from acute myeloid leukemia bone marrow mesenchymal stem cells transfer miR-26a-5p to promote acute myeloid leukemia cell proliferation, migration, and invasion. Hum Cell 2021; 34(3): 965-76.
[http://dx.doi.org/10.1007/s13577-021-00501-7] [PMID: 33620671]
[13]
Jin P, Ding L, Wang L, et al. Extracellular vesicles derived from myocardial infarction plasma inhibit BMSCs apoptosis and enhance cardiac function via AKT signaling pathway. Int Immunopharmacol 2021; 96: 107730.
[http://dx.doi.org/10.1016/j.intimp.2021.107730] [PMID: 34020395]
[14]
Xu R, Zhang F, Chai R, et al. Exosomes derived from pro-inflammatory bone marrow-derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization. J Cell Mol Med 2019; 23(11): 7617-31.
[http://dx.doi.org/10.1111/jcmm.14635] [PMID: 31557396]
[15]
Deng S, Zhou X, Ge Z, et al. Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization. Int J Biochem Cell Biol 2019; 114: 105564.
[http://dx.doi.org/10.1016/j.biocel.2019.105564] [PMID: 31276786]
[16]
Yuan H, Mischoulon D, Fava M, Otto MW. Circulating microRNAs as biomarkers for depression: Many candidates, few finalists. J Affect Disord 2018; 233: 68-78.
[http://dx.doi.org/10.1016/j.jad.2017.06.058] [PMID: 28673667]
[17]
Thum T, Condorelli G. Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. Circ Res 2015; 116(4): 751-62.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.303549] [PMID: 25677521]
[18]
Yang G, Tang X, Tan L, Nong D, Yang P, Ning H. Upregulation of miR-144-3p protects myocardial function from ischemia-reperfusion injury through inhibition of TMEM16A Ca2+-activated chloride channel. Hum Cell 2021; 34(2): 360-71.
[http://dx.doi.org/10.1007/s13577-020-00482-z] [PMID: 33452670]
[19]
Gong X, Zhu Y, Chang H, Li Y, Ma F. Long noncoding RNA MALAT1 promotes cardiomyocyte apoptosis after myocardial infarction via targeting miR-144-3p. Biosci Rep 2019; 39(8): 39.
[http://dx.doi.org/10.1042/BSR20191103] [PMID: 31227612]
[20]
Shimokawa H, Sunamura S, Satoh K. RhoA/Rho-kinase in the cardiovascular system. Circ Res 2016; 118(2): 352-66.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306532] [PMID: 26838319]
[21]
Xiang SY, Vanhoutte D, Del Re DP, et al. RhoA protects the mouse heart against ischemia/reperfusion injury. J Clin Invest 2011; 121(8): 3269-76.
[http://dx.doi.org/10.1172/JCI44371] [PMID: 21747165]
[22]
Ikeda S, Satoh K, Kikuchi N, et al. Crucial role of rho-kinase in pressure overload-induced right ventricular hypertrophy and dysfunction in mice. Arterioscler Thromb Vasc Biol 2014; 34(6): 1260-71.
[http://dx.doi.org/10.1161/ATVBAHA.114.303320] [PMID: 24675663]
[23]
Wu N, Zhang X, Bao Y, Yu H, Jia D, Ma C. Down-regulation of GAS5 ameliorates myocardial ischaemia/reperfusion injury via the miR-335/ROCK1/AKT/GSK-3β axis. J Cell Mol Med 2019; 23(12): 8420-31.
[http://dx.doi.org/10.1111/jcmm.14724] [PMID: 31625671]
[24]
Li H, Liu Y, Tang S, et al. Carbonic anhydrase III attenuates hypoxia-induced apoptosis and activates PI3K/Akt/mTOR pathway in H9c2 cardiomyocyte cell line. Cardiovasc Toxicol 2021; 21(11): 914-26.
[http://dx.doi.org/10.1007/s12012-021-09683-w] [PMID: 34387844]
[25]
Liu C, Zhang M, Ye S, et al. Acacetin protects myocardial cells against hypoxia-reoxygenation injury through activation of autophagy. J Immunol Res 2021; 2021: 9979843.
[http://dx.doi.org/10.1155/2021/9979843] [PMID: 34307696]
[26]
He Q, Fang Y, Lu F, et al. Analysis of differential expression profile of miRNA in peripheral blood of patients with lung cancer. J Clin Lab Anal 2019; 33(9): e23003.
[http://dx.doi.org/10.1002/jcla.23003] [PMID: 31541491]
[27]
Cai X, Zhang P, Wang S, et al. lncRNA FGD5 antisense RNA 1 upregulates RORA to suppress hypoxic injury of human cardiomyocyte cells by inhibiting oxidative stress and apoptosis via miR 195. Mol Med Rep 2020; 22(6): 4579-88.
[http://dx.doi.org/10.3892/mmr.2020.11558] [PMID: 33174051]
[28]
Sang Z, Zhang P, Wei Y, Dong S. miR-214-3p attenuates sepsis-induced myocardial dysfunction in mice by inhibiting autophagy through PTEN/AKT/mTOR pathway. BioMed Res Int 2020; 2020: 1409038.
[http://dx.doi.org/10.1155/2020/1409038] [PMID: 32714974]
[29]
Lu D, Liao Y, Zhu SH, et al. Bone-derived Nestin-positive mesenchymal stem cells improve cardiac function via recruiting cardiac endo-thelial cells after myocardial infarction. Stem Cell Res Ther 2019; 10(1): 127.
[http://dx.doi.org/10.1186/s13287-019-1217-x] [PMID: 31029167]
[30]
Duan S, Wang F, Cao J, Wang C. Exosomes derived from MicroRNA-146a-5p-enriched bone marrow mesenchymal stem cells alleviate intracerebral hemorrhage by inhibiting neuronal apoptosis and microglial M1 polarization. Drug Des Devel Ther 2020; 14: 3143-58.
[http://dx.doi.org/10.2147/DDDT.S255828] [PMID: 32821084]
[31]
Zhang X, Wang X, Zhu H, et al. Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ische-mia/reperfusion-induced cardiomyocyte death. J Mol Cell Cardiol 2010; 49(5): 841-50.
[http://dx.doi.org/10.1016/j.yjmcc.2010.08.007] [PMID: 20708014]
[32]
Song Y, Zhang C, Zhang J, et al. Localized injection of miRNA-21-enriched extracellular vesicles effectively restores cardiac function after myocardial infarction. Theranostics 2019; 9(8): 2346-60.
[http://dx.doi.org/10.7150/thno.29945] [PMID: 31149048]
[33]
Firoozi S, Pahlavan S, Ghanian MH, et al. Mesenchymal stem cell-derived extracellular vesicles alone or in conjunction with a SDKP-conjugated self-assembling peptide improve a rat model of myocardial infarction. Biochem Biophys Res Commun 2020; 524(4): 903-9.
[http://dx.doi.org/10.1016/j.bbrc.2020.02.009] [PMID: 32057366]
[34]
Meng Q, Zhang B, Zhang Y, Wang S, Zhu X. Human bone marrow mesenchymal stem cell-derived extracellular vesicles impede the pro-gression of cervical cancer via the miR-144-3p/CEP55 pathway. J Cell Mol Med 2021; 25(4): 1867-83.
[http://dx.doi.org/10.1111/jcmm.15573] [PMID: 33417281]
[35]
Tao L, Huang X, Xu M, Yang L, Hua F. MiR-144 protects the heart from hyperglycemia-induced injury by regulating mitochondrial bio-genesis and cardiomyocyte apoptosis. FASEB J 2020; 34(2): 2173-97.
[http://dx.doi.org/10.1096/fj.201901838R] [PMID: 31907983]
[36]
Wen Z, Mai Z, Zhu X, et al. Mesenchymal stem cell-derived exosomes ameliorate cardiomyocyte apoptosis in hypoxic conditions through microRNA144 by targeting the PTEN/AKT pathway. Stem Cell Res Ther 2020; 11(1): 36.
[http://dx.doi.org/10.1186/s13287-020-1563-8] [PMID: 31973741]
[37]
Wang X, Zhang X, Ren XP, et al. MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ische-mia/reperfusion-induced cardiac injury. Circulation 2010; 122(13): 1308-18.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.964684] [PMID: 20837890]
[38]
Cheng C, Xu DL, Liu XB, Bi SJ, Zhang J. MicroRNA-145-5p inhibits hypoxia/reoxygenation-induced apoptosis in H9c2 cardiomyocytes by targeting ROCK1. Exp Ther Med 2021; 22(2): 796.
[http://dx.doi.org/10.3892/etm.2021.10228] [PMID: 34093752]
[39]
Sun T, Gong Q, Wu Y, et al. Dexmedetomidine alleviates cardiomyocyte apoptosis and cardiac dysfunction may be associated with inhibition of RhoA/ROCK pathway in mice with myocardial infarction. Naunyn Schmiedebergs Arch Pharmacol 2021; 394(7): 1569-77.
[http://dx.doi.org/10.1007/s00210-021-02082-6] [PMID: 33782744]
[40]
Liu H, Sun X, Gong X, Wang G. Human umbilical cord mesenchymal stem cells derived exosomes exert antiapoptosis effect via activating PI3K/Akt/mTOR pathway on H9C2 cells. J Cell Biochem 2019; 120(9): 14455-64.
[http://dx.doi.org/10.1002/jcb.28705] [PMID: 30989714]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy