Generic placeholder image

Current Drug Safety

Editor-in-Chief

ISSN (Print): 1574-8863
ISSN (Online): 2212-3911

Research Article

Designing and Characterization of Tregitope-Based Multi-Epitope Vaccine Against Multiple Sclerosis: An Immunoinformatic Approach

Author(s): Peyman Bemani, Sajad Jalili, Kazem Hassanpour, Fouziyeh Faraji, Nasser Gholijani, Mahdi Barazesh*, Mozafar Mohammadi and Gholamreza Farnoosh

Volume 18, Issue 1, 2023

Published on: 24 June, 2022

Page: [79 - 92] Pages: 14

DOI: 10.2174/1574886317666220429105439

Price: $65

Abstract

Background: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system(CNS). It is widely accepted that the development and progression of MS result from aberrant activation of potentially encephalitogenic reactive-T cells against CNS antigens. The pathologic roles of both CD4+ (T helper; Th) and CD8+ T cells have been demonstrated in MS lesions.

Objective: In the present work, we applied a series of bioinformatics tools to design a dendritic cell (DC)-targeting Tregitope-based multi-epitope vaccine for MS to induce tolerance in pathogenic myelin-specific T cells.

Methods: The 3D structure of anti-DEC205 scFv and the remaining part of the vaccine were modeled by ROSIE Antibody server and ITASSER software, respectively. AIDA web server (ab initio domain assembly server) was applied to assemble two parts of the vaccine and build the full construct. Following modeled structure refinement and validation, physicochemical properties, and allergenicity of the vaccine were assessed. In the final step, in silico cloning was done to ensure high-level expression in the desired host.

Results: This vaccine consists of three main parts; 1) Anti-DEC205 scFv antibody, 2) multiepitope vaccine part composed of multiple pathogenic CD4+, and CD8+ T cell epitopes originated from multiple known antigens in MS patients, as well as T-regulatory (Treg)-inducing epitopes (Tregitopes), and 3) vasoactive intestinal peptide (VIP). All parts of the final vaccine were joined together with the help of proper linkers. After vaccine construction, the three-D structure, as well as different physicochemical and immunological features of the vaccine were predicted. Finally, in silico gene cloning was also carried out to assure efficient production of protein vaccine in Escherichia coli K12 expression strain.

Conclusion: Computational study revealed that this vaccination can regulate MS disease progression and even relapse by harnessing pathogenic T cells.

Keywords: Multi-epitope vaccine, Multiple sclerosis, Tregitope, Vasoactive intestinal peptide, Bioinformatics aided design, CNS.

Graphical Abstract

[1]
Goldenberg, M.M. Multiple sclerosis review. P&T, 2012, 37(3), 175-184.
[PMID: 22605909]
[2]
Compston, A.; Coles, A. Multiple sclerosis. Lancet, 2008, 372(9648), 1502-1517.
[http://dx.doi.org/10.1016/S0140-6736(08)61620-7] [PMID: 18970977]
[3]
Dendrou, C.A.; Fugger, L.; Friese, M.A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol., 2015, 15(9), 545-558.
[http://dx.doi.org/10.1038/nri3871] [PMID: 26250739]
[4]
Ashaye, A. Economic burden of multiple sclerosis: A systematic review of the literature. Mult. Scler. J., 2014, 72.
[5]
Pike, J.; Jones, E.; Rajagopalan, K.; Piercy, J.; Anderson, P. Social and economic burden of walking and mobility problems in multiple sclerosis. BMC Neurol., 2012, 12(1), 94.
[http://dx.doi.org/10.1186/1471-2377-12-94] [PMID: 22989365]
[6]
Segal, B.M. The diversity of encephalitogenic CD4+ T cells in multiple sclerosis and its animal models. J. Clin. Med., 2019, 8(1), 120.
[http://dx.doi.org/10.3390/jcm8010120] [PMID: 30669462]
[7]
Ben-Nun, A.; Wekerle, H.; Cohen, I.R. The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur. J. Immunol., 1981, 11(3), 195-199.
[http://dx.doi.org/10.1002/eji.1830110307] [PMID: 6165588]
[8]
Ben-Nun, A.; Lando, Z. Detection of autoimmune cells proliferating to myelin basic protein and selection of T cell lines that mediate experimental autoimmune encephalomyelitis (EAE) in mice. J.Imm. (Baltimore, Md. : 1950), 1983, 130(3), 1205-1209.
[9]
Zamvil, S.; Nelson, P.; Trotter, J.; Mitchell, D.; Knobler, R.; Fritz, R.; Steinman, L. T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature, 1985, 317(6035), 355-358.
[http://dx.doi.org/10.1038/317355a0] [PMID: 2413363]
[10]
Baecher-Allan, C.; Kaskow, B.J.; Weiner, H.L. Multiple sclerosis: Mechanisms and immunotherapy. Neuron, 2018, 97(4), 742-768.
[http://dx.doi.org/10.1016/j.neuron.2018.01.021] [PMID: 29470968]
[11]
Legroux, L.; Arbour, N. Multiple sclerosis and T lymphocytes: An entangled story. J. Neuroimmune Pharmacol., 2015, 10(4), 528-546.
[http://dx.doi.org/10.1007/s11481-015-9614-0] [PMID: 25946987]
[12]
Goverman, J.M. Immune tolerance in multiple sclerosis. Immunol. Rev., 2011, 241(1), 228-240.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01016.x] [PMID: 21488900]
[13]
Fletcher, J.M.; Lalor, S.J.; Sweeney, C.M.; Tubridy, N.; Mills, K.H. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin. Exp. Immunol., 2010, 162(1), 1-11.
[http://dx.doi.org/10.1111/j.1365-2249.2010.04143.x] [PMID: 20682002]
[14]
Buc, M. Role of regulatory T cells in pathogenesis and biological therapy of multiple sclerosis. Mediators Inflamm., 2013, 2013
[http://dx.doi.org/10.1155/2013/963748]
[15]
Stephens, L.A.; Malpass, K.H.; Anderton, S.M. Curing CNS autoimmune disease with myelin-reactive Foxp3+ Treg. Eur. J. Immunol., 2009, 39(4), 1108-1117.
[http://dx.doi.org/10.1002/eji.200839073] [PMID: 19350586]
[16]
Yan, Y.; Zhang, G-X.; Gran, B.; Fallarino, F.; Yu, S.; Li, H.; Cullimore, M.L.; Rostami, A.; Xu, H. IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. J. Immunol., 2010, 185(10), 5953-5961.
[http://dx.doi.org/10.4049/jimmunol.1001628] [PMID: 20944000]
[17]
Liu, Y.; Carlsson, R.; Comabella, M.; Wang, J.; Kosicki, M.; Carrion, B.; Hasan, M.; Wu, X.; Montalban, X.; Dziegiel, M.H.; Sellebjerg, F. Søّrensen, P.S.; Helin, K.; Issazadeh-Navikas, S. FoxA1 directs the lineage and immunosuppressive properties of a novel regulatory T cell population in EAE and MS. Nat. Med., 2014, 20(3), 272-282.
[http://dx.doi.org/10.1038/nm.3485] [PMID: 24531377]
[18]
McGeachy, M.J.; Stephens, L.A.; Anderton, S.M. Natural recovery and protection from autoimmune encephalomyelitis: Contribution of CD4+CD25+ regulatory cells within the central nervous system. J. Immunol., 2005, 175(5), 3025-3032.
[http://dx.doi.org/10.4049/jimmunol.175.5.3025] [PMID: 16116190]
[19]
Dalla Libera, D.; Di Mitri, D.; Bergami, A.; Centonze, D.; Gasperini, C.; Grasso, M.G.; Galgani, S.; Martinelli, V.; Comi, G.; Avolio, C.; Martino, G.; Borsellino, G.; Sallusto, F.; Battistini, L.; Furlan, R. T regulatory cells are markers of disease activity in multiple sclerosis patients. PLoS One, 2011, 6(6), e21386.
[http://dx.doi.org/10.1371/journal.pone.0021386] [PMID: 21731726]
[20]
Venken, K.; Hellings, N.; Thewissen, M.; Somers, V.; Hensen, K.; Rummens, J.L.; Medaer, R.; Hupperts, R.; Stinissen, P. Compromised CD4+ CD25(high) regulatory T-cell function in patients with relapsing-remitting multiple sclerosis is correlated with a reduced frequency of FOXP3-positive cells and reduced FOXP3 expression at the single-cell level. Immunology, 2008, 123(1), 79-89.
[http://dx.doi.org/10.1111/j.1365-2567.2007.02690.x] [PMID: 17897326]
[21]
Saguil, A.; Kane, S.; Farnell, E. Multiple sclerosis: A primary care perspective. Am. Fam. Physician, 2014, 90(9), 644-652.
[PMID: 25368924]
[22]
Coutinho, A.E.; Chapman, K.E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol. Cell. Endocrinol., 2011, 335(1), 2-13.
[http://dx.doi.org/10.1016/j.mce.2010.04.005] [PMID: 20398732]
[23]
La Mantia, L.; Munari, L.M.; Lovati, R. Glatiramer acetate for multiple sclerosis. Cochrane Database Syst. Rev., 2010, (5), CD004678.
[PMID: 20464733]
[24]
Cross, A.H.; Naismith, R.T. Established and novel disease-modifying treatments in multiple sclerosis. J. Intern. Med., 2014, 275(4), 350-363.
[http://dx.doi.org/10.1111/joim.12203] [PMID: 24444048]
[25]
Serra, P.; Santamaria, P. Antigen-specific therapeutic approaches for autoimmunity. Nat. Biotechnol., 2019, 37(3), 238-251.
[http://dx.doi.org/10.1038/s41587-019-0015-4] [PMID: 30804535]
[26]
Kaushansky, N.; Kerlero de Rosbo, N.; Zilkha-Falb, R.; Yosef-Hemo, R.; Cohen, L.; Ben-Nun, A. ‘Multi-epitope-targeted’ immune-specific therapy for a multiple sclerosis-like disease via engineered multi-epitope protein is superior to peptides. PLoS One, 2011, 6(11), e27860.
[http://dx.doi.org/10.1371/journal.pone.0027860] [PMID: 22140475]
[27]
Leadbetter, E. A.; Bourque, C. R.; Devaux, B.; Olson, C. D.; Sunshine, G. H.; Hirani, S.; Wallner, B. P.; Smilek, D. E.; Happ, M. P. Experimental autoimmune encephalomyelitis induced with a combination of myelin basic protein and myelin oligodendrocyte glycoprotein is ameliorated by administration of a single myelin basic protein peptide. Journal of immunology (Baltimore, Md. : 1950), 1998, 161(1), 504-512.
[28]
Wraith, D.C.; Smilek, D.E.; Mitchell, D.J.; Steinman, L.; McDevitt, H.O. Antigen recognition in autoimmune encephalomyelitis and the potential for peptide-mediated immunotherapy. Cell, 1989, 59(2), 247-255.
[http://dx.doi.org/10.1016/0092-8674(89)90287-0] [PMID: 2478291]
[29]
Gonsette, R.E.; Delmotte, P.; Demonty, L. Failure of basic protein therapy for multiple sclerosis. J. Neurol., 1977, 216(1), 27-31.
[http://dx.doi.org/10.1007/BF00312812] [PMID: 72790]
[30]
Warren, K.G.; Catz, I.; Ferenczi, L.Z.; Krantz, M.J. Intravenous synthetic peptide MBP8298 delayed disease progression in an HLA Class II-defined cohort of patients with progressive multiple sclerosis: Results of a 24-month double-blind placebo-controlled clinical trial and 5 years of follow-up treatment. Eur. J. Neurol., 2006, 13(8), 887-895.
[http://dx.doi.org/10.1111/j.1468-1331.2006.01533.x] [PMID: 16879301]
[31]
Kappos, L.; Comi, G.; Panitch, H.; Oger, J.; Antel, J.; Conlon, P.; Steinman, L.; Comi, G.; Kappos, L.; Oger, J.; Panitch, H.; Rae-Grant, A.; Castaldo, J.; Eckert, N.; Guarnaccia, J.B.; Mills, P.; Johnson, G.; Calabresi, P.A.; Pozzilli, C.; Bastianello, S.; Giugni, E.; Witjas, T.; Cozzone, P.; Pelletier, J. Pöhlau, D.; Przuntek, H.; Hoffmann, V.; Bever, C., Jr; Katz, E.; Clanet, M.; Berry, I.; Brassat, D.; Brunet, I.; Edan, G.; Duquette, P.; Radue, E-W.; Schött, D.; Lienert, C.; Taksaoui, A.; Rodegher, M.; Filippi, M.; Evans, A.; Bourgouin, P.; Zijdenbos, A.; Salem, S.; Ling, N.; Alleva, D.; Johnson, E.; Gaur, A.; Crowe, P.; Liu, X-J. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. Nat. Med., 2000, 6(10), 1176-1182.
[http://dx.doi.org/10.1038/80525] [PMID: 11017151]
[32]
Bielekova, B.; Goodwin, B.; Richert, N.; Cortese, I.; Kondo, T.; Afshar, G.; Gran, B.; Eaton, J.; Antel, J.; Frank, J.A.; McFarland, H.F.; Martin, R. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83-99) in multiple sclerosis: Results of a phase II clinical trial with an altered peptide ligand. Nat. Med., 2000, 6(10), 1167-1175.
[http://dx.doi.org/10.1038/80516] [PMID: 11017150]
[33]
Sospedra, M.; Martin, R. Immunology of multiple sclerosis. Annu. Rev. Immunol., 2005, 23(1), 683-747.
[http://dx.doi.org/10.1146/annurev.immunol.23.021704.115707] [PMID: 15771584]
[34]
Tuohy, V.K.; Yu, M.; Yin, L.; Kawczak, J.A.; Johnson, J.M.; Mathisen, P.M.; Weinstock-Guttman, B.; Kinkel, R.P. The epitope spreading cascade during progression of experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol. Rev., 1998, 164(1), 93-100.
[http://dx.doi.org/10.1111/j.1600-065X.1998.tb01211.x] [PMID: 9795767]
[35]
Goebels, N.; Hofstetter, H.; Schmidt, S.; Brunner, C.; Wekerle, H.; Hohlfeld, R. Repertoire dynamics of autoreactive T cells in multiple sclerosis patients and healthy subjects: Epitope spreading versus clonal persistence. Brain, 2000, 123(Pt 3), 508-518.
[http://dx.doi.org/10.1093/brain/123.3.508] [PMID: 10686174]
[36]
Tuohy, V.K.; Yu, M.; Weinstock-Guttman, B.; Kinkel, R.P. Diversity and plasticity of self recognition during the development of multiple sclerosis. J. Clin. Invest., 1997, 99(7), 1682-1690.
[http://dx.doi.org/10.1172/JCI119331] [PMID: 9120012]
[37]
Tuohy, V.K.; Yu, M.; Yin, L.; Kawczak, J.A.; Kinkel, P.R. Regression and spreading of self-recognition during the development of autoimmune demyelinating disease. J. Autoimmun., 1999, 13(1), 11-20.
[http://dx.doi.org/10.1006/jaut.1999.0293] [PMID: 10441163]
[38]
De Groot, A.S.; Moise, L.; McMurry, J.A.; Wambre, E.; Van Overtvelt, L.; Moingeon, P.; Scott, D.W.; Martin, W. Activation of natural regulatory T cells by IgG Fc-derived peptide “Tregitopes”. Blood, 2008, 112(8), 3303-3311.
[http://dx.doi.org/10.1182/blood-2008-02-138073] [PMID: 18660382]
[39]
Zang, Y.C.; Li, S.; Rivera, V.M.; Hong, J.; Robinson, R.R.; Breitbach, W.T.; Killian, J.; Zhang, J.Z. Increased CD8+ cytotoxic T cell responses to myelin basic protein in multiple sclerosis. J. Immunol., 2004, 172(8), 5120-5127.
[http://dx.doi.org/10.4049/jimmunol.172.8.5120] [PMID: 15067096]
[40]
Niland, B.; Banki, K.; Biddison, W.E.; Perl, A. CD8+ T cell-mediated HLA-A*0201-restricted cytotoxicity to transaldolase peptide 168-176 in patients with multiple sclerosis. J. Immunol., 2005, 175(12), 8365-8378.
[http://dx.doi.org/10.4049/jimmunol.175.12.8365] [PMID: 16339578]
[41]
Sivasubramanian, A.; Sircar, A.; Chaudhury, S.; Gray, J.J. Toward high-resolution homology modeling of antibody Fv regions and application to antibody-antigen docking. Proteins, 2009, 74(2), 497-514.
[http://dx.doi.org/10.1002/prot.22309] [PMID: 19062174]
[42]
Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 2008, 9(1), 40.
[http://dx.doi.org/10.1186/1471-2105-9-40] [PMID: 18215316]
[43]
Xu, D.; Jaroszewski, L.; Li, Z.; Godzik, A. AIDA: Ab initio domain assembly for automated multi-domain protein structure prediction and domain-domain interaction prediction. Bioinformatics, 2015, 31(13), 2098-2105.
[http://dx.doi.org/10.1093/bioinformatics/btv092] [PMID: 25701568]
[44]
Xu, D.; Jaroszewski, L.; Li, Z.; Godzik, A. AIDA: Ab initio domain assembly server. Nucleic Acids Res, 2014, 42(Web Server issue), W308-W313.
[http://dx.doi.org/10.1093/nar/gku369]
[45]
Sippl, M.J. Recognition of errors in three-dimensional structures of proteins. Proteins, 1993, 17(4), 355-362.
[http://dx.doi.org/10.1002/prot.340170404] [PMID: 8108378]
[46]
Wiederstein, M.; Sippl, M. J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 2007, 35(Web Server issue), W407- W410.
[http://dx.doi.org/10.1093/nar/gkm290]
[47]
Colovos, C.; Yeates, T.O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci., 1993, 2(9), 1511-1519.
[http://dx.doi.org/10.1002/pro.5560020916] [PMID: 8401235]
[48]
Lovell, S.C.; Davis, I.W.; Arendall, W.B., III; de Bakker, P.I.; Word, J.M.; Prisant, M.G.; Richardson, J.S.; Richardson, D.C. Structure validation by Calpha geometry: Phi,psi and Cbeta deviation. Proteins, 2003, 50(3), 437-450.
[http://dx.doi.org/10.1002/prot.10286] [PMID: 12557186]
[49]
Smialowski, P.; Doose, G.; Torkler, P.; Kaufmann, S.; Frishman, D. PROSO II--a new method for protein solubility prediction. FEBS J., 2012, 279(12), 2192-2200.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08603.x] [PMID: 22536855]
[50]
Saha, S.; Raghava, G.P. AlgPred: Prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res. 2006, 34(Web Server issue)(Suppl. 2), W202-9.
[http://dx.doi.org/10.1093/nar/gkl343] [PMID: 16844994]
[51]
Grote, A.; Hiller, K.; Scheer, M.; Münch, R. Nörtemann, B.; Hempel, D.C.; Jahn, D. JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 2005, 33(Web Server issue)(Suppl. 2), W526-31.
[http://dx.doi.org/10.1093/nar/gki376] [PMID: 15980527]
[52]
Ponomarenko, J.; Bui, H-H.; Li, W.; Fusseder, N.; Bourne, P.E.; Sette, A.; Peters, B. ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 2008, 9(1), 514.
[http://dx.doi.org/10.1186/1471-2105-9-514] [PMID: 19055730]
[53]
Davies, S.; Nicholson, T.; Laura, M.; Giovannoni, G.; Altmann, D.M. Spread of T lymphocyte immune responses to myelin epitopes with duration of multiple sclerosis. J. Neuropathol. Exp. Neurol., 2005, 64(5), 371-377.
[http://dx.doi.org/10.1093/jnen/64.5.371] [PMID: 15892293]
[54]
Petzold, C.; Schallenberg, S.; Stern, J.N.; Kretschmer, K. Targeted antigen delivery to DEC-205⁺ dendritic cells for tolerogenic vaccination. Rev. Diabet. Stud., 2012, 9(4), 305-318.
[http://dx.doi.org/10.1900/RDS.2012.9.305] [PMID: 23804268]
[55]
Arai, R.; Ueda, H.; Kitayama, A.; Kamiya, N.; Nagamune, T. Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng., 2001, 14(8), 529-532.
[http://dx.doi.org/10.1093/protein/14.8.529] [PMID: 11579220]
[56]
Yano, A.; Onozuka, A.; Asahi-Ozaki, Y.; Imai, S.; Hanada, N.; Miwa, Y.; Nisizawa, T. An ingenious design for peptide vaccines. Vaccine, 2005, 23(17-18), 2322-2326.
[http://dx.doi.org/10.1016/j.vaccine.2005.01.031] [PMID: 15755620]
[57]
Oishi, Y.; Onozuka, A.; Kato, H.; Shimura, N.; Imai, S.; Nisizawa, T. The effect of amino acid spacers on the antigenicity of dimeric peptide--inducing cross-reacting antibodies to a cell surface protein antigen of Streptococcus mutans. Oral Microbiol. Immunol., 2001, 16(1), 40-44.
[http://dx.doi.org/10.1034/j.1399-302x.2001.160107.x] [PMID: 11169138]
[58]
Sarobe, P.; Lasarte, J-J.; Larrea, E.; Golvano, J-J.; Prieto, I. Gulljó,َn, A.; Prieto, J.; Borrás-Cuesta, F. Enhancement of peptide immunogenicity by insertion of a cathepsin B cleavage site between determinants recognized by B and T cells. Res. Immunol., 1993, 144(4), 257-262.
[http://dx.doi.org/10.1016/0923-2494(93)80102-5] [PMID: 7690980]
[59]
Takahashi, H.; Cease, K. B.; Berzofsky, J. A. Identification of proteases that process distinct epitopes on the same protein. J. Imm. (Baltimore, Md. : 1950), 1989, 142(7), 2221-2229.
[60]
Gutiérrez-Martínez, E.; Planès, R.; Anselmi, G.; Reynolds, M.; Menezes, S.; Adiko, A.C.; Saveanu, L.; Guermonprez, P. Cross-presentation of cell-associated antigens by MHC class I in dendritic cell subsets. Front. Immunol., 2015, 6, 363-363.
[http://dx.doi.org/10.3389/fimmu.2015.00363] [PMID: 26236315]
[61]
Zhang, M.; Pickart, C.M.; Coffino, P. Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. EMBO J., 2003, 22(7), 1488-1496.
[http://dx.doi.org/10.1093/emboj/cdg158] [PMID: 12660156]
[62]
Park, M-J.; Kim, E-K.; Han, J-Y.; Cho, H-W.; Sohn, H-J.; Kim, S-Y.; Kim, T-G. Fusion of the Human Cytomegalovirus pp65 antigen with both ubiquitin and ornithine decarboxylase additively enhances antigen presentation to CD8(+) T cells in human dendritic cells. Hum. Gene Ther., 2010, 21(8), 957-967.
[http://dx.doi.org/10.1089/hum.2009.216] [PMID: 20218861]
[63]
Velders, M.P.; Weijzen, S.; Eiben, G.L.; Elmishad, A.G.; Kloetzel, P-M.; Higgins, T.; Ciccarelli, R.B.; Evans, M.; Man, S.; Smith, L.; Kast, W.M. Defined flanking spacers and enhanced proteolysis is essential for eradication of established tumors by an epitope string DNA vaccine. J. Immunol., 2001, 166(9), 5366-5373.
[http://dx.doi.org/10.4049/jimmunol.166.9.5366] [PMID: 11313372]
[64]
Cousens, L.; Najafian, N.; Martin, W.D.; De Groot, A.S. Tregitope: Immunomodulation powerhouse. Hum. Immunol., 2014, 75(12), 1139-1146.
[http://dx.doi.org/10.1016/j.humimm.2014.10.012] [PMID: 25454619]
[65]
Hui, D.J.; Basner-Tschakarjan, E.; Chen, Y.; Davidson, R.J.; Buchlis, G.; Yazicioglu, M.; Pien, G.C.; Finn, J.D.; Haurigot, V.; Tai, A.; Scott, D.W.; Cousens, L.P.; Zhou, S.; De Groot, A.S.; Mingozzi, F. Modulation of CD8+ T cell responses to AAV vectors with IgG-derived MHC class II epitopes. Mol. Ther., 2013, 21(9), 1727-1737.
[http://dx.doi.org/10.1038/mt.2013.166] [PMID: 23857231]
[66]
Prangtaworn, P.; Chaisri, U.; Seesuay, W.; Mahasongkram, K.; Onlamoon, N.; Reamtong, O.; Tungtrongchitr, A.; Indrawattana, N.; Chaicumpa, W.; Sookrung, N. Tregitope-linked refined allergen vaccines for immunotherapy in cockroach allergy. Sci. Rep., 2018, 8(1), 15480.
[http://dx.doi.org/10.1038/s41598-018-33680-9] [PMID: 30341299]
[67]
Gonzalez-Rey, E.; Delgado, M. Vasoactive intestinal peptide and regulatory T-cell induction: A new mechanism and therapeutic potential for immune homeostasis. Trends Mol. Med., 2007, 13(6), 241-251.
[http://dx.doi.org/10.1016/j.molmed.2007.04.003] [PMID: 17467339]
[68]
Ganea, D.; Hooper, K.M.; Kong, W. The neuropeptide vasoactive intestinal peptide: Direct effects on immune cells and involvement in inflammatory and autoimmune diseases. Acta Physiol. (Oxf.), 2015, 213(2), 442-452.
[http://dx.doi.org/10.1111/apha.12427] [PMID: 25422088]
[69]
Mirshafiey, A.; Asghari, B.; Ghalamfarsa, G.; Jadidi-Niaragh, F.; Azizi, G. The significance of matrix metalloproteinases in the immunopathogenesis and treatment of multiple sclerosis. Sultan Qaboos Univ. Med. J., 2014, 14(1), e13-e25.
[http://dx.doi.org/10.12816/0003332] [PMID: 24516744]
[70]
Benesová Y.; Vasku, A.; Novotná H.; Litzman, J.; Stourac, P.; Beránek, M.; Kadanka, Z.; Bednarík, J. Matrix metalloproteinase-9 and matrix metalloproteinase-2 as biomarkers of various courses in multiple sclerosis. Mult. Scler., 2009, 15(3), 316-322.
[http://dx.doi.org/10.1177/1352458508099482] [PMID: 19153173]
[71]
Tan, Y-V.; Waschek, J.A. Targeting VIP and PACAP receptor signalling: New therapeutic strategies in multiple sclerosis. ASN Neuro, 2011, 3(4), e00065.
[http://dx.doi.org/10.1042/AN20110024] [PMID: 21895607]
[72]
Deng, G.; Jin, L. The effects of vasoactive intestinal peptide in neurodegenerative disorders. Neurol. Res., 2017, 39(1), 65-72.
[http://dx.doi.org/10.1080/01616412.2016.1250458] [PMID: 27786097]
[73]
Gonzalez-Rey, E.; Fernandez-Martin, A.; Chorny, A.; Martin, J.; Pozo, D.; Ganea, D.; Delgado, M. Therapeutic effect of vasoactive intestinal peptide on experimental autoimmune encephalomyelitis: Down-regulation of inflammatory and autoimmune responses. Am. J. Pathol., 2006, 168(4), 1179-1188.
[http://dx.doi.org/10.2353/ajpath.2006.051081] [PMID: 16565493]
[74]
Fernandez-Martin, A.; Gonzalez-Rey, E.; Chorny, A.; Ganea, D.; Delgado, M. Vasoactive intestinal peptide induces regulatory T cells during experimental autoimmune encephalomyelitis. Eur. J. Immunol., 2006, 36(2), 318-326.
[http://dx.doi.org/10.1002/eji.200535430] [PMID: 16402407]
[75]
Andersen, O.; Fahrenkrug, J. Wikkelsøّ C.; Johansson, B.B. VIP in cerebrospinal fluid of patients with multiple sclerosis. Peptides, 1984, 5(2), 435-437.
[http://dx.doi.org/10.1016/0196-9781(84)90249-3] [PMID: 6473167]
[76]
Jakimovski, D.; Weinstock-Guttman, B.; Ramanathan, M.; Dwyer, M.G.; Zivadinov, R. Infections, vaccines and autoimmunity: A multiple sclerosis perspective. Vaccines (Basel), 2020, 8(1), 50.
[http://dx.doi.org/10.3390/vaccines8010050] [PMID: 32012815]
[77]
Petratos, S.; Azari, M.F.; Ozturk, E.; Papadopoulos, R.; Bernard, C.C. Novel therapeutic targets for axonal degeneration in multiple sclerosis. J. Neuropathol. Exp. Neurol., 2010, 69(4), 323-334.
[http://dx.doi.org/10.1097/NEN.0b013e3181d60ddb] [PMID: 20448478]
[78]
Willekens, B. Presas-Rodríguez, S.; Mansilla, M.J.; Derdelinckx, J.; Lee, W-P.; Nijs, G.; De Laere, M.; Wens, I.; Cras, P.; Parizel, P.; Van Hecke, W.; Ribbens, A.; Billiet, T.; Adams, G.; Couttenye, M.M.; Navarro-Barriuso, J.; Teniente-Serra, A.; Quirant-Sánchez, B.; Lopez-Diaz de Cerio, A.; Inogés, S.; Prosper, F.; Kip, A.; Verheij, H.; Gross, C.C.; Wiendl, H.; Van Ham, M.S.; Ten Brinke, A.; Barriocanal, A.M.; Massuet-Vilamajjó,َ A.; Hens, N.; Berneman, Z.; Martínez-Cáceres, E.; Cools, N.; Ramo-Tello, C. Tolerogenic dendritic cell-based treatment for multiple sclerosis (MS): A harmonised study protocol for two phase I clinical trials comparing intradermal and intranodal cell administration. BMJ Open, 2019, 9(9), e030309.
[http://dx.doi.org/10.1136/bmjopen-2019-030309] [PMID: 31501122]
[79]
Karussis, D.; Shor, H.; Yachnin, J.; Lanxner, N.; Amiel, M.; Baruch, K.; Keren-Zur, Y.; Haviv, O.; Filippi, M.; Petrou, P.; Hajag, S.; Vourka-Karussis, U.; Vaknin-Dembinsky, A.; Khoury, S.; Abramsky, O.; Atlan, H.; Cohen, I.R.; Abulafia-Lapid, R. T cell vaccination benefits relapsing progressive multiple sclerosis patients: A randomized, double-blind clinical trial. PLoS One, 2012, 7(12), e50478.
[http://dx.doi.org/10.1371/journal.pone.0050478] [PMID: 23272061]
[80]
Sirbu, C.A.; Florea, A.A.; Ghinescu, M.C.; Docu-Axelerad, A.; Sirbu, A.M.; Bratu, O.G.; Radu, F.I. Vaccination in multiple sclerosis-Challenging practices. Exp. Ther. Med., 2020, 20(6), 1-1.
[81]
Vakili, B.; Eslami, M.; Hatam, G. R.; Zare, B.; Erfani, N.; Nezafat, N.; Ghasemi, Y. Immunoinformatics-aided design of a potential multi-epitope peptide vaccine against Leishmania infantum. Int J Biol Macromol, 2018, 120(Pt A), 1127-1139.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.125]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy