Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Perspective

Immunosuppressive Function of Intratumor Red Blood Cells: An Immune-metabolic Perspective

Author(s): Charalampos Papadopoulos*

Volume 18, Issue 4, 2022

Published on: 26 August, 2022

Page: [224 - 226] Pages: 3

DOI: 10.2174/1573394718666220428120818

Abstract

Erythrocyte could reach the tumor microenvironment after hemorrhage. Previous studies have proved that intratumor erythrocytes promote tumor cell proliferation and growth, while inducing an immunosuppressive state. In this viewpoint, it is propose that a metabolite-induced immunosuppressive function of red blood cells could be triggered in the tumor microenvironment. Specifically, the presence of erythrocytes in a microenvironment with low glucose and glutamine, high cholesterol, lactate and lysophosphatidic acid, and inducers of erythrocyte death, could result in immunosuppression.

Keywords: Erythrocyte, cancer, microenvironment, immunometabolism, hypoxia, lactate

[1]
Rolin J, Maghazachi AA. Effects of lysophospholipids on tumor microenvironment. Cancer Microenviron 2011; 4(3): 393.
[http://dx.doi.org/10.1007/s12307-011-0088-1]
[2]
Arab S, Hadjati J. Adenosine blockage in tumor microenvironment and improvement of cancer immunotherapy. Immune Netw 2019; 19(4): e23.
[http://dx.doi.org/10.4110/in.2019.19.e23] [PMID: 31501711]
[3]
Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene 2008; 27(45): 5904-12.
[http://dx.doi.org/10.1038/onc.2008.271] [PMID: 18836471]
[4]
Balsas P, Veloza L, Clot G, et al. SOX11, CD70, and Treg cells configure the tumor-immune microenvironment of aggressive mantle cell lymphoma. Blood 2021; 138(22): 2202-15.
[http://dx.doi.org/10.1182/blood.2020010527]
[5]
Ma X, Bi E, Lu Y, et al. Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment. Cell Metab 2019; 30(1): 143-56.
[http://dx.doi.org/10.1016/j.cmet.2019.04.002] [PMID: 31031094]
[6]
Shi R, Tang Y-Q, Miao H. Metabolism in tumor microenvironment: Implications for cancer immunotherapy. MedComm 2020; 1(1): 47-68.
[http://dx.doi.org/10.1002/mco2.6] [PMID: 34766109]
[7]
Yin T, He S, Liu X, et al. Extravascular red blood cells and hemoglobin promote tumor growth and therapeutic resistance as endogenous danger signals. J Immunol 2015; 194(1): 429-37.
[http://dx.doi.org/10.4049/jimmunol.1400643] [PMID: 25429070]
[8]
Papadopoulos C, Tentes I, Anagnostopoulos K. Lipotoxicity disrupts erythrocyte function: A perspective. Cardiovasc Hematol Disord Targets 2021; 21(2): 91-4.
[9]
Papadopoulos C, Panopoulou M, Anagnostopoulos K, Tentes I. Immune and metabolic interactions of human erythrocytes: A molecular perspective. Endocr Metab Immune Disord Drug Targets 2020; 21(5): 843-53.
[http://dx.doi.org/10.2174/1871530320666201104115016] [PMID: 33148159]
[10]
Papadopoulos C, Tentes I, Anagnosotpoulos K. Erythrocytes contribute to the immunometabolic cross-talk. Immunometabolism 2021; 3(2): e210015.
[11]
Xiong Y, Xiong Y, Wang Y, et al. Inhibition of glutathione synthesis via decreased glucose metabolism in stored RBCs. Cell Physiol Biochem 2018; 51(5): 2172-84.
[http://dx.doi.org/10.1159/000495864] [PMID: 30537727]
[12]
Rozier MD, Zata VJ, Ellsworth ML. Lactate interferes with ATP release from red blood cells. Am J Physiol Heart Circ Physiol 2007; 292(6): H3038-42.
[http://dx.doi.org/10.1152/ajpheart.01238.2006] [PMID: 17307994]
[13]
Ellsworth ML, Forrester T, Ellis CG, Dietrich HH. The erythrocyte as a regulator of vascular tone. Am J Physiol 1995; 269(6 Pt 2): H2155-61.
[http://dx.doi.org/10.1152/ajpheart.1995.269.6.H2155] [PMID: 8594927]
[14]
Vito A, El-Sayes N, Mossman K. Hypoxia-driven immune escape in the tumor microenvironment. Cells 2020; 9(4): E992.
[http://dx.doi.org/10.3390/cells9040992] [PMID: 32316260]
[15]
Chung SM, Bae ON, Lim KM, et al. Lysophosphatidic acid induces thrombogenic activity through phosphatidylserine exposure and procoagulant microvesicle generation in human erythrocytes. Arterioscler Thromb Vasc Biol 2007; 27(2): 414-21.
[http://dx.doi.org/10.1161/01.ATV.0000252898.48084.6a] [PMID: 17110600]
[16]
Reddel CJ, Tan CW, Chen VM. Thrombin generation and cancer: Contributors and consequences. Cancers (Basel) 2019; 11(1): E100.
[http://dx.doi.org/10.3390/cancers11010100] [PMID: 30654498]
[17]
Dumaswala UJ, Zhuo L, Mahajan S, et al. Glutathione protects chemokine-scavenging and antioxidative defense functions in human RBCs. Am J Physiol Cell Physiol 2001; 280(4): C867-73.
[http://dx.doi.org/10.1152/ajpcell.2001.280.4.C867] [PMID: 11245604]
[18]
Reisz JA, Slaughter AL, Culp-Hill R, et al. Red blood cells in hemorrhagic shock: A critical role for glutaminolysis in fueling alanine transamination in rats. Blood Adv 2017; 1(17): 1296-305.
[http://dx.doi.org/10.1182/bloodadvances.2017007187] [PMID: 29296771]
[19]
Zhan X, Zhong X, Choi JH, et al. Adenosine monophosphate deaminase 3 null mutation causes reduction of naive T cells in mouse peripheral blood. Blood Adv 2020; 4(15): 3594-605.
[http://dx.doi.org/10.1182/bloodadvances.2020001762] [PMID: 32761233]
[20]
Bernard A, Kasten M, Meier C, et al. Red blood cell arginase suppresses Jurkat (T cell) proliferation by depleting arginine. Surgery 2008; 143(2): 286-91.
[http://dx.doi.org/10.1016/j.surg.2007.07.037] [PMID: 18242346]
[21]
Furrer R, Jauch AJ, Nageswara RT, et al. Remodeling of metabolism and inflammation by exercise ameliorates tumor-associated anemia. Sci Adv 2021; 7(37): eabi4852.
[http://dx.doi.org/10.1126/sciadv.abi4852] [PMID: 34516881]
[22]
Catala A, Youssef LA, Reisz JA, et al. Metabolic reprogramming of mouse bone marrow derived macrophages following erythrophagocytosis. Front Physiol 2020; 11: 396.
[http://dx.doi.org/10.3389/fphys.2020.00396] [PMID: 32425810]
[23]
Otogawa K, Kinoshita K, Fujii H, et al. Erythrophagocytosis by liver macrophages (Kupffer cells) promotes oxidative stress, inflammation, and fibrosis in a rabbit model of steatohepatitis: Implications for the pathogenesis of human nonalcoholic steatohepatitis. Am J Pathol 2007; 170(3): 967-80.
[http://dx.doi.org/10.2353/ajpath.2007.060441] [PMID: 17322381]
[24]
Cao H, Antonopoulos A, Henderson S, et al. Red blood cell mannoses as phagocytic ligands mediating both sickle cell anaemia and malaria resistance. Nat Commun 2021; 12(1): 1-13.
[http://dx.doi.org/10.1038/s41467-021-21814-z]
[25]
Zhao Z, Ukidve A, Krishnan V, et al. Systemic tumour suppression via the preferential accumulation of erythrocyte-anchored chemokine-encapsulating nanoparticles in lung metastases. Nat Biomed Eng 2021; 5(5): 441-54.
[http://dx.doi.org/10.1038/s41551-020-00644-2] [PMID: 33199847]

© 2025 Bentham Science Publishers | Privacy Policy