Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

A Novel Biosensor for Detecting Vitamin C in Milk Powder Based on Hg2+- Mediated DNA Structural Changes

Author(s): Xingping Zhang, Jiujun Wang, Hualin Yang* and Yu Zhou*

Volume 18, Issue 7, 2022

Published on: 17 June, 2022

Page: [845 - 851] Pages: 7

DOI: 10.2174/1573411018666220426121800

Price: $65

Abstract

Background: Detection of Vitamin C (Vc) is very important to protect human health. A lot of methods have been developed for the detection of Vc. However, many methods require complex material preparation and skilled operators. Thus, a simple, label-free biosensor is still urgently needed.

Methods: In this work, N-methylmesoporphyrin IX (NMM)/G-quadruplex pair was used as a labelfree signal reporter. Without Vc, the G-quadruplex DNA and its incomplete complementary chain could form a duplex structure by T-Hg(II)-T mismatch. In this case, the G-quadruplex structure could not be formed. When Vc was added, the Hg2+ was reduced to Hg(0). Then, the G-quadruplex DNA became free and formed a G-quadruplex structure to emit fluorescence signals.

Results: Under optimal conditions, this biosensor showed a good linear response in the range of 0.2 - 4.0 μM and a low limit of detection (19.9 nM). This biosensor also had good selectivity towards Vc. Meanwhile, the satisfactory recovery rates (93.2%-102.8%) suggested that this biosensor had potential for measuring Vc in real samples.

Conclusion: In this work, a simple label-free fluorescent biosensor for the detection of Vc based on Hg2+-mediated DNA structural changes had been developed. The whole experiment was simple and all reagents were commercialized. The label-free detection was realized by NMM/G-quadruplex as a signal reporter. This biosensor was very sensitive with a low limit of detection. It had a potential practical application for Vc detection in milk powder.

Keywords: Vitamin C, G-quadruplex, mercury ion, fluorescent biosensor, label-free, DNA structural change.

Graphical Abstract

[1]
Carr, A.C.; Maggini, S. Vitamin C and immune function. Nutrients, 2017, 9(11), 1211.
[http://dx.doi.org/10.3390/nu9111211] [PMID: 29099763]
[2]
Gallie, D.R. L-ascorbic Acid: A multifunctional molecule supporting plant growth and development. Scientifica (Cairo), 2013, 2013, 795964.
[http://dx.doi.org/10.1155/2013/795964] [PMID: 24278786]
[3]
Du, J.; Cullen, J.J.; Buettner, G.R. Ascorbic acid: Chemistry, biology and the treatment of cancer. Biochim. Biophys. Acta, 2012, 1826(2), 443-457.
[PMID: 22728050]
[4]
Lane, D.J.; Richardson, D.R. The active role of vitamin C in mammalian iron metabolism: Much more than just enhanced iron absorption! Free Radic. Biol. Med., 2014, 75, 69-83.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.07.007] [PMID: 25048971]
[5]
Vitale, S.G.; Fiore, M.; La Rosa, V.L.; Rapisarda, A.M.C.; Mazza, G.; Paratore, M.; Commodari, E.; Caruso, S. Liposomal ferric pyrophosphate and ascorbic acid supplementation in pregnant women with iron deficiency anaemia: Haematochemical, obstetric, neonatal and psychological outcomes in a prospective observational study. Int. J. Food Sci. Nutr., 2022, 73(2), 221-229.
[http://dx.doi.org/10.1080/09637486.2021.1950129] [PMID: 34238093]
[6]
Padayatty, S.J.; Levine, M.; Vitamin, C. The known and the unknown and Goldilocks. Oral Dis., 2016, 22(6), 463-493.
[http://dx.doi.org/10.1111/odi.12446] [PMID: 26808119]
[7]
Wang, X.X.; Liu, J.M.; Jiang, S.L.; Jiao, L.; Lin, L.P.; Cui, M.L.; Zhang, X.Y.; Zhang, L.H.; Zheng, Z.Y. Non-aggregation colorimetric sensor for detecting vitamin C based on surface plasmon resonance of gold nanorods. Sens. Actuators B Chem., 2013, 182, 205-210.
[http://dx.doi.org/10.1016/j.snb.2013.02.059]
[8]
Silva, M.A.; Albuquerque, T.G.; Oliveira, M.B.P.P.; Costa, H.S. Vitamin C evaluation in foods for in-fants and young children by a rapid and accurate analytical method. Food Chem., 2018, 267, 83-90.
[http://dx.doi.org/10.1016/j.foodchem.2017.11.046] [PMID: 29934193]
[9]
Wang, Y.; Zhang, P.; Mao, X.; Fu, W.; Liu, C. Seed-mediated growth of bimetallic nanoparticles as an effective strategy for sensitive detection of vitamin C. Sens. Actuators B Chem., 2016, 231, 95-101.
[http://dx.doi.org/10.1016/j.snb.2016.03.010]
[10]
Huang, L.; Tian, S.; Zhao, W.; Liu, K.; Guo, J. Electrochemical vitamin sensors: A critical review. Talanta, 2021, 222, 121645.
[http://dx.doi.org/10.1016/j.talanta.2020.121645] [PMID: 33167274]
[11]
Huang, W.; Deng, Y.; He, Y. Visual colorimetric sensor array for discrimination of antioxidants in serum using MnO2 nanosheets triggered multicolor chromogenic system. Biosens. Bioelectron., 2017, 91, 89-94.
[http://dx.doi.org/10.1016/j.bios.2016.12.028] [PMID: 27992804]
[12]
Lv, X.; Man, H.; Dong, L.; Huang, J.; Wang, X. Preparation of highly crystalline nitrogen-doped car-bon dots and their application in sequential fluorescent detection of Fe3+ and ascorbic acid. Food Chem., 2020, 326, 126935.
[http://dx.doi.org/10.1016/j.foodchem.2020.126935] [PMID: 32447160]
[13]
Zhang, Y.; Xiao, Y.; Zhang, Y.; Wang, Y. Carbon quantum dots as fluorescence turn-off-on probe for detecting Fe3+ and ascorbic acid. J. Nanosci. Nanotechnol., 2020, 20(6), 3340-3347.
[http://dx.doi.org/10.1166/jnn.2020.17412] [PMID: 31748025]
[14]
Bettazzi, F.; Ingrosso, C.; Sfragano, P.S.; Pifferi, V.; Falciola, L.; Curri, M.L.; Palchetti, I. Gold na-noparticles modified graphene platforms for highly sensitive electrochemical detection of vitamin C in infant food and formulae. Food Chem., 2021, 344, 128692.
[http://dx.doi.org/10.1016/j.foodchem.2020.128692] [PMID: 33349504]
[15]
Savk, A.; Aydin, H.; Cellat, K.; Sen, F. A novel high performance non-enzymatic electrochemical glucose biosensor based on activated carbon-supported Pt-Ni nanocomposite. J. Mol. Liq., 2020, 300, 112355.
[http://dx.doi.org/10.1016/j.molliq.2019.112355]
[16]
Karimi-Maleh, H.; Cellat, K.; Arikan, K.; Savk, A.; Karimi, F.; Sen, F. Palladium-Nickel nanoparticles decorated on Functionalized-MWCNT for high precision non-enzymatic glucose sensing. Mater. Chem. Phys., 2020, 250, 123042.
[http://dx.doi.org/10.1016/j.matchemphys.2020.123042]
[17]
Kaya, S.I.; Kurbanoglu, S.; Yavuz, E.; Demiroglu Mustafov, S.; Sen, F.; Ozkan, S.A. Carbon-based ruthenium nanomaterial-based electroanalytical sensors for the detection of anticancer drug Idarubi-cin. Sci. Rep., 2020, 10(1), 11057.
[http://dx.doi.org/10.1038/s41598-020-68055-6] [PMID: 32632278]
[18]
Foroughi, M.M.; Ranjbar, M. Microwave-assisted synthesis and characterization photoluminescence properties: A fast, efficient route to produce ZnO/GrO nanocrystalline. J. Mater. Sci. Mater. Electron., 2017, 28, 1359-1363.
[http://dx.doi.org/10.1007/s10854-016-5668-x]
[19]
Nia, N.A.; Foroughi, M.M.; Jahani, S. Simultaneous determination of theobromine, theophylline, and caffeine using a modified electrode with petal-like MnO2 nanostructure. Talanta, 2021, 222, 121563.
[http://dx.doi.org/10.1016/j.talanta.2020.121563] [PMID: 33167259]
[20]
Foroughi, M.M.; Jahani, S.; Aramesh-Boroujeni, Z.; Dolatabad, M.R.; Shahbazkhani, K. Synthesis of 3D cubic of Eu3+/Cu2O with clover-like faces nanostructures and their application as an electrochem-ical sensor for determination of antiretroviral drug nevirapine. Ceram. Int., 2021, 47, 19727-19736.
[http://dx.doi.org/10.1016/j.ceramint.2021.03.311]
[21]
Yang, H.L.; Zhou, Y.; Liu, J.W. G-quadruplex DNA for construction of biosensors. Trac-Trend. Anal. Chem., 2020, 132, 116060.
[22]
Murat, P.; Singh, Y.; Defrancq, E. Methods for investigating G-quadruplex DNA/ligand interactions. Chem. Soc. Rev., 2011, 40(11), 5293-5307.
[http://dx.doi.org/10.1039/c1cs15117g] [PMID: 21720638]
[23]
Varshney, D.; Spiegel, J.; Zyner, K.; Tannahill, D.; Balasubramanian, S. The regulation and functions of DNA and RNA G-quadruplexes. Nat. Rev. Mol. Cell Biol., 2020, 21(8), 459-474.
[http://dx.doi.org/10.1038/s41580-020-0236-x] [PMID: 32313204]
[24]
Kaulage, M.H.; Maji, B.; Pasadi, S.; Ali, A.; Bhattacharya, S.; Muniyappa, K. Targeting G-quadruplex DNA structures in the telomere and oncogene promoter regions by benzimidazole-carbazole ligands. Eur. J. Med. Chem., 2018, 148, 178-194.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.091] [PMID: 29459277]
[25]
Nicoludis, J.M.; Miller, S.T.; Jeffrey, P.D.; Barrett, S.P.; Rablen, P.R.; Lawton, T.J.; Yatsunyk, L.A. Optimized end-stacking provides specificity of N-methyl mesoporphyrin IX for human telomeric G-quadruplex DNA. J. Am. Chem. Soc., 2012, 134(50), 20446-20456.
[http://dx.doi.org/10.1021/ja3088746] [PMID: 23181361]
[26]
Nicoludis, J.M.; Barrett, S.P.; Mergny, J.L.; Yatsunyk, L.A. Interaction of human telomeric DNA with N-methyl mesoporphyrin IX. Nucleic Acids Res., 2012, 40(12), 5432-5447.
[http://dx.doi.org/10.1093/nar/gks152] [PMID: 22362740]
[27]
Yang, H.L.; Zhou, Y.; Liu, J.W. Porphyrin metalation catalyzed by DNAzymes and nanozymes. Inorg. Chem. Front., 2021, 8, 2183-2199.
[http://dx.doi.org/10.1039/D1QI00105A]
[28]
He, Y.; Wang, C.; Zhao, Q.; Zhang, Y.; Chen, A.; Pang, J.; Fang, Q.; Cui, Y.; Jiao, B. Facile and sen-sitive fluorescence sensing of alkaline phosphatase activity using NMM/G-quadruplex. Talanta, 2017, 172, 171-175.
[http://dx.doi.org/10.1016/j.talanta.2017.05.041] [PMID: 28602291]
[29]
Zhu, Q.; Liu, L.; Xing, Y.; Zhou, X. Duplex functional G-quadruplex/NMM fluorescent probe for label-free detection of lead(II) and mercury(II) ions. J. Hazard. Mater., 2018, 355, 50-55.
[http://dx.doi.org/10.1016/j.jhazmat.2018.04.082] [PMID: 29772375]
[30]
Zhang, X.; Ding, B.; Wu, H.; Wang, J.; Yang, H. A label-free “Turn-on” fluorescence method for de-tecting mercury ion in aqueous solution based on N-methyl mesoporphyrin IX (NMM)/G-quadruplex DNA. Anal. Sci., 2017, 33(2), 165-169.
[http://dx.doi.org/10.2116/analsci.33.165] [PMID: 28190835]
[31]
Zhang, Z.; Zhang, F.; He, P.; Zhang, X.; Song, W. Fluorometric determination of mercury(II) by us-ing thymine-thymine mismatches as recognition elements, toehold binding, and enzyme-assisted signal amplification. Mikrochim. Acta, 2019, 186(8), 551.
[http://dx.doi.org/10.1007/s00604-019-3683-3] [PMID: 31324987]
[32]
Ono, A.; Torigoe, H.; Tanaka, Y.; Okamoto, I. Binding of metal ions by pyrimidine base pairs in DNA duplexes. Chem. Soc. Rev., 2011, 40(12), 5855-5866.
[http://dx.doi.org/10.1039/c1cs15149e] [PMID: 21826352]
[33]
Xu, M.; Peng, Y.; Liu, H.; Tian, X.; Yang, H.; Zhou, Y. A label-free ratiometric method to detect Hg2+ based on structural change of DNA. Luminescence, 2021, 36(8), 1985-1990.
[http://dx.doi.org/10.1002/bio.4134] [PMID: 34435442]
[34]
Bhardwaj, V.; Nurchi, V.M.; Sahoo, S.K. Mercury toxicity and detection using chromo-fluorogenic chemosensors. Pharmaceuticals (Basel), 2021, 14(2), 123.
[http://dx.doi.org/10.3390/ph14020123] [PMID: 33562543]
[35]
Bothra, S.; Upadhyay, Y.; Kumar, R.; Ashok Kumar, S.K.; Sahoo, S.K. Chemically modified cellu-lose strips with pyridoxal conjugated red fluorescent gold nanoclusters for nanomolar detection of mercuric ions. Biosens. Bioelectron., 2017, 90, 329-335.
[http://dx.doi.org/10.1016/j.bios.2016.11.066] [PMID: 27940235]
[36]
Tekuri, V.; Sahoo, S.K.; Trivedi, D.R. Hg2+ induced hydrolysis of thiazole amine based Schiff base: Colorimetric and fluorogenic chemodosimeter for Hg2+ ions in an aqueous medium. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 218, 19-26.
[http://dx.doi.org/10.1016/j.saa.2019.03.106] [PMID: 30952027]
[37]
Zeng, H.H.; Liu, F.; Hu, L.K.; Deng, J.; Xie, Y.P.; Xiao, W.; Lai, P.Q.; Wang, Y.; Feng, Y.F.; Yu, J.C. Fluorescence turn-on detection of ascorbic acid using a self-assembled lanthanide polymer nano-particle. Appl. Spectrosc., 2020, 74(3), 275-284.
[http://dx.doi.org/10.1177/0003702819878155] [PMID: 31617379]
[38]
Pizzo, J.S.; Cruz, V.H.M.; Rodrigues, C.A.; Manin, L.P.; Visentainer, L.; Santos, O.O.; Maldaner, L.; Visentainer, J.V. Rapid determination of L-ascorbic acid content in vitamin C serums by ultra-high-performance liquid chromatography-tandem mass spectrometry. Int. J. Cosmet. Sci., 2022, 44(1), 131-141.
[http://dx.doi.org/10.1111/ics.12762] [PMID: 34986505]
[39]
Jayeoye, T.J.; Sirimahachai, U.; Rujiralai, T. Sensitive colorimetric detection of ascorbic acid based on seed mediated growth of sodium alginate reduced/stabilized gold nanoparticles. Carbohydr. Polym., 2021, 255, 117376.
[http://dx.doi.org/10.1016/j.carbpol.2020.117376] [PMID: 33436207]
[40]
Hashemi, S.A.; Mousavi, S.M.; Bahrani, S.; Ramakrishna, S.; Babapoor, A.; Chiang, W.H. Coupled graphene oxide with hybrid metallic nanoparticles as potential electrochemical biosensors for precise detection of ascorbic acid within blood. Anal. Chim. Acta, 2020, 1107, 183-192.
[http://dx.doi.org/10.1016/j.aca.2020.02.018] [PMID: 32200893]
[41]
Yun, W.; Li, H.; Chen, S.; Tu, D.; Xie, W.; Huang, Y. Aptamer-based rapid visual biosensing of mel-amine in whole milk. Eur. Food Res. Technol., 2014, 238, 989-995.
[http://dx.doi.org/10.1007/s00217-014-2166-3]
[42]
Lu, Q.; Chen, X.; Liu, D.; Wu, C.; Liu, M.; Li, H.; Zhang, Y.; Yao, S. A turn-on fluorescent probe for vitamin C based on the use of a silicon/CoOOH nanoparticle system. Mikrochim. Acta, 2019, 186(2), 72.
[http://dx.doi.org/10.1007/s00604-018-3181-z] [PMID: 30627837]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy