Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Promising Role of Phytochemicals in the Prevention and Treatment of Cancer

Author(s): Aziz Unnisa* and Ananda Kumar Chettupalli

Volume 22, Issue 20, 2022

Published on: 15 July, 2022

Page: [3382 - 3400] Pages: 19

DOI: 10.2174/1871520622666220425133936

Price: $65

Abstract

Cancer has a significant social consequence all around the globe. In 2020, approximately 19.3 million new cases of cancer were diagnosed worldwide, with about 10 million cancer deaths. In the next two decades, suspected cases are anticipated to increase by roughly 47%. The rising number of cancer patients, as well as the inadequacy of traditional chemotherapeutic agents, radiation, and invasive surgical procedures, all rely on massive cell death with hardly any selectivity, causing severe toxicities. In comparison to synthetic medications, there has subsequently been a surge in international interest in non-synthetic and alternative remedies, owing to improved adaptability and reduced side effects of drug responses. Several people with cancer prefer alternative and complementary therapy treatments, and natural remedies play a crucial role in cancer chemoprevention as they are thought to be harmless, offer fewer negative effects, and become less sufficient to evoke addiction by the wider population. Chemopreventive, antimetastatic, cytotoxic, and anti-angiogenic actions are among the promising clinical advantages, which have been established in vitro research and certain clinical trials; nevertheless, additional clinical trials are needed. This review examines several phytochemicals that may have anti-cancer and chemopreventive properties.

Keywords: Cancer, phytochemicals, flavonoid, steroid, polyphenol, tannin.

Graphical Abstract

[1]
Cooper, G.M. The development and causes of cancer. In: The Cell: A Molecular Approach, 2nd ed; Sinauer Associates: Sunderland, MA, 2000.
[2]
Baba, A.I.; Câtoi, C. Carcinogenesis. In: Comparative Oncology; The Publishing House of the Romanian Academy: Bucharest, RO, 2007.
[3]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[4]
Kim, H.I.; Lim, H.; Moon, A. Sex differences in cancer: Epidemiology, genetics and therapy. Biomol. Ther. (Seoul), 2018, 26(4), 335-342.
[http://dx.doi.org/10.4062/biomolther.2018.103] [PMID: 29949843]
[5]
Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol., 2020, 2020, 10.
[6]
Greenwell, M.; Rahman, P.K. Medicinal plants: Their use in anticancer treatment. Int. J. Pharm. Sci. Res., 2015, 6(10), 4103-4112.
[PMID: 26594645]
[7]
Wang, C.Z.; Calway, T.; Yuan, C.S. Herbal medicines as adjuvants for cancer therapeutics. Am. J. Chin. Med., 2012, 40(4), 657-669.
[http://dx.doi.org/10.1142/S0192415X12500498] [PMID: 22809022]
[8]
Forni, C.; Facchiano, F.; Bartoli, M.; Pieretti, S.; Facchiano, A.; D’Arcangelo, D.; Norelli, S.; Valle, G.; Nisini, R.; Beninati, S.; Tabolacci, C.; Jadeja, R.N. Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Res. Int., 2019, 2019, 8748253.
[http://dx.doi.org/10.1155/2019/8748253] [PMID: 31080832]
[9]
Desai, A.G.; Qazi, G.N.; Ganju, R.K.; El-Tamer, M.; Singh, J.; Saxena, A.K.; Bedi, Y.S.; Taneja, S.C.; Bhat, H.K. Medicinal plants and cancer chemoprevention. Curr. Drug Metab., 2008, 9(7), 581-591.
[http://dx.doi.org/10.2174/138920008785821657] [PMID: 18781909]
[10]
Khan, T.; Ali, M.; Khan, A.; Nisar, P.; Jan, S.A.; Afridi, S.; Shinwari, Z.K. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules, 2019, 10(1), 47.
[http://dx.doi.org/10.3390/biom10010047] [PMID: 31892257]
[11]
Newman, D.J.; Cragg, G.M.; Snader, K.M. The influence of natural products upon drug discovery. Nat. Prod. Rep., 2000, 17(3), 215-234.
[http://dx.doi.org/10.1039/a902202c] [PMID: 10888010]
[12]
Seca, A.M.L.; Pinto, D.C.G.A. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. Int. J. Mol. Sci., 2018, 19(1), 263.
[http://dx.doi.org/10.3390/ijms19010263] [PMID: 29337925]
[13]
Mondal, A.; Gandhi, A.; Fimognari, C.; Atanasov, A.G.; Bishayee, A. Alkaloids for cancer prevention and therapy: Current progress and future perspectives. Eur. J. Pharmacol., 2019, 858, 172472.
[http://dx.doi.org/10.1016/j.ejphar.2019.172472] [PMID: 31228447]
[14]
Harmon, A.D.; Weiss, U.; Silverton, J.V. The structure of rohitukine the main alkaloid of Amoora rohituka (Syn) Aphanamixis polystachya (Meliaceae). Tetrahedron Lett., 1979, 20, 721-724.
[http://dx.doi.org/10.1016/S0040-4039(01)93556-7]
[15]
Naik, R.; Ramachandra, G.; Kattige, S.L.; Bhat, S.V.; Alreja, B.; de Souza, N.J.; Rupp, R.H. An anti-inflammatory and immunomodulatory piperidinyl benzopyranone from Dysoxylum binectariferum: Isolation, structure and total synthesis. Tetrahedron, 1988, 44(7), 2081-2086.
[http://dx.doi.org/10.1016/S0040-4020(01)90352-7]
[16]
Carlson, B.; Lahusen, T.; Singh, S.; Loaiza-Perez, A.; Worland, P.J.; Pestell, R.; Albanese, C.; Sausville, E.A.; Senderowicz, A.M. Down-regulation of cyclin D1 by transcriptional repression in MCF-7 human breast carcinoma cells induced by flavopiridol. Cancer Res., 1999, 59(18), 4634-4641.
[PMID: 10493518]
[17]
Varshney, S.; Shankar, K.; Beg, M.; Balaramnavar, V.M.; Mishra, S.K.; Jagdale, P.; Srivastava, S.; Chhonker, Y.S.; Lakshmi, V.; Chaudhari, B.P.; Bhatta, R.S.; Saxena, A.K.; Gaikwad, A.N. Rohitukine inhibits in vitro adipogenesis arresting mitotic clonal expansion and improves dyslipidemia in vivo. J. Lipid Res., 2014, 55(6), 1019-1032.
[http://dx.doi.org/10.1194/jlr.M039925] [PMID: 24646949]
[18]
Dispenzieri, A.; Gertz, M.A.; Lacy, M.Q.; Geyer, S.M.; Fitch, T.R.; Fenton, R.G.; Fonseca, R.; Isham, C.R.; Ziesmer, S.C.; Erlichman, C.; Bible, K.C. Flavopiridol in patients with relapsed or refractory multiple myeloma: A phase 2 trial with clinical and pharmacodynamic end-points. Haematologica, 2006, 91(3), 390-393.
[PMID: 16503551]
[19]
Carlson, B.A.; Dubay, M.M.; Sausville, E.A.; Brizuela, L.; Worland, P.J. Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase (CDK) 2 and CDK4 in human breast carcinoma cells. Cancer Res., 1996, 56(13), 2973-2978.
[PMID: 8674031]
[20]
Brown, J.R. Chronic lymphocytic leukemia: A niche for flavopiridol? Clin. Cancer Res., 2005, 11(11), 3971-3973.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0831] [PMID: 15930331]
[21]
Christian, B.A.; Grever, M.R.; Byrd, J.C.; Lin, T.S. Flavopiridol in the treatment of chronic lymphocytic leukemia. Curr. Opin. Oncol., 2007, 19(6), 573-578.
[http://dx.doi.org/10.1097/CCO.0b013e3282efb9da] [PMID: 17906454]
[22]
Huang, L.; Xue, Z. Cephalotaxus alkaloids. Alkaloids, 1984, 23, 157-226.
[23]
Powell, R.G.; Weisleder, D.; Smith, C.R., Jr Antitumor alkaloids for Cephalataxus harringtonia: Structure and activity. J. Pharm. Sci., 1972, 61(8), 1227-1230.
[http://dx.doi.org/10.1002/jps.2600610812] [PMID: 5050371]
[24]
Kantarjian, H.M.; Talpaz, M.; Santini, V.; Murgo, A.; Cheson, B.; O’Brien, S.M. Homoharringtonine: History, current research, and future direction. Cancer, 2001, 92(6), 1591-1605.
[http://dx.doi.org/10.1002/1097-0142(20010915)92:6<1591:AID-CNCR1485>3.0.CO;2-U] [PMID: 11745238]
[25]
Zhou, D.C.; Zittoun, R.; Marie, J.P. Homoharringtonine: An effective new natural product in cancer chemotherapy. Bull. Cancer, 1995, 82(12), 987-995.
[PMID: 8745664]
[26]
Krishna, M.P.; Rao, K.N.; Sandhya, S.; Banji, D. A review on phytochemical, ethnomedical and pharmacological studies on genus Sophora, Fabaceae. Rev. Bras. Farmacogn., 2012, 22(5), 1145-1154.
[http://dx.doi.org/10.1590/S0102-695X2012005000043]
[27]
Zhang, Y.; Zhang, H.; Yu, P.; Liu, Q.; Liu, K.; Duan, H.; Luan, G.; Yagasaki, K.; Zhang, G. Effects of matrine against the growth of human lung cancer and hepatoma cells as well as lung cancer cell migration. Cytotechnology, 2009, 59(3), 191-200.
[http://dx.doi.org/10.1007/s10616-009-9211-2] [PMID: 19649719]
[28]
Ramesha, B.T.; Suma, H.K.; Senthilkumar, U.; Priti, V.; Ravikanth, G.; Vasudeva, R.; Kumar, T.R.S.; Ganeshaiah, K.N.; Shaanker, R.U. New plant sources of the anti-cancer alkaloid, camptothecine from the Icacinaceae taxa, India. Phytomedicine, 2013, 20(6), 521-527.
[http://dx.doi.org/10.1016/j.phymed.2012.12.003] [PMID: 23474217]
[29]
Zhou, B-N.; Hoch, J.M.; Johnson, R.K.; Mattern, M.R.; Eng, W-K.; Ma, J.; Hecht, S.M.; Newman, D.J.; Kingston, D.G.I. Use of COMPARE analysis to discover new natural product drugs: Isolation of camptothecin and 9-methoxycamptothecin from a new source. J. Nat. Prod., 2000, 63(9), 1273-1276.
[http://dx.doi.org/10.1021/np000058r] [PMID: 11000035]
[30]
Goodwin, S.; Smith, A.F.; Horning, E.C. Alkaloids of Ochrosia elliptica Labill. J. Am. Chem. Soc., 1959, 81(8), 1903-1908.
[http://dx.doi.org/10.1021/ja01517a031]
[31]
Miller, C.M.; McCarthy, F.O. Isolation, biological activity and synthesis of the natural product ellipticine and related pyridocarbazoles. RSC Advances, 2012, 2(24), 8883-8918.
[http://dx.doi.org/10.1039/c2ra20584j]
[32]
Miller, C.M.; O’Sullivan, E.C.; McCarthy, F.O. Novel 11-substituted ellipticines as potent anticancer agents with divergent activity against cancer cells. Pharmaceuticals, 2019, 12(2), 90.
[http://dx.doi.org/10.3390/ph12020090] [PMID: 31207878]
[33]
Guilbaud, N.; Kraus-Berthier, L.; Meyer-Losic, F.; Malivet, V.; Chacun, C.; Jan, M.; Tillequin, F.; Michel, S.; Koch, M.; Pfeiffer, B.; Atassi, G.; Hickman, J.; Pierré, A. Marked antitumor activity of a new potent acronycine derivative in orthotopic models of human solid tumors. Clin. Cancer Res., 2001, 7(8), 2573-2580.
[PMID: 11489841]
[34]
Nguyen, Q.C.; Nguyen, T.T.; Yougnia, R.; Gaslonde, T.; Dufat, H.; Michel, S.; Tillequin, F. Acronycine derivatives: A promising series of anticancer agents. Anticancer. Agents Med. Chem., 2009, 9(7), 804-815.
[http://dx.doi.org/10.2174/187152009789056921] [PMID: 19594412]
[35]
Tripathi, S.K.; Biswal, B.K. Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on contemporary status and future possibilities as an anticancer agent. Pharmacol. Res., 2020, 156, 104772.
[http://dx.doi.org/10.1016/j.phrs.2020.104772] [PMID: 32283222]
[36]
Wang, F.; Mao, Y.; You, Q.; Hua, D.; Cai, D. Piperlongumine induces apoptosis and autophagy in human lung cancer cells through inhibition of PI3K/Akt/mTOR pathway. Int. J. Immunopathol. Pharmacol., 2015, 28(3), 362-373.
[http://dx.doi.org/10.1177/0394632015598849] [PMID: 26246196]
[37]
Dassonneville, L.; Wattez, N.; Mahieu, C.; Colson, P.; Houssier, C.; Frederich, M.; Tits, M.; Angenot, L.; Bailly, C. The plant alkaloid usambarensine intercalates into DNA and induces apoptosis in human HL60 leukemia cells. Anticancer Res., 1999, 19(6B), 5245-5250.
[PMID: 10697543]
[38]
Bonjean, K.A.; De Pauw-Gillet, M.C.; Quetin-Leclercq, J.; Angenot, L.; Bassleer, R.J. in vitro cytotoxic activity of two potential anticancer drugs isolated from Strychnos: Strychnopentamine and usambarensine. Anticancer Res., 1996, 16(3A), 1129-1137.
[PMID: 8702224]
[39]
Milani, A.; Basirnejad, M.; Shahbazi, S.; Bolhassani, A. Carotenoids: Biochemistry, pharmacology and treatment. Br. J. Pharmacol., 2017, 174(11), 1290-1324.
[http://dx.doi.org/10.1111/bph.13625] [PMID: 27638711]
[40]
Zhang, Y.; Zhu, X.; Huang, T.; Chen, L.; Liu, Y.; Li, Q.; Song, J.; Ma, S.; Zhang, K.; Yang, B.; Guan, F. β-Carotene synergistically enhances the anti-tumor effect of 5-fluorouracil on esophageal squamous cell carcinoma in vivo and in vitro. Toxicol. Lett., 2016, 261, 49-58.
[http://dx.doi.org/10.1016/j.toxlet.2016.08.010] [PMID: 27586268]
[41]
Akçakaya, H.; Tok, S.; Dal, F.; Cinar, S.A.; Nurten, R. β-carotene treatment alters the cellular death process in oxidative stress-induced K562 cells. Cell Biol. Int., 2017, 41(3), 309-319.
[http://dx.doi.org/10.1002/cbin.10727] [PMID: 28035721]
[42]
Dong, H-W.; Wang, K.; Chang, X-X.; Jin, F-F.; Wang, Q.; Jiang, X-F.; Liu, J-R.; Wu, Y-H.; Yang, C. Beta-ionone-inhibited proliferation of breast cancer cells by inhibited COX-2 activity. Arch. Toxicol., 2019, 93(10), 2993-3003.
[http://dx.doi.org/10.1007/s00204-019-02550-2] [PMID: 31506784]
[43]
Xu, J.; Li, Y.; Hu, H. Effects of lycopene on ovarian cancer cell line SKOV3 in vitro: Suppressed proliferation and enhanced apoptosis. Mol. Cell. Probes, 2019, 46, 101419.
[http://dx.doi.org/10.1016/j.mcp.2019.07.002] [PMID: 31279748]
[44]
Jeong, Y.; Lim, J.W.; Kim, H. Lycopene inhibits reactive oxygen species-mediated NF-κB signaling and induces apoptosis in pancreatic cancer cells. Nutrients, 2019, 11(4), 762.
[http://dx.doi.org/10.3390/nu11040762] [PMID: 30939781]
[45]
Poyton, R.O.; Ball, K.A.; Castello, P.R. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol. Metab., 2009, 20(7), 332-340.
[http://dx.doi.org/10.1016/j.tem.2009.04.001] [PMID: 19733481]
[46]
Peng, S.J.; Li, J.; Zhou, Y.; Tuo, M.; Qin, X.X.; Yu, Q.; Cheng, H.; Li, Y.M. in vitro effects and mechanisms of lycopene in MCF-7 human breast cancer cells. Genet. Mol. Res., 2017, 16(2)
[http://dx.doi.org/10.4238/gmr16029434] [PMID: 28407181]
[47]
Soares, N.D.; Machado, C.L.; Trindade, B.B.; Lima, I.C.; Gimba, E.R.; Teodoro, A.J.; Takiya, Ch.; Borojevic, R. Lycopene extracts from different tomato-based food products induce apoptosis in cultured human primary prostate cancer cells and regulate TP53, Bax and Bcl-2 transcript expression. Asian Pac. J. Cancer Prev., 2017, 18(2), 339-345.
[PMID: 28345329]
[48]
Hormozi, M.; Ghoreishi, S.; Baharvand, P. Astaxanthin induces apoptosis and increases activity of antioxidant enzymes in LS-180 cells. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 891-895.
[http://dx.doi.org/10.1080/21691401.2019.1580286] [PMID: 30873887]
[49]
Shao, Y.; Ni, Y.; Yang, J.; Lin, X.; Li, J.; Zhang, L. Astaxanthin inhibits proliferation and induces apoptosis and cell cycle arrest of mice H22 hepatoma cells. Med. Sci. Monit., 2016, 22, 2152-2160.
[http://dx.doi.org/10.12659/MSM.899419] [PMID: 27333866]
[50]
Li, S.; Qu, Y.; Shen, X-Y.; Ouyang, T.; Fu, W-B.; Luo, T.; Wang, H-Q. Multiple signal pathways involved in crocetin-induced apoptosis in KYSE-150 cells. Pharmacology, 2019, 103(5-6), 263-272.
[http://dx.doi.org/10.1159/000487956] [PMID: 30783055]
[51]
Wang, G.; Zhang, B.; Wang, Y.; Han, S.; Wang, C. Crocin promotes apoptosis of human skin cancer cells by inhibiting the JAK/STAT pathway. Exp. Ther. Med., 2018, 16(6), 5079-5084.
[http://dx.doi.org/10.3892/etm.2018.6865] [PMID: 30542463]
[52]
Yu, L.; Li, J.; Xiao, M. Picrocrocin exhibits growth inhibitory effects against SKMEL- 2 human malignant melanoma cells by targeting JAK/STAT5 signaling pathway, cell cycle arrest and mitochondrial mediated apoptosis. J. BUON, 2018, 23(4), 1163-1168.
[PMID: 30358226]
[53]
de Oliveira Júnior, R.G.; Bonnet, A.; Braconnier, E.; Groult, H.; Prunier, G.; Beaugeard, L.; Grougnet, R.; da Silva Almeida, J.R.G.; Ferraz, C.A.A.; Picot, L. Bixin, an apocarotenoid isolated from Bixa orellana L., sensitizes human melanoma cells to dacarbazine-induced apoptosis through ROS-mediated cytotoxicity. Food Chem. Toxicol., 2019, 125, 549-561.
[http://dx.doi.org/10.1016/j.fct.2019.02.013] [PMID: 30738990]
[54]
Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as anticancer agents. Nutrients, 2020, 12(2), 457.
[http://dx.doi.org/10.3390/nu12020457] [PMID: 32059369]
[55]
Wolfram, J.; Scott, B.; Boom, K.; Shen, J.; Borsoi, C.; Suri, K.; Grande, R.; Fresta, M.; Celia, C.; Zhao, Y.; Shen, H.; Ferrari, M. Hesperetin liposomes for cancer therapy. Curr. Drug Deliv., 2016, 13(5), 711-719.
[http://dx.doi.org/10.2174/1567201812666151027142412] [PMID: 26502889]
[56]
Zhang, J.; Wu, D. Vikash; Song, J.; Wang, J.; Yi, J.; Dong, W. Hesperetin induces the apoptosis of gastric cancer cells via activating mitochondrial pathway by increasing reactive oxygen species. Dig. Dis. Sci., 2015, 60(10), 2985-2995.
[http://dx.doi.org/10.1007/s10620-015-3696-7] [PMID: 25972151]
[57]
Sambantham, S.; Radha, M.; Paramasivam, A.; Anandan, B.; Malathi, R.; Chandra, S.R.; Jayaraman, G. Molecular mechanism underlying hesperetin-induced apoptosis by in silico analysis and in prostate cancer PC-3 cells. Asian Pac. J. Cancer Prev., 2013, 14(7), 4347-4352.
[http://dx.doi.org/10.7314/APJCP.2013.14.7.4347] [PMID: 23992001]
[58]
Zhang, H.; Zhong, X.; Zhang, X.; Shang, D.; Zhou, Y.I.; Zhang, C. Enhanced anticancer effect of ABT-737 in combination with naringenin on gastric cancer cells. Exp. Ther. Med., 2016, 11(2), 669-673.
[http://dx.doi.org/10.3892/etm.2015.2912] [PMID: 26893664]
[59]
Amin, A.; Gali-Muhtasib, H.; Ocker, M.; Schneider-Stock, R. Overview of major classes of plant-derived anticancer drugs. Int. J. Biomed. Sci., 2009, 5(1), 1-11.
[PMID: 23675107]
[60]
Damnjanovic, I.; Najman, S.; Stojanovic, S.; Stojanovic, D.; Veljkovic, A.; Kocic, H.; Langerholc, T.; Damnjanovic, Z.; Pesic, S. Crosstalk between possible cytostatic and antiinflammatory potential of ketoprofen in the treatment of culture of colon and cervix cancer cell lines. Bratisl. Lek Listy, 2015, 116(4), 227-232.
[http://dx.doi.org/10.4149/BLL_2015_044] [PMID: 25773949]
[61]
Duo, J.; Ying, G.G.; Wang, G.W.; Zhang, L. Quercetin inhibits human breast cancer cell proliferation and induces apoptosis via Bcl-2 and Bax regulation. Mol. Med. Rep., 2012, 5(6), 1453-1456.
[PMID: 22447039]
[62]
Chou, C-C.; Yang, J-S.; Lu, H-F.; Ip, S-W.; Lo, C.; Wu, C-C.; Lin, J-P.; Tang, N-Y.; Chung, J-G.; Chou, M-J.; Teng, Y-H.; Chen, D-R. Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells. Arch. Pharm. Res., 2010, 33(8), 1181-1191.
[http://dx.doi.org/10.1007/s12272-010-0808-y] [PMID: 20803121]
[63]
Seo, H-S.; Ku, J.M.; Choi, H-S.; Choi, Y.K.; Woo, J-K.; Kim, M.; Kim, I.; Na, C.H.; Hur, H.; Jang, B-H.; Shin, Y.C.; Ko, S-G. Quercetin induces caspase-dependent extrinsic apoptosis through inhibition of signal transducer and activator of transcription 3 signaling in HER2-overexpressing BT-474 breast cancer cells. Oncol. Rep., 2016, 36(1), 31-42.
[http://dx.doi.org/10.3892/or.2016.4786] [PMID: 27175602]
[64]
Fantini, M.; Benvenuto, M.; Masuelli, L.; Frajese, G.V.; Tresoldi, I.; Modesti, A.; Bei, R. in vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: Perspectives on cancer treatment. Int. J. Mol. Sci., 2015, 16(5), 9236-9282.
[http://dx.doi.org/10.3390/ijms16059236] [PMID: 25918934]
[65]
Hanneken, A.; Lin, F.F.; Johnson, J.; Maher, P. Flavonoids protect human retinal pigment epithelial cells from oxidative-stress-induced death. Invest. Ophthalmol. Vis. Sci., 2006, 47(7), 3164-3177.
[http://dx.doi.org/10.1167/iovs.04-1369] [PMID: 16799064]
[66]
Lee, S.E.; Jeong, S.I.; Yang, H.; Park, C.S.; Jin, Y.H.; Park, Y.S. Fisetin induces Nrf2-mediated HO-1 expression through PKC-δ and p38 in human umbilical vein endothelial cells. J. Cell. Biochem., 2011, 112(9), 2352-2360.
[http://dx.doi.org/10.1002/jcb.23158] [PMID: 21520244]
[67]
Liao, Y.C.; Shih, Y.W.; Chao, C.H.; Lee, X.Y.; Chiang, T.A. Involvement of the ERK signaling pathway in fisetin reduces invasion and migration in the human lung cancer cell line A549. J. Agric. Food Chem., 2009, 57(19), 8933-8941.
[http://dx.doi.org/10.1021/jf902630w] [PMID: 19725538]
[68]
Kim, S.H.; Choi, K.C. Anti-cancer effect and underlying mechanism(s) of Kaempferol, a phytoestrogen, on the regulation of apoptosis in diverse cancer cell models. Toxicol. Res., 2013, 29(4), 229-234.
[http://dx.doi.org/10.5487/TR.2013.29.4.229] [PMID: 24578792]
[69]
Li, W.; Du, B.; Wang, T.; Wang, S.; Zhang, J. Kaempferol induces apoptosis in human HCT116 colon cancer cells via the Ataxia-telangiectasia Mutated-p53 pathway with the involvement of p53 Upregulated modulator of apoptosis. Chem. Biol. Interact., 2009, 177(2), 121-127.
[http://dx.doi.org/10.1016/j.cbi.2008.10.048] [PMID: 19028473]
[70]
Luo, H.; Daddysman, M.K.; Rankin, G.O.; Jiang, B.H.; Chen, Y.C. Kaempferol enhances cisplatin’s effect on ovarian cancer cells through promoting apoptosis caused by down regulation of cMyc. Cancer Cell Int., 2010, 10(1), 16.
[http://dx.doi.org/10.1186/1475-2867-10-16] [PMID: 20459793]
[71]
Kashafi, E.; Moradzadeh, M.; Mohamadkhani, A.; Erfanian, S. Kaempferol increases apoptosis in human cervical cancer HeLa cells via PI3K/AKT and telomerase pathways. Biomed. Pharmacother., 2017, 89, 573-577.
[http://dx.doi.org/10.1016/j.biopha.2017.02.061] [PMID: 28258039]
[72]
Knickle, A.; Fernando, W.; Greenshields, A.L.; Rupasinghe, H.P.V.; Hoskin, D.W. Myricetin-induced apoptosis of triple-negative breast cancer cells is mediated by the iron-dependent generation of reactive oxygen species from hydrogen peroxide. Food Chem. Toxicol., 2018, 118, 154-167.
[http://dx.doi.org/10.1016/j.fct.2018.05.005] [PMID: 29742465]
[73]
Kim, M.E.; Ha, T.K.; Yoon, J.H.; Lee, J.S. Myricetin induces cell death of human colon cancer cells via BAX/BCL2-dependent pathway. Anticancer Res., 2014, 34(2), 701-706.
[PMID: 24511002]
[74]
Ha, T.K.; Kim, M.E.; Yoon, J.H.; Bae, S.J.; Yeom, J.; Lee, J.S. Galangin induces human colon cancer cell death via the mitochondrial dysfunction and caspase-dependent pathway. Exp. Biol. Med. (Maywood), 2013, 238(9), 1047-1054.
[http://dx.doi.org/10.1177/1535370213497882] [PMID: 23925650]
[75]
Song, X.L.; Zhang, Y.J.; Wang, X.F.; Zhang, W.J.; Wang, Z.; Zhang, F.; Zhang, Y.J.; Lu, J.H.; Mei, J.W.; Hu, Y.P.; Chen, L.; Li, H.F.; Ye, Y.Y.; Liu, Y.B.; Gu, J. Casticin induces apoptosis and G0/G1 cell cycle arrest in gallbladder cancer cells. Cancer Cell Int., 2017, 17(1), 9.
[http://dx.doi.org/10.1186/s12935-016-0377-3] [PMID: 28070171]
[76]
El-Alfy, T.S.; Ezzat, S.M.; Hegazy, A.K.; Amer, A.M.; Kamel, G.M. Isolation of biologically active constituents from Moringa peregrina (Forssk.) Fiori. (family: Moringaceae) growing in Egypt. Pharmacogn. Mag., 2011, 7(26), 109-115.
[http://dx.doi.org/10.4103/0973-1296.80667] [PMID: 21716619]
[77]
Masuelli, L.; Benvenuto, M.; Mattera, R.; Di Stefano, E.; Zago, E.; Taffera, G.; Tresoldi, I.; Giganti, M.G.; Frajese, G.V.; Berardi, G.; Modesti, A.; Bei, R. In vitro and in vivo anti-tumoral effects of the Flavonoid Apigenin in malignant mesothelioma. Front. Pharmacol., 2017, 8, 373.
[http://dx.doi.org/10.3389/fphar.2017.00373] [PMID: 28674496]
[78]
Hu, W.J.; Liu, J.; Zhong, L.K.; Wang, J. Apigenin enhances the antitumor effects of cetuximab in nasopharyngeal carcinoma by inhibiting EGFR signaling. Biomed. Pharmacother., 2018, 102, 681-688.
[http://dx.doi.org/10.1016/j.biopha.2018.03.111] [PMID: 29604587]
[79]
Bhattacharya, S.; Mondal, L.; Mukherjee, B.; Dutta, L.; Ehsan, I.; Debnath, M.C.; Gaonkar, R.H.; Pal, M.M.; Majumdar, S. Apigenin loaded nanoparticle delayed development of hepatocellular carcinoma in rats. Nanomedicine, 2018, 14(6), 1905-1917.
[http://dx.doi.org/10.1016/j.nano.2018.05.011] [PMID: 29802937]
[80]
Zhang, Q.; Ma, S.; Liu, B.; Liu, J.; Zhu, R.; Li, M. Chrysin induces cell apoptosis via activation of the p53/Bcl-2/caspase-9 pathway in hepatocellular carcinoma cells. Exp. Ther. Med., 2016, 12(1), 469-474.
[http://dx.doi.org/10.3892/etm.2016.3282] [PMID: 27347080]
[81]
Ham, S.; Kim, K.H.; Kwon, T.H.; Bak, Y.; Lee, D.H.; Song, Y.S.; Park, S-H.; Park, Y.S.; Kim, M.S.; Kang, J.W.; Hong, J.T.; Yoon, D-Y. Luteolin induces intrinsic apoptosis via inhibition of E6/E7 oncogenes and activation of extrinsic and intrinsic signaling pathways in HPV-18-associated cells. Oncol. Rep., 2014, 31(6), 2683-2691.
[http://dx.doi.org/10.3892/or.2014.3157] [PMID: 24789165]
[82]
Gao, Y.; Snyder, S.A.; Smith, J.N.; Chen, Y.C. Anticancer properties of baicalein: A review. Med. Chem. Res., 2016, 25(8), 1515-1523.
[http://dx.doi.org/10.1007/s00044-016-1607-x] [PMID: 28008217]
[83]
Periyasamy, K.; Baskaran, K.; Ilakkia, A.; Vanitha, K.; Selvaraj, S.; Sakthisekaran, D. Antitumor efficacy of tangeretin by targeting the oxidative stress mediated on 7,12-dimethylbenz(a) anthracene-induced proliferative breast cancer in Sprague-Dawley rats. Cancer Chemother. Pharmacol., 2015, 75(2), 263-272.
[http://dx.doi.org/10.1007/s00280-014-2629-z] [PMID: 25431347]
[84]
Xu, M.; Lu, N.; Zhang, H.; Dai, Q.; Wei, L.; Li, Z.; You, Q.; Guo, Q. Wogonin induced cytotoxicity in human hepatocellular carcinoma cells by activation of unfolded protein response and inactivation of AKT. Hepatol. Res., 2013, 43(8), 890-905.
[http://dx.doi.org/10.1111/hepr.12036] [PMID: 23294370]
[85]
Li, S.J.; Sun, S.J.; Gao, J.; Sun, F.B. Wogonin induces Beclin-1/PI3K and reactive oxygen species-mediated autophagy in human pancreatic cancer cells. Oncol. Lett., 2016, 12(6), 5059-5067.
[http://dx.doi.org/10.3892/ol.2016.5367] [PMID: 28105213]
[86]
Androutsopoulos, V.; Arroo, R.R.; Hall, J.F.; Surichan, S.; Potter, G.A. Antiproliferative and cytostatic effects of the natural product eupatorin on MDA-MB-468 human breast cancer cells due to CYP1-mediated metabolism. Breast Cancer Res., 2008, 10(3), R39.
[http://dx.doi.org/10.1186/bcr2090] [PMID: 18454852]
[87]
Rupasinghe, H.P.V.; Arumuggam, N.; Amararathna, M.; De Silva, A.B.K.H. The potential health benefits of haskap (Lonicera caerulea L.): Role of cyanidin-3-o-glucoside. J. Funct. Foods, 2018, 44, 24-39.
[http://dx.doi.org/10.1016/j.jff.2018.02.023]
[88]
Tang, J.; Oroudjev, E.; Wilson, L.; Ayoub, G. Delphinidin and cyanidin exhibit antiproliferative and apoptotic effects in mcf7 human breast cancer cells. Integr. Cancer Sci. Ther., 2015, 2, 82-86.
[89]
Liu, X.; Zhang, D.; Hao, Y.; Liu, Q.; Wu, Y.; Liu, X.; Luo, J.; Zhou, T.; Sun, B.; Luo, X.; Xu, J.; Wang, Q.; Yang, Z.; Li, L. Cyanidin curtails renal cell carcinoma tumorigenesis. Cell. Physiol. Biochem., 2018, 46(6), 2517-2531.
[http://dx.doi.org/10.1159/000489658] [PMID: 29742507]
[90]
Hafeez, B.B.; Siddiqui, I.A.; Asim, M.; Malik, A.; Afaq, F.; Adhami, V.M.; Saleem, M.; Din, M.; Mukhtar, H. A dietary anthocyanidin delphinidin induces apoptosis of human prostate cancer PC3 cells in vitro and in vivo: Involvement of nuclear factor-kappaB signaling. Cancer Res., 2008, 68(20), 8564-8572.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2232] [PMID: 18922932]
[91]
Choi, E.J.; Jung, J.Y.; Kim, G.H. Genistein inhibits the proliferation and differentiation of MCF-7 and 3T3-L1 cells via the regulation of ERα expression and induction of apoptosis. Exp. Ther. Med., 2014, 8(2), 454-458.
[http://dx.doi.org/10.3892/etm.2014.1771] [PMID: 25009600]
[92]
Ullah, M.F.; Ahmad, A.; Zubair, H.; Khan, H.Y.; Wang, Z.; Sarkar, F.H.; Hadi, S.M. Soy isoflavone genistein induces cell death in breast cancer cells through mobilization of endogenous copper ions and generation of reactive oxygen species. Mol. Nutr. Food Res., 2011, 55(4), 553-559.
[http://dx.doi.org/10.1002/mnfr.201000329] [PMID: 21462322]
[93]
Jin, S.; Zhang, Q.Y.; Kang, X.M.; Wang, J.X.; Zhao, W.H. Daidzein induces MCF-7 breast cancer cell apoptosis via the mitochondrial pathway. Ann. Oncol., 2010, 21(2), 263-268.
[http://dx.doi.org/10.1093/annonc/mdp499] [PMID: 19889614]
[94]
Liu, X.; Suzuki, N.; Santosh Laxmi, Y.R.; Okamoto, Y.; Shibutani, S. Anti-breast cancer potential of daidzein in rodents. Life Sci., 2012, 91(11-12), 415-419.
[http://dx.doi.org/10.1016/j.lfs.2012.08.022] [PMID: 23227466]
[95]
Wu, X.; Zhou, Q.H.; Xu, K. Are isothiocyanates potential anti-cancer drugs? Acta Pharmacol. Sin., 2009, 30(5), 501-512.
[http://dx.doi.org/10.1038/aps.2009.50] [PMID: 19417730]
[96]
Boreddy, S.R.; Srivastava, S.K. Pancreatic cancer chemoprevention by phytochemicals. Cancer Lett., 2013, 334(1), 86-94.
[http://dx.doi.org/10.1016/j.canlet.2012.10.020] [PMID: 23111102]
[97]
Zhang, R.; Loganathan, S.; Humphreys, I.; Srivastava, S.K. Benzyl isothiocyanate-induced DNA damage causes G2/M cell cycle arrest and apoptosis in human pancreatic cancer cells. J. Nutr., 2006, 136(11), 2728-2734.
[http://dx.doi.org/10.1093/jn/136.11.2728] [PMID: 17056792]
[98]
Xie, B.; Nagalingam, A.; Kuppusamy, P.; Muniraj, N.; Langford, P.; Győrffy, B.; Saxena, N.K.; Sharma, D. Benzyl Isothiocyanate potentiates p53 signaling and antitumor effects against breast cancer through activation of p53-LKB1 and p73-LKB1 axes. Sci. Rep., 2017, 7(1), 40070.
[http://dx.doi.org/10.1038/srep40070] [PMID: 28071670]
[99]
Gupta, P.; Srivastava, S.K. Inhibition of Integrin-HER2 signaling by Cucurbitacin B leads to in vitro and in vivo breast tumor growth suppression. Oncotarget, 2014, 5(7), 1812-1828.
[http://dx.doi.org/10.18632/oncotarget.1743] [PMID: 24729020]
[100]
Boyanapalli, S.S.S.; Li, W.; Fuentes, F.; Guo, Y.; Ramirez, C.N.; Gonzalez, X-P.; Pung, D.; Kong, A-N.T. Epigenetic reactivation of RASSF1A by phenethyl isothiocyanate (PEITC) and promotion of apoptosis in LNCaP cells. Pharmacol. Res., 2016, 114, 175-184.
[http://dx.doi.org/10.1016/j.phrs.2016.10.021] [PMID: 27818231]
[101]
Khor, T.O.; Keum, Y.S.; Lin, W.; Kim, J.H.; Hu, R.; Shen, G.; Xu, C.; Gopalakrishnan, A.; Reddy, B.; Zheng, X.; Conney, A.H.; Kong, A.N.T. Combined inhibitory effects of curcumin and phenethyl isothiocyanate on the growth of human PC-3 prostate xenografts in immunodeficient mice. Cancer Res., 2006, 66(2), 613-621.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2708] [PMID: 16423986]
[102]
Yuan, J.M.; Stepanov, I.; Murphy, S.E.; Wang, R.; Allen, S.; Jensen, J.; Strayer, L.; Adams-Haduch, J.; Upadhyaya, P.; Le, C.; Kurzer, M.S.; Nelson, H.H.; Yu, M.C.; Hatsukami, D.; Hecht, S.S. Clinical trial of 2-phenethyl isothiocyanate as an inhibitor of metabolic activation of a tobacco-specific lung carcinogen in cigarette smokers. Cancer Prev. Res. (Phila.), 2016, 9(5), 396-405.
[http://dx.doi.org/10.1158/1940-6207.CAPR-15-0380] [PMID: 26951845]
[103]
Qazi, A.; Pal, J.; Maitah, M.; Fulciniti, M.; Pelluru, D.; Nanjappa, P.; Lee, S.; Batchu, R.B.; Prasad, M.; Bryant, C.S.; Rajput, S.; Gryaznov, S.; Beer, D.G.; Weaver, D.W.; Munshi, N.C.; Goyal, R.K.; Shammas, M.A. Anticancer activity of a broccoli derivative, sulforaphane, in Barrett adenocarcinoma: Potential use in chemoprevention and as adjuvant in chemotherapy. Transl. Oncol., 2010, 3(6), 389-399.
[http://dx.doi.org/10.1593/tlo.10235] [PMID: 21151478]
[104]
Su, X.; Jiang, X.; Meng, L.; Dong, X.; Shen, Y.; Xin, Y. Anticancer activity of sulforaphane: The epigenetic mechanisms and the Nrf2 signaling pathway. Oxid. Med. Cell. Longev., 2018, 2018, 5438179.
[http://dx.doi.org/10.1155/2018/5438179] [PMID: 29977456]
[105]
Alumkal, J.J.; Slottke, R.; Schwartzman, J.; Cherala, G.; Munar, M.; Graff, J.N.; Beer, T.M.; Ryan, C.W.; Koop, D.R.; Gibbs, A.; Gao, L.; Flamiatos, J.F.; Tucker, E.; Kleinschmidt, R.; Mori, M. A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate cancer. Invest. New Drugs, 2015, 33(2), 480-489.
[http://dx.doi.org/10.1007/s10637-014-0189-z] [PMID: 25431127]
[106]
Nair, S.; Hebbar, V.; Shen, G.; Gopalakrishnan, A.; Khor, T.O.; Yu, S.; Xu, C.; Kong, A.N. Synergistic effects of a combination of dietary factors sulforaphane and (-) epigallocatechin-3-gallate in HT-29 AP-1 human colon carcinoma cells. Pharm. Res., 2008, 25(2), 387-399.
[http://dx.doi.org/10.1007/s11095-007-9364-7] [PMID: 17657594]
[107]
Zhang, Y. Allyl isothiocyanate as a cancer chemopreventive phytochemical. Mol. Nutr. Food Res., 2010, 54(1), 127-135.
[http://dx.doi.org/10.1002/mnfr.200900323] [PMID: 19960458]
[108]
Moriarty, R.M.; Naithani, R.; Surve, B. Organosulfur compounds in cancer chemoprevention. Mini Rev. Med. Chem., 2007, 7(8), 827-838.
[http://dx.doi.org/10.2174/138955707781387939] [PMID: 17692044]
[109]
Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. Engl., 2011, 50(3), 586-621.
[http://dx.doi.org/10.1002/anie.201000044] [PMID: 21226137]
[110]
Stanić, Z. Curcumin, a compound from natural sources, a true scientific challenge - A review. Plant Foods Hum. Nutr., 2017, 72(1), 1-12.
[http://dx.doi.org/10.1007/s11130-016-0590-1] [PMID: 27995378]
[111]
Goel, A.; Boland, C.R.; Chauhan, D.P. Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett., 2001, 172(2), 111-118.
[http://dx.doi.org/10.1016/S0304-3835(01)00655-3] [PMID: 11566484]
[112]
Chen, D.; Dai, F.; Chen, Z.; Wang, S.; Cheng, X.; Sheng, Q.; Lin, J.; Chen, W. Dimethoxy curcumin induces apoptosis by suppressing survivin and inhibits invasion by enhancing E-cadherin in colon cancer cells. Med. Sci. Monit., 2016, 22, 3215-3222.
[http://dx.doi.org/10.12659/MSM.900802] [PMID: 27614381]
[113]
He, Y.; Fan, Q.; Cai, T.; Huang, W.; Xie, X.; Wen, Y.; Shi, Z. Molecular mechanisms of the action of Arctigenin in cancer. Biomed. Pharmacother., 2018, 108, 403-407.
[http://dx.doi.org/10.1016/j.biopha.2018.08.158] [PMID: 30236849]
[114]
Taleb Agha, M.; Baharetha, H.M.; Al-Mansoub, M.A.; Tabana, Y.M.; Kaz Abdul Aziz, N.H.; Yam, M.F.; Abdul Majid, A.M.S. Proapoptotic and antiangiogenic activities of Arctium lappa L. on breast cancer cell lines. Scientifica (Cairo), 2020, 2020, 7286053.
[http://dx.doi.org/10.1155/2020/7286053] [PMID: 32509375]
[115]
Ranaware, A.M.; Banik, K.; Deshpande, V.; Padmavathi, G.; Roy, N.K.; Sethi, G.; Fan, L.; Kumar, A.P.; Kunnumakkara, A.B. Magnolol: A neolignan from the Magnolia family for the prevention and treatment of cancer. Int. J. Mol. Sci., 2018, 19(8), 2362.
[http://dx.doi.org/10.3390/ijms19082362] [PMID: 30103472]
[116]
Lichota, A.; Gwozdzinski, K. Anticancer activity of natural compounds from plant and marine environment. Int. J. Mol. Sci., 2018, 19(11), 3533.
[http://dx.doi.org/10.3390/ijms19113533] [PMID: 30423952]
[117]
Su, C.M.; Weng, Y.S.; Kuan, L.Y.; Chen, J.H.; Hsu, F.T. Suppression of PKCδ/NF-κB signaling and apoptosis induction through extrinsic/intrinsic pathways are associated magnolol-inhibited tumor progression in colorectal cancer in vitro and in vivo. Int. J. Mol. Sci., 2020, 21(10), 3527.
[http://dx.doi.org/10.3390/ijms21103527]
[118]
Lee, Y.J.; Lee, Y.M.; Lee, C.K.; Jung, J.K.; Han, S.B.; Hong, J.T. Therapeutic applications of compounds in the Magnolia family. Pharmacol. Ther., 2011, 130(2), 157-176.
[http://dx.doi.org/10.1016/j.pharmthera.2011.01.010] [PMID: 21277893]
[119]
Banik, K.; Ranaware, A.M.; Deshpande, V.; Nalawade, S.P.; Padmavathi, G.; Bordoloi, D.; Sailo, B.L.; Shanmugam, M.K.; Fan, L.; Arfuso, F.; Sethi, G.; Kunnumakkara, A.B. Honokiol for cancer therapeutics: A traditional medicine that can modulate multiple oncogenic targets. Pharmacol. Res., 2019, 144, 192-209.
[http://dx.doi.org/10.1016/j.phrs.2019.04.004] [PMID: 31002949]
[120]
Ong, C.P.; Lee, W.L.; Tang, Y.Q.; Yap, W.H. Honokiol: A review of its anticancer potential and mechanisms. Cancers (Basel), 2019, 12(1), 48.
[http://dx.doi.org/10.3390/cancers12010048] [PMID: 31877856]
[121]
Jang, M.G.; Ko, H.C.; Kim, S.J. Effects of p-coumaric acid on microRNA expression profiles in SNU-16 human gastric cancer cells. Genes Genomics, 2020, 42(7), 817-825.
[http://dx.doi.org/10.1007/s13258-020-00944-6] [PMID: 32462517]
[122]
Banoth, R.K.; Thatikonda, A. A review on natural chalcones an update. Int. J. Pharm. Sci. Res., 2020, 11, 546-555.
[123]
Yousuf, M.; Shamsi, A.; Khan, P.; Shahbaaz, M.; AlAjmi, M.F.; Hussain, A.; Hassan, G.M.; Islam, A.; Rizwanul Haque, Q.M.; Hassan, M.I. Ellagic acid controls cell proliferation and induces apoptosis in breast cancer cells via inhibition of cyclin-dependent kinase 6. Int. J. Mol. Sci., 2020, 21(10), 3526.
[http://dx.doi.org/10.3390/ijms21103526] [PMID: 32429317]
[124]
Pirzadeh-Naeeni, S.; Mozdianfard, M.R.; Shojaosadati, S.A.; Khorasani, A.C.; Saleh, T. A comparative study on schizophyllan and chitin nanoparticles for ellagic acid delivery in treating breast cancer. Int. J. Biol. Macromol., 2020, 144, 380-388.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.079] [PMID: 31837368]
[125]
Kimura, Y.; Okuda, H. Resveratrol isolated from Polygonum cuspidatum root prevents tumor growth and metastasis to lung and tumor-induced neovascularization in Lewis lung carcinoma-bearing mice. J. Nutr., 2001, 131(6), 1844-1849.
[http://dx.doi.org/10.1093/jn/131.6.1844] [PMID: 11385077]
[126]
Banerjee, S.; Bueso-Ramos, C.; Aggarwal, B.B. Suppression of 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: Role of nuclear factor-kappaB, cyclooxygenase 2, and matrix metalloprotease 9. Cancer Res., 2002, 62(17), 4945-4954.
[PMID: 12208745]
[127]
Leung, L.K.; Su, Y.; Chen, R.; Zhang, Z.; Huang, Y.; Chen, Z.Y. Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J. Nutr., 2001, 131(9), 2248-2251.
[http://dx.doi.org/10.1093/jn/131.9.2248] [PMID: 11533262]
[128]
Martin, A.C.B.M.; Fuzer, A.M.; Becceneri, A.B.; da Silva, J.A.; Tomasin, R.; Denoyer, D.; Kim, S.H.; McIntyre, K.A.; Pearson, H.B.; Yeo, B.; Nagpal, A.; Ling, X.; Selistre-de-Araújo, H.S.; Vieira, P.C.; Cominetti, M.R.; Pouliot, N. [10]-gingerol induces apoptosis and inhibits metastatic dissemination of triple negative breast cancer in vivo. Oncotarget, 2017, 8(42), 72260-72271.
[http://dx.doi.org/10.18632/oncotarget.20139] [PMID: 29069785]
[129]
Joo, J.H.; Hong, S.S.; Cho, Y.R.; Seo, D.W. 10-Gingerol inhibits proliferation and invasion of MDA-MB-231 breast cancer cells through suppression of Akt and p38MAPK activity. Oncol. Rep., 2016, 35(2), 779-784.
[http://dx.doi.org/10.3892/or.2015.4405] [PMID: 26554741]
[130]
de Lima, R.M.T.; Dos Reis, A.C.; de Menezes, A.P.M.; Santos, J.V.O.; Filho, J.W.G.O.; Ferreira, J.R.O.; de Alencar, M.V.O.B.; da Mata, A.M.O.F.; Khan, I.N.; Islam, A.; Uddin, S.J.; Ali, E.S.; Islam, M.T.; Tripathi, S.; Mishra, S.K.; Mubarak, M.S.; Melo-Cavalcante, A.A.C. Protective and therapeutic potential of ginger (Zingiber officinale) extract and [6]-gingerol in cancer: A comprehensive review. Phytother. Res., 2018, 32(10), 1885-1907.
[http://dx.doi.org/10.1002/ptr.6134] [PMID: 30009484]
[131]
Lu, L.; Zhao, Z.; Liu, L.; Gong, W.; Dong, J. Combination of baicalein and docetaxel additively inhibits the growth of non-small cell lung cancer in vivo Tradit. Med. Modern Med., 2018, 1(3), 213-218.
[http://dx.doi.org/10.1142/S2575900018500131]
[132]
Lu, W.J.; Wu, G.J.; Chen, R.J.; Chang, C.C.; Lien, L.M.; Chiu, C.C.; Tseng, M.F.; Huang, L.T.; Lin, K.H. Licochalcone A attenuates glioma cell growth in vitro and in vivo through cell cycle arrest. Food Funct., 2018, 9(8), 4500-4507.
[http://dx.doi.org/10.1039/C8FO00728D] [PMID: 30083664]
[133]
Tsai, J.P.; Lee, C.H.; Ying, T.H.; Lin, C.L.; Lin, C.L.; Hsueh, J.T.; Hsieh, Y.H. Licochalcone A induces autophagy through PI3K/Akt/mTOR inactivation and autophagy suppression enhances Licochalcone A-induced apoptosis of human cervical cancer cells. Oncotarget, 2015, 6(30), 28851-28866.
[http://dx.doi.org/10.18632/oncotarget.4767] [PMID: 26311737]
[134]
Ina, K.; Kataoka, T.; Ando, T. The use of lentinan for treating gastric cancer. Anticancer. Agents Med. Chem., 2013, 13(5), 681-688.
[http://dx.doi.org/10.2174/1871520611313050002] [PMID: 23092289]
[135]
Maehara, Y.; Tsujitani, S.; Saeki, H.; Oki, E.; Yoshinaga, K.; Emi, Y.; Morita, M.; Kohnoe, S.; Kakeji, Y.; Yano, T.; Baba, H. Biological mechanism and clinical effect of protein-bound polysaccharide K (KRESTIN®): Review of development and future perspectives. Surg. Today, 2012, 42(1), 8-28.
[http://dx.doi.org/10.1007/s00595-011-0075-7] [PMID: 22139128]
[136]
Lee, D.Y.; Park, C.W.; Lee, S.J.; Park, H.R.; Kim, S.H.; Son, S.U.; Park, J.; Shin, K.S. Anti-cancer effects of Panax ginseng berry polysaccharides via activation of immune-related cells. Front. Pharmacol., 2019, 10, 1411.
[http://dx.doi.org/10.3389/fphar.2019.01411] [PMID: 32038228]
[137]
Fan, L.; Ding, S.; Ai, L.; Deng, K. Antitumor and immunomodulatory activity of water-soluble polysaccharide from Inonotus obliquus. Carbohydr. Polym., 2012, 90(2), 870-874.
[http://dx.doi.org/10.1016/j.carbpol.2012.06.013] [PMID: 22840014]
[138]
Yang, Z.; Xu, J.; Fu, Q.; Fu, X.; Shu, T.; Bi, Y.; Song, B. Antitumor activity of a polysaccharide from Pleurotus eryngii on mice bearing renal cancer. Carbohydr. Polym., 2013, 95(2), 615-620.
[http://dx.doi.org/10.1016/j.carbpol.2013.03.024] [PMID: 23648020]
[139]
Yuan, H.; Song, J.; Li, X.; Li, N.; Dai, J. Immunomodulation and antitumor activity of kappa-carrageenan oligosaccharides. Cancer Lett., 2006, 243(2), 228-234.
[http://dx.doi.org/10.1016/j.canlet.2005.11.032] [PMID: 16410037]
[140]
Houshdar Tehrani, M.H.; Gholibeikian, M.; Bamoniri, A.; Mirjalili, B.B.F. Cancer treatment by caryophyllaceae-type cyclopeptides. Front. Endocrinol. (Lausanne), 2021, 11, 600856.
[http://dx.doi.org/10.3389/fendo.2020.600856] [PMID: 33519710]
[141]
Mazalovska, M.; Kouokam, J.C. Plant-derived lectins as potential cancer therapeutics and diagnostic tools. BioMed Res. Int., 2020, 2020, 1631394.
[http://dx.doi.org/10.1155/2020/1631394] [PMID: 32509848]
[142]
Liu, B.; Bian, H.J.; Bao, J.K. Plant lectins: Potential antineoplastic drugs from bench to clinic. Cancer Lett., 2010, 287(1), 1-12.
[http://dx.doi.org/10.1016/j.canlet.2009.05.013] [PMID: 19487073]
[143]
Basso, A.D.; Solit, D.B.; Munster, P.N.; Rosen, N. Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress HER2. Oncogene, 2002, 21(8), 1159-1166.
[http://dx.doi.org/10.1038/sj.onc.1205184] [PMID: 11850835]
[144]
Damiani, E.; Yuecel, R.; Wallace, H.M. Repurposing of idebenone as a potential anti-cancer agent. Biochem. J., 2019, 476(2), 245-259.
[http://dx.doi.org/10.1042/BCJ20180384] [PMID: 30602587]
[145]
Espíndola, K.M.M.; Ferreira, R.G.; Narvaez, L.E.M.; Silva Rosario, A.C.R.; da Silva, A.H.M.; Silva, A.G.B.; Vieira, A.P.O.; Monteiro, M.C. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front. Oncol., 2019, 9, 541.
[http://dx.doi.org/10.3389/fonc.2019.00541] [PMID: 31293975]
[146]
Su, J.; Yan, Y.; Qu, J.; Xue, X.; Liu, Z.; Cai, H. Emodin induces apoptosis of lung cancer cells through ER stress and the TRIB3/NF-κB pathway. Oncol. Rep., 2017, 37(3), 1565-1572.
[http://dx.doi.org/10.3892/or.2017.5428] [PMID: 28184934]
[147]
Iwanowycz, S.; Wang, J.; Hodge, J.; Wang, Y.; Yu, F.; Fan, D. Emodin inhibits breast cancer growth by blocking the tumor-promoting feedforward loop between cancer cells and macrophages. Mol. Cancer Ther., 2016, 15(8), 1931-1942.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0987] [PMID: 27196773]
[148]
Lin, W.; Zhong, M.; Yin, H.; Chen, Y.; Cao, Q.; Wang, C.; Ling, C. Emodin induces hepatocellular carcinoma cell apoptosis through MAPK and PI3K/AKT signaling pathways in vitro and in vivo. Oncol. Rep., 2016, 36(2), 961-967.
[http://dx.doi.org/10.3892/or.2016.4861] [PMID: 27278720]
[149]
Faustino, C.; Neto, Í.; Fonte, P.; Macedo, A. Cytotoxicity and chemotherapeutic potential of natural rosin abietane diterpenoids and their synthetic derivatives. Curr. Pharm. Des., 2018, 24(36), 4362-4375.
[http://dx.doi.org/10.2174/1381612825666190112162817] [PMID: 30648502]
[150]
Dai, C.; Shen, L.; Jin, W.; Lv, B.; Liu, P.; Wang, X.; Yin, Y.; Fu, Y.; Liang, L.; Ma, Z.; Zhang, X.; Wang, Y.; Xu, D.; Chen, Z. Physapubescin B enhances the sensitivity of gastric cancer cells to trametinib by inhibiting the STAT3 signaling pathway. Toxicol. Appl. Pharmacol., 2020, 408, 115273.
[http://dx.doi.org/10.1016/j.taap.2020.115273] [PMID: 33035574]
[151]
Liao, S.K.; Ting, L.L.; Chou, A.B.; Hsieh, C.H.; Hsiung, S.C.; Pang, S.T. Withaferin A targeting both cancer stem cells and metastatic cancer stem cells in the UP-LN1 carcinoma cell model. J. Cancer Metastasis Treat., 2016, 2(29), 40.
[http://dx.doi.org/10.4103/2394-4722.172008]
[152]
Chen, R.J.; Kuo, H.C.; Cheng, L.H.; Lee, Y.H.; Chang, W.T.; Wang, B.J.; Wang, Y.J.; Cheng, H.C. Apoptotic and nonapoptotic activities of pterostilbene against cancer. Int. J. Mol. Sci., 2018, 19(1), 287.
[http://dx.doi.org/10.3390/ijms19010287] [PMID: 29346311]
[153]
Banik, K.; Ranaware, A.M.; Harsha, C.; Nitesh, T.; Girisa, S.; Deshpande, V.; Fan, L.; Nalawade, S.P.; Sethi, G.; Kunnumakkara, A.B. Piceatannol: A natural stilbene for the prevention and treatment of cancer. Pharmacol. Res., 2020, 153, 104635.
[http://dx.doi.org/10.1016/j.phrs.2020.104635] [PMID: 31926274]
[154]
Chuang, Y.C.; Hsieh, M.C.; Lin, C.C.; Lo, Y.S.; Ho, H.Y.; Hsieh, M.J.; Lin, J.T. Pinosylvin inhibits migration and invasion of nasopharyngeal carcinoma cancer cells via regulation of epithelial mesenchymal transition and inhibition of MMP 2. Oncol. Rep., 2021, 46(1), 46.
[http://dx.doi.org/10.3892/or.2021.8094] [PMID: 34080661]
[155]
Ko, J.H.; Sethi, G.; Um, J.Y.; Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Bishayee, A.; Ahn, K.S. The role of resveratrol in cancer therapy. Int. J. Mol. Sci., 2017, 18(12), 2589.
[http://dx.doi.org/10.3390/ijms18122589] [PMID: 29194365]
[156]
Subedi, L.; Teli, M.K.; Lee, J.H.; Gaire, B.P.; Kim, M.H.; Kim, S.Y. A stilbenoid isorhapontigenin as a potential anti-cancer agent against breast cancer through inhibiting sphingosine kinases/tubulin stabilization. Cancers (Basel), 2019, 11(12), 1947.
[http://dx.doi.org/10.3390/cancers11121947] [PMID: 31817453]
[157]
Ren, Z.; Zou, W.; Cui, J.; Liu, L.; Qing, Y.; Li, Y. Geraniin suppresses tumor cell growth and triggers apoptosis in human glioma via inhibition of STAT3 signaling. Cytotechnology, 2017, 69(5), 765-773.
[http://dx.doi.org/10.1007/s10616-017-0085-4] [PMID: 28374108]
[158]
Alghasham, A.A. Cucurbitacins - a promising target for cancer therapy. Int. J. Health Sci. (Qassim), 2013, 7(1), 77-89.
[http://dx.doi.org/10.12816/0006025] [PMID: 23559908]
[159]
Wang, L.; Phan, D.D.K.; Zhang, J.; Ong, P.S.; Thuya, W.L.; Soo, R.; Wong, A.L.A.; Yong, W.P.; Lee, S.C.; Ho, P.C.L.; Sethi, G.; Goh, B.C. Anticancer properties of nimbolide and pharmacokinetic considerations to accelerate its development. Oncotarget, 2016, 7(28), 44790-44802.
[http://dx.doi.org/10.18632/oncotarget.8316] [PMID: 27027349]
[160]
Thirugnanam, S.; Xu, L.; Ramaswamy, K.; Gnanasekar, M. Glycyrrhizin induces apoptosis in prostate cancer cell lines DU-145 and LNCaP. Oncol. Rep., 2008, 20(6), 1387-1392.
[PMID: 19020719]
[161]
Wu, X.; Wang, W.; Chen, Y.; Liu, X.; Wang, J.; Qin, X.; Yuan, D.; Yu, T.; Chen, G.; Mi, Y.; Mou, J.; Cui, J.; Hu, A. E, Y.; Pei, D. Glycyrrhizin suppresses the growth of human NSCLC cell line HCC827 by downregulating HMGB1 level. BioMed Res. Int., 2018, 1-7.
[162]
Wang, Q.; Qiao, X.; Qian, Y.; Li, Z.W.; Tzeng, Y.M.; Zhou, D.M.; Guo, D.A.; Ye, M. Intestinal absorption of ergostane and lanostane triterpenoids from Antrodia cinnamomea using Caco-2 cell monolayer model. Nat. Prod. Bioprospect., 2015, 5(5), 237-246.
[http://dx.doi.org/10.1007/s13659-015-0072-4] [PMID: 26411834]
[163]
Zeng, L.; Gu, Z.M.; Chang, C.J.; Wood, K.V.; McLaughlin, J.L. Meliavolkenin, a new bioactive triterpenoid from Melia volkensii (Meliaceae). Bioorg. Med. Chem., 1995, 3(4), 383-390.
[http://dx.doi.org/10.1016/0968-0896(95)00034-E] [PMID: 8581421]
[164]
Agrawal, S.S.; Saraswati, S.; Mathur, R.; Pandey, M. Antitumor properties of Boswellic acid against Ehrlich ascites cells bearing mouse. Food Chem. Toxicol., 2011, 49(9), 1924-1934.
[http://dx.doi.org/10.1016/j.fct.2011.04.007] [PMID: 21513768]
[165]
Yun, B.S.; Ryoo, I.J.; Lee, I.K.; Park, K.H.; Choung, D.H.; Han, K.H.; Yoo, I.D. Two bioactive pentacyclic triterpene esters from the root bark of Hibiscus syriacus. J. Nat. Prod., 1999, 62(5), 764-766.
[http://dx.doi.org/10.1021/np9804637] [PMID: 10346965]
[166]
Hsu, H.F.; Houng, J.Y.; Chang, C.L.; Wu, C.C.; Chang, F.R.; Wu, Y.C. Antioxidant activity, cytotoxicity, and DNA information of Glossogyne tenuifolia. J. Agric. Food Chem., 2005, 53(15), 6117-6125.
[http://dx.doi.org/10.1021/jf050463u] [PMID: 16029005]
[167]
Lavhale, M.S.; Kumar, S.; Mishra, S.H.; Sitasawad, S.L. A novel triterpenoid isolated from the root bark of Ailanthus excelsa Roxb (Tree of Heaven), AECHL-1 as a potential anti-cancer agent. PLoS One, 2009, 4(4), e5365.
[http://dx.doi.org/10.1371/journal.pone.0005365] [PMID: 19399188]
[168]
Rizeq, B.; Gupta, I.; Ilesanmi, J.; AlSafran, M.; Rahman, M.M.; Ouhtit, A. The power of phytochemicals combination in cancer chemoprevention. J. Cancer, 2020, 11(15), 4521-4533.
[http://dx.doi.org/10.7150/jca.34374] [PMID: 32489469]
[169]
Ouhtit, A.; Gaur, R.L.; Abdraboh, M.; Ireland, S.K.; Rao, P.N.; Raj, S.G.; Al-Riyami, H.; Shanmuganathan, S.; Gupta, I.; Murthy, S.N.; Hollenbach, A.; Raj, M.H. Simultaneous inhibition of cell-cycle, proliferation, survival, metastatic pathways and induction of apoptosis in breast cancer cells by a phytochemical super-cocktail: Genes that underpin its mode of action. J. Cancer, 2013, 4(9), 703-715.
[http://dx.doi.org/10.7150/jca.7235] [PMID: 24312140]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy