Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Delivery of Genetic Materials for the Management of Biological Disorders: Advancement and Roles of Polysaccharides and their Derivatives

Author(s): Nandan Gupta and Rishabha Malviya*

Volume 20, Issue 5, 2023

Published on: 11 August, 2022

Page: [545 - 565] Pages: 21

DOI: 10.2174/1567201819666220422154504

Price: $65

Abstract

Advancement in nanotechnology leads to the development of polysaccharides which are very efficient carriers in delivering therapeutic substances like drugs, proteins, and genes. This review describes the role of polysaccharides and their derivatives in the cellular targeting of genetic materials for the treatment of various biological disorders. Applications, challenges, advantages, and disadvantages of polysaccharides used in gene delivery are discussed in the manuscript. Cationic and natural polysaccharides are generally used for RNA and DNA delivery and exhibit better performance in gene transfection. After a substantial literature survey, it can be concluded that different polysaccharides and their derivatives are effectively used in the delivery of genetic material. Natural polysaccharides are widely used due to their advantageous properties like biocompatibility, biodegradability, and low toxicity in the biological environment.

Keywords: Polysaccharide, gene delivery, targeted drug delivery, nanoparticles, genetic material, drugs.

Graphical Abstract

[1]
Anderson, W.F. Human gene therapy. Science, 1992, 256(5058), 808-813.
[http://dx.doi.org/10.1126/science.256.5058.808] [PMID: 1589762]
[2]
Roth, J.A.; Cristiano, R.J. Gene therapy for cancer: What have we done and where are we going? J. Natl. Cancer Inst., 1997, 89(1), 21-39.
[http://dx.doi.org/10.1093/jnci/89.1.21] [PMID: 8978404]
[3]
Fakhrai, H.; Dorigo, O.; Shawler, D.L.; Lin, H.; Mercola, D.; Black, K.L.; Royston, I.; Sobol, R.E. Eradication of established intracranial rat gliomas by transforming growth factor β antisense gene therapy. Proc. Natl. Acad. Sci. USA, 1996, 93(7), 2909-2914.
[http://dx.doi.org/10.1073/pnas.93.7.2909] [PMID: 8610141]
[4]
Takamiya, Y.; Short, M.P.; Ezzeddine, Z.D.; Moolten, F.L.; Breakefield, X.O.; Martuza, R.L. Gene therapy of malignant brain tumors: A rat glioma line bearing the herpes simplex virus type 1-thymidine kinase gene and wild type retrovirus kills other tumor cells. J. Neurosci. Res., 1992, 33(3), 493-503.
[http://dx.doi.org/10.1002/jnr.490330316] [PMID: 1335091]
[5]
Spear, M.A.; Herrlinger, U.; Rainov, N.; Pechan, P.; Weissleder, R.; Breakefield, X.O. Targeting gene therapy vectors to CNS malignancies. J. Neurovirol., 1998, 4(2), 133-147.
[http://dx.doi.org/10.3109/13550289809114514] [PMID: 9584951]
[6]
Ledley, F.D. Nonviral gene therapy: the promise of genes as pharmaceutical products. Hum. Gene Ther., 1995, 6(9), 1129-1144.
[http://dx.doi.org/10.1089/hum.1995.6.9-1129] [PMID: 8527471]
[7]
Leong, K.W.; Mao, H.Q.; Truong-Le, V.L.; Roy, K.; Walsh, S.M.; August, J.T. DNA-polycation nanospheres as non-viral gene delivery vehicles. J. Control. Release, 1998, 53(1-3), 183-193.
[http://dx.doi.org/10.1016/S0168-3659(97)00252-6] [PMID: 9741926]
[8]
Azzam, T.; Eliyahu, H.; Shapira, L.; Linial, M.; Barenholz, Y.; Domb, A.J. Polysaccharide-oligoamine based conjugates for gene delivery. J. Med. Chem., 2002, 45(9), 1817-1824.
[http://dx.doi.org/10.1021/jm0105528] [PMID: 11960493]
[9]
Saleh, M.; Wiegmans, A.; Malone, Q.; Stylli, S.S.; Kaye, A.H. Effect of in situ retroviral interleukin-4 transfer on established intracranial tumors. J. Natl. Cancer Inst., 1999, 91(5), 438-445.
[http://dx.doi.org/10.1093/jnci/91.5.438] [PMID: 10070943]
[10]
Aoki, K.; Yoshida, T.; Sugimura, T.; Terada, M. Liposome-mediated in vivo gene transfer of antisense K-RAS construct inhibits pancreatic tumor dissemination in the murine peritoneal cavity. Cancer Res., 1995, 55(17), 3810-3816.
[PMID: 7641198]
[11]
Ferrari, S.; Geddes, D.M.; Alton, E.W.F.W. Barriers to and new approaches for gene therapy and gene delivery in cystic fibrosis. Adv. Drug Deliv. Rev., 2002, 54(11), 1373-1393.
[http://dx.doi.org/10.1016/S0169-409X(02)00145-X] [PMID: 12458150]
[12]
Kabanov, A.V. Taking polycation gene delivery systems from in vitro to in vivo. Pharm. Sci. Technol. Today, 1999, 2(9), 365-372.
[http://dx.doi.org/10.1016/S1461-5347(99)00186-8] [PMID: 10470024]
[13]
Zuidam, N.J.; Hirsch-Lerner, D.; Margulies, S.; Barenholz, Y. Lamellarity of cationic liposomes and mode of preparation of lipoplexes affect transfection efficiency. Biochim. Biophys. Acta, 1999, 1419(2), 207-220.
[http://dx.doi.org/10.1016/S0005-2736(99)00069-3] [PMID: 10407072]
[14]
Merdan, T. Kopeček, J.; Kissel, T. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv. Drug Deliv. Rev., 2002, 54(5), 715-758.
[http://dx.doi.org/10.1016/S0169-409X(02)00046-7] [PMID: 12204600]
[15]
Cho, Y.W.; Kim, J-D.; Park, K. Polycation gene delivery systems: Escape from endosomes to cytosol. J. Pharm. Pharmacol., 2003, 55(6), 721-734.
[http://dx.doi.org/10.1211/002235703765951311] [PMID: 12841931]
[16]
De Smedt, S.C.; Demeester, J.; Hennink, W.E. Cationic polymer based gene delivery systems. Pharm. Res., 2000, 17(2), 113-126.
[http://dx.doi.org/10.1023/A:1007548826495] [PMID: 10751024]
[17]
Yamaoka, T.; Hamada, N.; Iwata, H.; Murakami, A.; Kimura, Y. Effect of cation content of polycation-type gene carriers on in vitro gene transfer. Chem. Lett., 1998, 27, 1171-1172.
[http://dx.doi.org/10.1246/cl.1998.1171]
[18]
Thanou, M.; Florea, B.I.; Geldof, M.; Junginger, H.E.; Borchard, G. Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials, 2002, 23(1), 153-159.
[http://dx.doi.org/10.1016/S0142-9612(01)00090-4] [PMID: 11762833]
[19]
Yudovin-Farber, I.; Yanay, C.; Azzam, T.; Linial, M.; Domb, A.J. Quaternary ammonium polysaccharides for gene delivery. Bioconjug. Chem., 2005, 16(5), 1196-1203.
[http://dx.doi.org/10.1021/bc050066p] [PMID: 16173798]
[20]
Azzam, T.; Eliyahu, H.; Makovitzki, A.; Domb, A.J. Dextran-spermine conjugate. An efficient vector for gene delivery. Macromol. Symp., 2003, 195, 247-262.
[http://dx.doi.org/10.1002/masy.200390130]
[21]
Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669), 806-811.
[http://dx.doi.org/10.1038/35888] [PMID: 9486653]
[22]
Elbashir, S.M.; Harborth, J.; Lendeckel, W.; Yalcin, A.; Weber, K.; Tuschl, T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411(6836), 494-498.
[http://dx.doi.org/10.1038/35078107] [PMID: 11373684]
[23]
Mokhtarzadeh, A.; Alibakhshi, A.; Hashemi, M.; Hejazi, M.; Hosseini, V.; de la Guardia, M.; Ramezani, M. Biodegradable nano-polymers as delivery vehicles for therapeutic small non-coding ribonucleic acids. J. Control. Release, 2017, 245, 116-126.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.017] [PMID: 27884808]
[24]
Snead, N.M.; Rossi, J.J. Biogenesis and function of endogenous and exogenous siRNAs. Wiley Interdiscip. Rev. RNA, 2010, 1(1), 117-131.
[http://dx.doi.org/10.1002/wrna.14] [PMID: 21956909]
[25]
Jackson, A.L.; Linsley, P.S. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat. Rev. Drug Discov., 2010, 9(1), 57-67.
[http://dx.doi.org/10.1038/nrd3010] [PMID: 20043028]
[26]
Xia, J.; Joyce, C.E.; Bowcock, A.M.; Zhang, W. Noncanonical microRNAs and endogenous siRNAs in normal and psoriatic human skin. Hum. Mol. Genet., 2013, 22(4), 737-748.
[http://dx.doi.org/10.1093/hmg/dds481] [PMID: 23175445]
[27]
Cavallaro, G.; Sardo, C.; Craparo, E.F.; Porsio, B.; Giammona, G. Polymeric nanoparticles for siRNA delivery: Production and applications. Int. J. Pharm., 2017, 525(2), 313-333.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.008] [PMID: 28416401]
[28]
Aagaard, L.; Rossi, J.J. RNAi therapeutics: Principles, prospects and challenges. Adv. Drug Deliv. Rev., 2007, 59(2-3), 75-86.
[http://dx.doi.org/10.1016/j.addr.2007.03.005] [PMID: 17449137]
[29]
Iranpur Mobarakeh, V.; Modarressi, M.H.; Rahimi, P.; Bolhassani, A.; Arefian, E.; Atyabi, F.; Vahabpour, R. Optimization of chitosan nanoparticles as an anti-HIV siRNA delivery vehicle. Int. J. Biol. Macromol., 2019, 129, 305-315.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.036] [PMID: 30738164]
[30]
Patel, P.; Agrawal, Y.K. Targeting nanocarriers containing antisense oligonucleotides to cancer cell. J. Drug Deliv. Sci. Technol., 2017, 3, 579-588.
[http://dx.doi.org/10.1016/j.jddst.2016.12.001]
[31]
Shukla, S.; Sumaria, C.S.; Pradeepkumar, P.I. Exploring chemical modifications for siRNA therapeutics: A structural and functional outlook. ChemMedChem, 2010, 5(3), 328-349.
[http://dx.doi.org/10.1002/cmdc.200900444] [PMID: 20043313]
[32]
Hong, C.A.; Nam, Y.S. Functional nanostructures for effective delivery of small interfering RNA therapeutics. Theranostics, 2014, 4(12), 1211-1232.
[http://dx.doi.org/10.7150/thno.8491] [PMID: 25285170]
[33]
Mao, S.; Sun, W.; Kissel, T. Chitosan-based formulations for delivery of DNA and siRNA. Adv. Drug Deliv. Rev., 2010, 62(1), 12-27.
[http://dx.doi.org/10.1016/j.addr.2009.08.004] [PMID: 19796660]
[34]
Singh, B.; Choi, Y.J.; Park, I.K.; Akaike, T.; Cho, C.S. Chemical modification of chitosan with pH-sensitive molecules and specific ligands for efficient DNA transfection and siRNA silencing. J. Nanosci. Nanotechnol., 2014, 14(1), 564-576.
[http://dx.doi.org/10.1166/jnn.2014.9079] [PMID: 24730283]
[35]
Adesina, S.K.; Akala, E.O. Nanotechnology approaches for the delivery of exogenous siRNA for HIV therapy. Mol. Pharm., 2015, 12(12), 4175-4187.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00335] [PMID: 26524196]
[36]
Tekade, R.K.; Tekade, M.; Kesharwani, P.; D’Emanuele, A. RNAi-combined nano-chemotherapeutics to tackle resistant tumors. Drug Discov. Today, 2016, 21(11), 1761-1774.
[http://dx.doi.org/10.1016/j.drudis.2016.06.029] [PMID: 27380716]
[37]
A Phase 2 Study of siG12D LODER in Combination With Chemotherapy in Patients With Locally Advanced Pancreatic Cancer - Full Text View - ClinicalTrials.gov. Available from: https://clinicaltrials.gov/ct2/show/NCT01676259 (Accessed on: February 10, 2021).
[38]
Kaczmarek, J.C.; Kowalski, P.S.; Anderson, D.G. Advances in the delivery of RNA therapeutics: From concept to clinical reality. Genome Med., 2017, 9(1), 60.
[http://dx.doi.org/10.1186/s13073-017-0450-0] [PMID: 28655327]
[39]
Joye, I.J.; McClements, D.J. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Curr. Opin. Colloid Interface Sci., 2014, 19, 417-427.
[http://dx.doi.org/10.1016/j.cocis.2014.07.002]
[40]
Raemdonck, K.; Martens, T.F.; Braeckmans, K.; Demeester, J.; De Smedt, S.C. Polysaccharide-based nucleic acid nanoformulations. Adv. Drug Deliv. Rev., 2013, 65(9), 1123-1147.
[http://dx.doi.org/10.1016/j.addr.2013.05.002] [PMID: 23680381]
[41]
Khan, W.; Hosseinkhani, H.; Ickowicz, D.; Hong, P.D.; Yu, D.S.; Domb, A.J. Polysaccharide gene transfection agents. Acta Biomater., 2012, 8(12), 4224-4232.
[http://dx.doi.org/10.1016/j.actbio.2012.09.022] [PMID: 23022542]
[42]
Karunaratne, D.N.; Jafari, M.; Ranatunga, R.J.K.; Siriwardhana, A. Natural carriers for siRNA delivery. Curr. Pharm. Des., 2015, 21(31), 4529-4540.
[http://dx.doi.org/10.2174/138161282131151013185528] [PMID: 26486140]
[43]
Myrick, J.M.; Vendra, V.K.; Krishnan, S. Self-assembled polysaccharide nanostructures for controlled-release applications. Nanotechnol. Rev., 2014, 3, 319-346.
[http://dx.doi.org/10.1515/ntrev-2012-0050]
[44]
Parraga, J.E.; Zorzi, G.K.; Diebold, Y.; Seijo, B.; Sanchez, A. Nanoparticles based on naturally-occurring biopolymers as versatile delivery platforms for delicate bioactive molecules: An application for ocular gene silencing. Int. J. Pharm., 2014, 477(1-2), 12-20.
[http://dx.doi.org/10.1016/j.ijpharm.2014.09.049] [PMID: 25275936]
[45]
Buschmann, M.D.; Merzouki, A.; Lavertu, M.; Thibault, M.; Jean, M.; Darras, V. Chitosans for delivery of nucleic acids. Adv. Drug Deliv. Rev., 2013, 65(9), 1234-1270.
[http://dx.doi.org/10.1016/j.addr.2013.07.005] [PMID: 23872012]
[46]
Insua, I.; Wilkinson, A.; Fernandez-Trillo, F. Polyion complex (PIC) particles: Preparation and biomedical applications. Eur. Polym. J., 2016, 81, 198-215.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.06.003] [PMID: 27524831]
[47]
Debele, T.A.; Mekuria, S.L.; Tsai, H.C. Polysaccharide based nanogels in the drug delivery system: Application as the carrier of pharmaceutical agents. Mater. Sci. Eng. C, 2016, 68, 964-981.
[http://dx.doi.org/10.1016/j.msec.2016.05.121] [PMID: 27524098]
[48]
Wang, H.; Qian, J.; Ding, F. Recent advances in engineered chitosan-based nanogels for biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(34), 6986-7007.
[http://dx.doi.org/10.1039/C7TB01624G] [PMID: 32263890]
[49]
Bhattarai, N.; Gunn, J.; Zhang, M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev., 2010, 62(1), 83-99.
[http://dx.doi.org/10.1016/j.addr.2009.07.019] [PMID: 19799949]
[50]
Vauthier, C.; Zandanel, C.; Ramon, A.L. Chitosan-based nanoparticles for in vivo delivery of interfering agents including siRNA. Curr. Opin. Colloid Interface Sci., 2013, 18, 406-418.
[http://dx.doi.org/10.1016/j.cocis.2013.06.005]
[51]
Zhang, N.; Wardwell, P.R.; Bader, R.A. Polysaccharide-based micelles for drug delivery. Pharmaceutics, 2013, 5(2), 329-352.
[http://dx.doi.org/10.3390/pharmaceutics5020329] [PMID: 24300453]
[52]
Amjad, M.W.; Kesharwani, P.; Mohd Amin, M.C.I.; Iyer, A.K. Recent advances in the design, development, and targeting mechanisms of polymeric micelles for delivery of siRNA in cancer therapy. Prog. Polym. Sci., 2017, 64, 154-181.
[http://dx.doi.org/10.1016/j.progpolymsci.2016.09.008]
[53]
Nascimento, A.V.; Gattacceca, F.; Singh, A.; Bousbaa, H.; Ferreira, D.; Sarmento, B.; Amiji, M.M. Biodistribution and pharmacokinetics of Mad2 siRNA-loaded EGFR-targeted chitosan nanoparticles in cisplatin sensitive and resistant lung cancer models. Nanomedicine (Lond.), 2016, 11(7), 767-781.
[http://dx.doi.org/10.2217/nnm.16.14] [PMID: 26980454]
[54]
Nascimento, A.V.; Singh, A.; Bousbaa, H.; Ferreira, D.; Sarmento, B.; Amiji, M.M. Overcoming cisplatin resistance in non-small cell lung cancer with Mad2 silencing siRNA delivered systemically using EGFR-targeted chitosan nanoparticles. Acta Biomater., 2017, 47, 71-80.
[http://dx.doi.org/10.1016/j.actbio.2016.09.045] [PMID: 27697601]
[55]
Zhang, C.G.; Zhu, W.J.; Liu, Y.; Yuan, Z.Q.; Yang, S.D.; Chen, W.L.; Li, J.Z.; Zhou, X.F.; Liu, C.; Zhang, X.N. Novel polymer micelle mediated co-delivery of doxorubicin and P-glycoprotein siRNA for reversal of multidrug resistance and synergistic tumor therapy. Sci. Rep., 2016, 6, 23859.
[http://dx.doi.org/10.1038/srep23859] [PMID: 27030638]
[56]
Corbet, C.; Ragelle, H.; Pourcelle, V.; Vanvarenberg, K.; Marchand-Brynaert, J.; Préat, V.; Feron, O. Delivery of siRNA targeting tumor metabolism using non-covalent PEGylated chitosan nanoparticles: Identification of an optimal combination of ligand structure, linker and grafting method. J. Control. Release, 2016, 223, 53-63.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.020] [PMID: 26699426]
[57]
Di Yang, S.; Zhu, W.J.; Zhu, Q.L.; Chen, W.L.; Ren, Z.X.; Li, F.; Yuan, Z.Q.; Li, J.Z.; Liu, Y.; Zhou, X.F.; Liu, C.; Zhang, X.N. Binary-copolymer system base on low-density lipoprotein-coupled N-succinyl chitosan lipoic acid micelles for co-delivery MDR1 siRNA and paclitaxel, enhances antitumor effects via reducing drug. J. Biomed. Mater. Res. B Appl. Biomater., 2017, 35, 5965-5976.
[http://dx.doi.org/10.1002/jbm.b.33636]
[58]
Lee, S.J.; Yook, S.; Yhee, J.Y.; Yoon, H.Y.; Kim, M.G.; Ku, S.H.; Kim, S.H.; Park, J.H.; Jeong, J.H.; Kwon, I.C.; Lee, S.; Lee, H.; Kim, K. Co-delivery of VEGF and Bcl-2 dual-targeted siRNA polymer using a single nanoparticle for synergistic anti-cancer effects in vivo. J. Control. Release, 2015, 220(Pt B), 631-641.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.032] [PMID: 26307351]
[59]
Yoon, H.Y.; Son, S.; Lee, S.J.; You, D.G.; Yhee, J.Y.; Park, J.H.; Swierczewska, M.; Lee, S.; Kwon, I.C.; Kim, S.H.; Kim, K.; Pomper, M.G. Glycol chitosan nanoparticles as specialized cancer therapeutic vehicles: Sequential delivery of doxorubicin and Bcl-2 siRNA. Sci. Rep., 2014, 4, 6878.
[http://dx.doi.org/10.1038/srep06878] [PMID: 25363213]
[60]
Song, Y.; Tang, C.; Yin, C. Combination antitumor immunotherapy with VEGF and PIGF siRNA via systemic delivery of multi-functionalized nanoparticles to tumor-associated macrophages and breast cancer cells. Biomaterials, 2018, 185, 117-132.
[http://dx.doi.org/10.1016/j.biomaterials.2018.09.017] [PMID: 30241030]
[61]
Sadio, A.; Gustafsson, J.K.; Pereira, B.; Gomes, C.P.; Hansson, G.C.; David, L.; Pêgo, A.P.; Almeida, R. Modified-chitosan/siRNA nanoparticles downregulate cellular CDX2 expression and cross the gastric mucus barrier. PLoS One, 2014, 9(6), e99449.
[http://dx.doi.org/10.1371/journal.pone.0099449] [PMID: 24925340]
[62]
Sadreddini, S.; Safaralizadeh, R.; Baradaran, B.; Aghebati-Maleki, L.; Hosseinpour-Feizi, M.A.; Shanehbandi, D.; Jadidi-Niaragh, F.; Sadreddini, S.; Kafil, H.S.; Younesi, V.; Yousefi, M. Chitosan nanoparticles as a dual drug/siRNA delivery system for treatment of colorectal cancer. Immunol. Lett., 2017, 181, 79-86.
[http://dx.doi.org/10.1016/j.imlet.2016.11.013] [PMID: 27916629]
[63]
Siahmansouri, H.; Somi, M.H.; Babaloo, Z.; Baradaran, B.; Jadidi-Niaragh, F.; Atyabi, F.; Mohammadi, H.; Ahmadi, M.; Yousefi, M. Effects of HMGA2 siRNA and doxorubicin dual delivery by chitosan nanoparticles on cytotoxicity and gene expression of HT-29 colorectal cancer cell line. J. Pharm. Pharmacol., 2016, 68(9), 1119-1130.
[http://dx.doi.org/10.1111/jphp.12593] [PMID: 27350211]
[64]
Afkham, A.; Aghebati-Maleki, L.; Siahmansouri, H.; Sadreddini, S.; Ahmadi, M.; Dolati, S.; Afkham, N.M.; Akbarzadeh, P.; Jadidi-Niaragh, F.; Younesi, V.; Yousefi, M. Chitosan (CMD)-mediated co-delivery of SN38 and Snail-specific siRNA as a useful anticancer approach against prostate cancer. Pharmacol. Rep., 2018, 70(3), 418-425.
[http://dx.doi.org/10.1016/j.pharep.2017.11.005] [PMID: 29626645]
[65]
Muddineti, O.S.; Shah, A.; Rompicharla, S.V.K.; Ghosh, B.; Biswas, S. Cholesterol-grafted chitosan micelles as a nanocarrier system for drug-siRNA co-delivery to the lung cancer cells. Int. J. Biol. Macromol., 2018, 118(Pt A), 857-863.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.114] [PMID: 29953893]
[66]
Rudzinski, W.E.; Palacios, A.; Ahmed, A.; Lane, M.A.; Aminabhavi, T.M. Targeted delivery of small interfering RNA to colon cancer cells using chitosan and PEGylated chitosan nanoparticles. Carbohydr. Polym., 2016, 147, 323-332.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.041] [PMID: 27178938]
[67]
Nam, J.P.; Nah, J.W. Target gene delivery from targeting ligand conjugated chitosan-PEI copolymer for cancer therapy. Carbohydr. Polym., 2016, 135, 153-161.
[http://dx.doi.org/10.1016/j.carbpol.2015.08.053] [PMID: 26453863]
[68]
He, C.; Yin, L.; Tang, C.; Yin, C. Multifunctional polymeric nanoparticles for oral delivery of TNF-α siRNA to macrophages. Biomaterials, 2013, 34(11), 2843-2854.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.033] [PMID: 23347838]
[69]
Popielarski, S.R.; Mishra, S.; Davis, M.E. Structural effects of carbohydrate-containing polycations on gene delivery. 3. Cyclodextrin type and functionalization. Bioconjug. Chem., 2003, 14(3), 672-678.
[http://dx.doi.org/10.1021/bc034010b] [PMID: 12757394]
[70]
Forrest, M.L.; Gabrielson, N.; Pack, D.W. Cyclodextrin-polyethylenimine conjugates for targeted in vitro gene delivery. Biotechnol. Bioeng., 2005, 89(4), 416-423.
[http://dx.doi.org/10.1002/bit.20356] [PMID: 15627256]
[71]
Jiang, Q.Y.; Lai, L.H.; Shen, J.; Wang, Q.Q.; Xu, F.J.; Tang, G.P. Gene delivery to tumor cells by cationic polymeric nanovectors coupled to folic acid and the cell-penetrating peptide octaarginine. Biomaterials, 2011, 32(29), 7253-7262.
[http://dx.doi.org/10.1016/j.biomaterials.2011.06.015] [PMID: 21715001]
[72]
Park, T.G.; Jeong, J.H.; Kim, S.W. Current status of polymeric gene delivery systems. Adv. Drug Deliv. Rev., 2006, 58(4), 467-486.
[http://dx.doi.org/10.1016/j.addr.2006.03.007] [PMID: 16781003]
[73]
Yang, C.; Li, H.; Goh, S.H.; Li, J. Cationic star polymers consisting of α-cyclodextrin core and oligoethylenimine arms as nonviral gene delivery vectors. Biomaterials, 2007, 28(21), 3245-3254.
[http://dx.doi.org/10.1016/j.biomaterials.2007.03.033] [PMID: 17466370]
[74]
Bartlett, D.W.; Davis, M.E. Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles. Bioconjug. Chem., 2007, 18(2), 456-468.
[http://dx.doi.org/10.1021/bc0603539] [PMID: 17326672]
[75]
Davis, M.E. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: From concept to clinic. Mol. Pharm., 2009, 6(3), 659-668.
[http://dx.doi.org/10.1021/mp900015y] [PMID: 19267452]
[76]
Hosseinkhani, H.; Tabata, Y. Self assembly of DNA nanoparticles with polycations for the delivery of genetic materials into cells. J. Nanosci. Nanotechnol., 2006, 6(8), 2320-2328.
[http://dx.doi.org/10.1166/jnn.2006.507] [PMID: 17037837]
[77]
Hosseinkhani, H.; Kushibiki, T.; Matsumoto, K.; Nakamura, T.; Tabata, Y. Enhanced suppression of tumor growth using a combination of NK4 plasmid DNA-PEG engrafted cationized dextran complex and ultrasound irradiation. Cancer Gene Ther., 2006, 13(5), 479-489.
[http://dx.doi.org/10.1038/sj.cgt.7700918] [PMID: 16276347]
[78]
Thomas, J.J.; Rekha, M.R.; Sharma, C.P. Dextran-glycidyltrimethylammonium chloride conjugate/DNA nanoplex: A potential non-viral and haemocompatible gene delivery system. Int. J. Pharm., 2010, 389(1-2), 195-206.
[http://dx.doi.org/10.1016/j.ijpharm.2010.01.011] [PMID: 20080161]
[79]
Thomas, J.J.; Rekha, M.R.; Sharma, C.P. Dextran-protamine polycation: An efficient nonviral and haemocompatible gene delivery system. Colloids Surf. B Biointerfaces, 2010, 81(1), 195-205.
[http://dx.doi.org/10.1016/j.colsurfb.2010.07.015] [PMID: 20656464]
[80]
Tseng, W.C.; Tang, C.H.; Fang, T.Y. The role of dextran conjugation in transfection mediated by dextran-grafted polyethylenimine. J. Gene Med., 2004, 6(8), 895-905.
[http://dx.doi.org/10.1002/jgm.572] [PMID: 15293348]
[81]
Abedini, F.; Hosseinkhani, H.; Ismail, M.; Chen, Y.R.; Omar, A.R.; Chong, P.P.; Domb, A.J. In vitro intracellular trafficking of biodegradable nanoparticles dextran-spermine in cancer cell lines. Int. J. Nanotechnol., 2011, 8, 712-723.
[http://dx.doi.org/10.1504/IJNT.2011.041440]
[82]
Hosseinkhani, H.; Hosseinkhani, M.; Chen, Y.R.; Subramani, K.; Domb, A.J. Innovative technology of engineering magnetic DNA nanoparticles for gene therapy. Int. J. Nanotechnol., 2011, 8, 724-735.
[http://dx.doi.org/10.1504/IJNT.2011.041441]
[83]
Eliyahu, H.; Makovitzki, A.; Azzam, T.; Zlotkin, A.; Joseph, A.; Gazit, D.; Barenholz, Y.; Domb, A.J. Novel dextran-spermine conjugates as transfecting agents: Comparing water-soluble and micellar polymers. Gene Ther., 2005, 12(6), 494-503.
[http://dx.doi.org/10.1038/sj.gt.3302395] [PMID: 15565162]
[84]
Eliyahu, H.; Siani, S.; Azzam, T.; Domb, A.J.; Barenholz, Y. Relationships between chemical composition, physical properties and transfection efficiency of polysaccharide-spermine conjugates. Biomaterials, 2006, 27(8), 1646-1655.
[http://dx.doi.org/10.1016/j.biomaterials.2005.09.005] [PMID: 16242185]
[85]
Abedini, F.; Ismail, M.; Hosseinkhani, H.; Ibrahim, T.A.T.; Omar, A.R.; Chong, P.P.; Bejo, M.H.; Domb, A.J. Effects of CXCR4 siRNA/dextran-spermine nanoparticles on CXCR4 expression and serum LDH levels in a mouse model of colorectal cancer metastasis to the liver. Cancer Manag. Res., 2011, 3, 301-309.
[http://dx.doi.org/10.2147/CMR.S11678] [PMID: 21931504]
[86]
Hosseinkhani, H.; Aoyama, T.; Ogawa, O.; Tabata, Y. Liver targeting of plasmid DNA by pullulan conjugation based on metal coordination. J. Control. Release, 2002, 83(2), 287-302.
[http://dx.doi.org/10.1016/S0168-3659(02)00201-8] [PMID: 12363454]
[87]
Constantin, M.; Oanea, I.; Harabagiu, V.; Ascenzi, P.; Fundueanu, G. DNA complexation by cationic pullulan possessing thermo-sensitive units. Dig. J. Nanomater. Biostruct., 2011, 6, 849-861.
[88]
Thomsen, L.B.; Lichota, J.; Kim, K.S.; Moos, T. Gene delivery by pullulan derivatives in brain capillary endothelial cells for protein secretion. J. Control. Release, 2011, 151(1), 45-50.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.002] [PMID: 21251935]
[89]
Takedatsu, H.; Mitsuyama, K.; Mochizuki, S.; Kobayashi, T.; Sakurai, K.; Takeda, H.; Fujiyama, Y.; Koyama, Y.; Nishihira, J.; Sata, M. A new therapeutic approach using a schizophyllan-based drug delivery system for inflammatory bowel disease. Mol. Ther., 2012, 20(6), 1234-1241.
[http://dx.doi.org/10.1038/mt.2012.24] [PMID: 22334022]
[90]
Krebs, M.D.; Salter, E.; Chen, E.; Sutter, K.A.; Alsberg, E. Calcium phosphate-DNA nanoparticle gene delivery from alginate hydrogels induces in vivo osteogenesis. J. Biomed. Mater. Res. A, 2010, 92(3), 1131-1138.
[http://dx.doi.org/10.1002/jbm.a.32441] [PMID: 19322877]
[91]
Xu, F.J.; Ping, Y.; Ma, J.; Tang, G.P.; Yang, W.T.; Li, J.; Kang, E.T.; Neoh, K.G. Comb-shaped copolymers composed of hydroxypropyl cellulose backbones and cationic poly((2-dimethyl amino)ethyl methacrylate) side chains for gene delivery. Bioconjug. Chem., 2009, 20(8), 1449-1458.
[http://dx.doi.org/10.1021/bc900044h] [PMID: 19645475]
[92]
Boddohi, S.; Kipper, M.J. Engineering nanoassemblies of polysaccharides. Adv. Mater., 2010, 22(28), 2998-3016.
[http://dx.doi.org/10.1002/adma.200903790] [PMID: 20593437]
[93]
d’Ayala, G.G.; Malinconico, M.; Laurienzo, P. Marine derived polysaccharides for biomedical applications: Chemical modification approaches. Molecules, 2008, 13(9), 2069-2106.
[http://dx.doi.org/10.3390/molecules13092069] [PMID: 18830142]
[94]
Crini, G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci., 2005, 30, 38-70.
[http://dx.doi.org/10.1016/j.progpolymsci.2004.11.002]
[95]
Covaliu, C.I.; Berger, D.; Matei, C.; Diamandescu, L.; Vasile, E.; Cristea, C.; Ionita, V.; Iovu, H. Magnetic nanoparticles coated with polysaccharide polymers for potential biomedical applications. J. Nanopart. Res., 2011, 13, 6169-6180.
[http://dx.doi.org/10.1007/s11051-011-0452-6]
[96]
Pankhurst, Q.A.; Connolly, J.; Jones, S.K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys., 2003, 36, R167.
[http://dx.doi.org/10.1088/0022-3727/36/13/201]
[97]
Uthaman, S.; Lee, S.J.; Cherukula, K.; Cho, C.S.; Park, I.K. Polysaccharide-coated magnetic nanoparticles for imaging and gene therapy. BioMed Res. Int., 2015, 2015, 959175.
[http://dx.doi.org/10.1155/2015/959175] [PMID: 26078971]
[98]
Dobson, J. Gene therapy progress and prospects: Magnetic nanoparticle-based gene delivery. Gene Ther., 2006, 13(4), 283-287.
[http://dx.doi.org/10.1038/sj.gt.3302720] [PMID: 16462855]
[99]
Cherukuri, P.; Glazer, E.S.; Curley, S.A. Targeted hyperthermia using metal nanoparticles. Adv. Drug Deliv. Rev., 2010, 62(3), 339-345.
[http://dx.doi.org/10.1016/j.addr.2009.11.006] [PMID: 19909777]
[100]
Lee, H.; Lee, E.; Kim, D.K.; Jang, N.K.; Jeong, Y.Y.; Jon, S. Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J. Am. Chem. Soc., 2006, 128(22), 7383-7389.
[http://dx.doi.org/10.1021/ja061529k] [PMID: 16734494]
[101]
Kim, S.; Lim, C.K.; Na, J.; Lee, Y.D.; Kim, K.; Choi, K.; Leary, J.F.; Kwon, I.C. Conjugated polymer nanoparticles for biomedical in vivo imaging. Chem. Commun. (Camb.), 2010, 46(10), 1617-1619.
[http://dx.doi.org/10.1039/b923309a] [PMID: 20177593]
[102]
Shen, F.; Li, A.A.; Gong, Y.K.; Somers, S.; Potter, M.A.; Winnik, F.M.; Chang, P.L. Encapsulation of recombinant cells with a novel magnetized alginate for magnetic resonance imaging. Hum. Gene Ther., 2005, 16(8), 971-984.
[http://dx.doi.org/10.1089/hum.2005.16.971] [PMID: 16076255]
[103]
Veiseh, O.; Sun, C.; Fang, C.; Bhattarai, N.; Gunn, J.; Kievit, F.; Du, K.; Pullar, B.; Lee, D.; Ellenbogen, R.G.; Olson, J.; Zhang, M. Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier. Cancer Res., 2009, 69(15), 6200-6207.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1157] [PMID: 19638572]
[104]
Lewin, M.; Carlesso, N.; Tung, C.H.; Tang, X.W.; Cory, D.; Scadden, D.T.; Weissleder, R. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol., 2000, 18(4), 410-414.
[http://dx.doi.org/10.1038/74464] [PMID: 10748521]
[105]
Lee, Y.; Lee, H.; Kim, Y.B.; Kim, J.; Hyeon, T.; Park, H.; Messersmith, P.B.; Park, T.G. Bioinspired surface immobilization of hyaluronic acid on monodisperse magnetite nanocrystals for targeted cancer imaging. Adv. Mater., 2008, 20(21), 4154-4157.
[http://dx.doi.org/10.1002/adma.200800756] [PMID: 19606262]
[106]
Yuk, S.H.; Oh, K.S.; Cho, S.H.; Lee, B.S.; Kim, S.Y.; Kwak, B-K.; Kim, K.; Kwon, I.C. Glycol chitosan/heparin immobilized iron oxide nanoparticles with a tumor-targeting characteristic for magnetic resonance imaging. Biomacromolecules, 2011, 12(6), 2335-2343.
[http://dx.doi.org/10.1021/bm200413a] [PMID: 21506550]
[107]
Vu-Quang, H.; Muthiah, M.; Kim, Y.K.; Cho, C.S.; Namgung, R.; Kim, W.J.; Rhee, J.H.; Kang, S.H.; Jun, S.Y.; Choi, Y.J.; Jeong, Y.Y.; Park, I.K. Carboxylic mannan-coated iron oxide nanoparticles targeted to immune cells for lymph node-specific MRI in vivo. Carbohydr. Polym., 2012, 88, 780-788.
[http://dx.doi.org/10.1016/j.carbpol.2012.01.067]
[108]
Gao, F.; Cai, Y.; Zhou, J.; Xie, X.; Ouyang, W.; Zhang, Y.; Wang, X.; Zhang, X.; Wang, X.; Zhao, L.; Tang, J. Pullulan acetate coated magnetite nanoparticles for hyper-thermia: Preparation, characterization and in vitro experiments. Nano Res., 2010, 3, 23-31.
[http://dx.doi.org/10.1007/s12274-010-1004-6]
[109]
Cole, A.J.; David, A.E.; Wang, J.; Galbán, C.J.; Hill, H.L.; Yang, V.C. Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials, 2011, 32(8), 2183-2193.
[http://dx.doi.org/10.1016/j.biomaterials.2010.11.040] [PMID: 21176955]
[110]
Tsai, Z.T.; Wang, J.F.; Kuo, H.Y.; Shen, C.R.; Wang, J.J.; Yen, T.C. In situ preparation of high relaxivity iron oxide nanoparticles by coating with chitosan: A potential MRI contrast agent useful for cell tracking. J. Magn. Magn. Mater., 2010, 332(2), 208-213.
[http://dx.doi.org/10.1016/j.jmmm.2009.08.049]
[111]
Dai, L.; Liu, R.; Hu, L.Q.; Wang, J.H.; Si, C.L. Self-assembled PEG-carboxymethylcellulose nanoparticles/α-cyclodextrin hydrogels for injectable and thermosensitive drug delivery. RSC Advances, 2017, 7, 2905-2912.
[http://dx.doi.org/10.1039/C6RA25793C]
[112]
Dandekar, P.; Jain, R.; Keil, M.; Loretz, B.; Koch, M.; Wenz, G.; Lehr, C-M. Enhanced uptake and siRNA-mediated knockdown of a biologically relevant gene using cyclodextrin polyrotaxane. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(13), 2590-2598.
[http://dx.doi.org/10.1039/C4TB01821D] [PMID: 32262906]
[113]
Dandekar, P.; Jain, R.; Keil, M.; Loretz, B.; Muijs, L.; Schneider, M.; Auerbach, D.; Jung, G.; Lehr, C-M.; Wenz, G. Cellular delivery of polynucleotides by cationic cyclodextrin polyrotaxanes. J. Control. Release, 2012, 164(3), 387-393.
[http://dx.doi.org/10.1016/j.jconrel.2012.06.040] [PMID: 22789529]
[114]
Miao, T.; Wang, J.; Zeng, Y.; Liu, G.; Chen, X. Polysaccharide-based controlled release systems for therapeutics delivery and tissue engineering: From bench to bedside. Adv. Sci. (Weinh.), 2018, 5(4), 1700513.
[http://dx.doi.org/10.1002/advs.201700513] [PMID: 29721408]
[115]
Badwaik, V.D.; Aicart, E.; Mondjinou, Y.A.; Johnson, M.A.; Bowman, V.D.; Thompson, D.H. Structure-property relationship for in vitro siRNA delivery performance of cationic 2-hydroxypropyl-β-cyclodextrin: PEG-PPG-PEG polyrotaxane vectors. Biomaterials, 2016, 84, 86-98.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.032] [PMID: 26826298]
[116]
Tamura, A.; Nishida, K.; Yui, N. Lysosomal pH-inducible supramolecular dissociation of polyrotaxanes possessing acid-labile N-triphenylmethyl end groups and their therapeutic potential for Niemann-Pick type C disease. Sci. Technol. Adv. Mater., 2016, 17(1), 361-374.
[http://dx.doi.org/10.1080/14686996.2016.1200948] [PMID: 27877888]
[117]
Carstea, E.D.; Morris, J.A.; Coleman, K.G.; Loftus, S.K.; Zhang, D.; Cummings, C.; Gu, J.; Rosenfeld, M.A.; Pavan, W.J.; Krizman, D.B.; Nagle, J.; Polymeropoulos, M.H.; Sturley, S.L.; Ioannou, Y.A.; Higgins, M.E.; Comly, M.; Cooney, A.; Brown, A.; Kaneski, C.R.; Blanchette-Mackie, E.J.; Dwyer, N.K.; Neufeld, E.B.; Chang, T.Y.; Liscum, L.; Strauss, J.F., III; Ohno, K.; Zeigler, M.; Carmi, R.; Sokol, J.; Markie, D.; O’Neill, R.R.; van Diggelen, O.P.; Elleder, M.; Patterson, M.C.; Brady, R.O.; Vanier, M.T.; Pentchev, P.G.; Tagle, D.A. Niemann-Pick C1 disease gene: Homology to mediators of cholesterol homeostasis. Science, 1997, 277(5323), 228-231.
[http://dx.doi.org/10.1126/science.277.5323.228] [PMID: 9211849]
[118]
Higashi, T. Cyclodextrin-based molecular accessories for drug discovery and drug delivery. Chem. Pharm. Bull. (Tokyo), 2019, 67(4), 289-298.
[http://dx.doi.org/10.1248/cpb.c18-00735] [PMID: 30930430]
[119]
Crumling, M.A.; Liu, L.; Thomas, P.V.; Benson, J.; Kanicki, A.; Kabara, L.; Ha, K.; Dolan, D.; Duncan, R.K. Hearing loss and hair cell death in mice given the cholesterol-chelating agent hydroxypropyl- b - cyclodextrin. PLoS One, 2012, 7, 1-8.
[http://dx.doi.org/10.1371/journal.pone.0053280]
[120]
Zhao, L.; Zhang, K.; Bu, W.; Xu, X.; Jin, H.; Chang, B.; Wang, B.; Sun, Y.; Yang, B.; Zheng, C.; Sun, H. Effective delivery of bone morphogenetic protein 2 gene using chitosan–polyethylenimine nanoparticle to promote bone formation. RSC Advances, 2016, 6, 34081-34089.
[http://dx.doi.org/10.1039/C5RA24891D]
[121]
Xu, Z.; Wang, Y.; Zhang, L.; Huang, L. Nanoparticle-delivered transforming growth factor-β siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. ACS Nano, 2014, 8(4), 3636-3645.
[http://dx.doi.org/10.1021/nn500216y] [PMID: 24580381]
[122]
Salva, E.; Kabasakal, L.; Eren, F.; Ozkan, N. Cakalağaoğlu, F.; Akbuğa, J. Local delivery of chitosan/VEGF siRNA nanoplexes reduces angiogenesis and growth of breast cancer in vivo. Nucleic Acid Ther., 2012, 22(1), 40-48.
[http://dx.doi.org/10.1089/nat.2011.0312] [PMID: 22217324]
[123]
Ganesh, S.; Iyer, A.K.; Gattacceca, F.; Morrissey, D.V.; Amiji, M.M. In vivo biodistribution of siRNA and cisplatin administered using CD44-targeted hyaluronic acid nanoparticles. J. Control. Release, 2013, 172(3), 699-706.
[http://dx.doi.org/10.1016/j.jconrel.2013.10.016] [PMID: 24161254]
[124]
Lostalé-Seijo, I.; Montenegro, J. Synthetic materials at the forefront of gene delivery. Nat. Rev. Chem., 2018, 2, 258-277.
[http://dx.doi.org/10.1038/s41570-018-0039-1]
[125]
Bae, Y.H.; Park, K. Targeted drug delivery to tumors: Myths, reality and possibility. J. Control. Release, 2011, 153(3), 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001] [PMID: 21663778]
[126]
Kaur, K.; Rath, G.; Chandra, S.; Singh, R.; Goyal, A.K. Chemotherapy with si-RNA and anti-cancer drugs. Curr. Drug Deliv., 2018, 15(3), 300-311.
[http://dx.doi.org/10.2174/1567201814666170518141440] [PMID: 28521675]
[127]
Pai, S.I.; Lin, Y.Y.; Macaes, B.; Meneshian, A.; Hung, C.F.; Wu, T.C. Prospects of RNA interference therapy for cancer. Gene Ther., 2006, 13(6), 464-477.
[http://dx.doi.org/10.1038/sj.gt.3302694] [PMID: 16341059]
[128]
Posocco, B.; Dreussi, E.; De Santa, J.; Toffoli, G.; Abrami, M.; Musiani, F.; Grassi, M.; Farra, R.; Tonon, F.; Grassi, G.; Dapas, B. Polysaccharides for the delivery of antitumor drugs. Materials (Basel), 2015, 8, 2569-2615.
[http://dx.doi.org/10.3390/ma8052569]
[129]
Choi, K.Y.; Silvestre, O.F.; Huang, X.; Hida, N.; Liu, G.; Ho, D.N.; Lee, S.; Lee, S.W.; Hong, J.I.; Chen, X. A nanoparticle formula for delivering siRNA or miRNAs to tumor cells in cell culture and in vivo. Nat. Protoc., 2014, 9(8), 1900-1915.
[http://dx.doi.org/10.1038/nprot.2014.128] [PMID: 25033207]
[130]
Yang, X.; Iyer, A.K.; Singh, A.; Milane, L.; Choy, E.; Hornicek, F.J.; Amiji, M.M.; Duan, Z. Cluster of differentiation 44 targeted hyaluronic acid based nanoparticles for MDR1 siRNA delivery to overcome drug resistance in ovarian cancer. Pharm. Res., 2015, 32(6), 2097-2109.
[http://dx.doi.org/10.1007/s11095-014-1602-1] [PMID: 25515492]
[131]
Zhao, Y.; Wang, W.; Guo, S.; Wang, Y.; Miao, L.; Xiong, Y.; Huang, L. PolyMetformin combines carrier and anticancer activities for in vivo siRNA delivery. Nat. Commun., 2016, 7, 11822.
[http://dx.doi.org/10.1038/ncomms11822]
[132]
Hyun, E.J.; Hasan, M.N.; Kang, S.H.; Cho, S.; Lee, Y.K. Oral siRNA delivery using dual transporting systems to efficiently treat colorectal liver metastasis. Int. J. Pharm., 2019, 555, 250-258.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.009] [PMID: 30399434]
[133]
Talekar, M.; Trivedi, M.; Shah, P.; Ouyang, Q.; Oka, A.; Gandham, S.; Amiji, M.M. Combination wt-p53 and MicroRNA-125b transfection in a genetically engineered lung cancer model using dual CD44/EGFR-targeting nanoparticles. Mol. Ther., 2016, 24(4), 759-769.
[http://dx.doi.org/10.1038/mt.2015.225] [PMID: 26686386]
[134]
Li, Y.F.; Zhang, H.T.; Xin, L. Hyaluronic acid-modified polyamidoamine dendrimer G5-entrapped gold nanoparticles delivering METase gene inhibits gastric tumor growth via targeting CD44+ gastric cancer cells. J. Cancer Res. Clin. Oncol., 2018, 144(8), 1463-1473.
[http://dx.doi.org/10.1007/s00432-018-2678-5] [PMID: 29858680]
[135]
Cosco, D.; Cilurzo, F.; Maiuolo, J.; Federico, C.; Di Martino, M.T.; Cristiano, M.C.; Tassone, P.; Fresta, M.; Paolino, D. Delivery of miR-34a by chitosan/PLGA nanoplexes for the anticancer treatment of multiple myeloma. Sci. Rep., 2015, 5, 17579.
[http://dx.doi.org/10.1038/srep17579] [PMID: 26620594]
[136]
Fan, L.; Yang, Q.; Tan, J.; Qiao, Y.; Wang, Q.; He, J.; Wu, H.; Zhang, Y. Dual loading miR-218 mimics and Temozolomide using AuCOOH@FA-CS drug delivery system: Promising targeted anti-tumor drug delivery system with sequential release functions. J. Exp. Clin. Cancer Res., 2015, 34, 106.
[http://dx.doi.org/10.1186/s13046-015-0216-8] [PMID: 26407971]
[137]
Wang, K.; Kievit, F.M.; Sham, J.G.; Jeon, M.; Stephen, Z.R.; Bakthavatsalam, A.; Park, J.O.; Zhang, M. Iron-oxide-based nanovector for tumor targeted siRNA delivery in an orthotopic hepatocellular carcinoma xenograft mouse model. Small, 2016, 12(4), 477-487.
[http://dx.doi.org/10.1002/smll.201501985] [PMID: 26641029]
[138]
Van Woensel, M.; Wauthoz, N.; Rosière, R.; Mathieu, V.; Kiss, R.; Lefranc, F.; Steelant, B.; Dilissen, E.; Van Gool, S.W.; Mathivet, T.; Gerhardt, H.; Amighi, K.; De Vleeschouwer, S. Development of siRNA-loaded chitosan nanoparticles targeting Galectin-1 for the treatment of glioblastoma multiforme via intranasal administration. J. Control. Release, 2016, 227, 71-81.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.032] [PMID: 26902800]
[139]
Zhao, F.; Yin, H.; Li, J. Supramolecular self-assembly forming a multifunctional synergistic system for targeted co-delivery of gene and drug. Biomaterials, 2014, 35(3), 1050-1062.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.044] [PMID: 24189097]
[140]
Liu, T.; Xue, W.; Ke, B.; Xie, M.Q.; Ma, D. Star-shaped cyclodextrin-poly(l-lysine) derivative co-delivering docetaxel and MMP-9 siRNA plasmid in cancer therapy. Biomaterials, 2014, 35(12), 3865-3872.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.040] [PMID: 24486215]
[141]
Liu, T.; Wu, X.; Wang, Y.; Zhang, T.; Wu, T.; Liu, F.; Wang, W.; Jiang, G.; Xie, M. Folate-targeted star-shaped cationic copolymer co-delivering docetaxel and MMP-9 siRNA for nasopharyngeal carcinoma therapy. Oncotarget, 2016, 7(27), 42017-42030.
[http://dx.doi.org/10.18632/oncotarget.9771] [PMID: 27259274]
[142]
Shen, J.; Kim, H.C.; Su, H.; Wang, F.; Wolfram, J.; Kirui, D.; Mai, J.; Mu, C.; Ji, L.N.; Mao, Z.W.; Shen, H. Cyclodextrin and polyethylenimine functionalized mesoporous silica nanoparticles for delivery of siRNA cancer therapeutics. Theranostics, 2014, 4(5), 487-497.
[http://dx.doi.org/10.7150/thno.8263] [PMID: 24672582]
[143]
Safety Study of CALAA-01 to Treat Solid Tumor Cancers - Fulltext View - ClinicalTrials.gov.. Available from: https://clinicaltrials.gov/ct2/show/NCT00689065 (accessed February 19, 2021).
[144]
Danhauser-Riedl, S.; Hausmann, E.; Schick, H.D.; Bender, R.; Dietzfelbinger, H.; Rastetter, J.; Hanauske, A.R. Phase I clinical and pharmacokinetic trial of dextran conjugated doxorubicin (AD-70, DOX-OXD). Invest. New Drugs, 1993, 11(2-3), 187-195.
[http://dx.doi.org/10.1007/BF00874153] [PMID: 7505268]
[145]
Soepenberg, O.; de Jonge, M.J.A.; Sparreboom, A.; de Bruin, P.; Eskens, F.A.L.M.; de Heus, G.; Wanders, J.; Cheverton, P.; Ducharme, M.P.; Verweij, J. Phase I and pharmacokinetic study of DE-310 in patients with advanced solid tumors. Clin. Cancer Res., 2005, 11(2 Pt 1), 703-711.
[PMID: 15701859]
[146]
Veltkamp, S.A.; Witteveen, E.O.; Capriati, A.; Crea, A.; Animati, F.; Voogel-Fuchs, M.; van den Heuvel, I.J.G.M.; Beijnen, J.H.; Voest, E.E.; Schellens, J.H.M. Clinical and pharmacologic study of the novel prodrug delimotecan (MEN 4901/T-0128) in patients with solid tumors. Clin. Cancer Res., 2008, 14(22), 7535-7544.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0438] [PMID: 19010872]
[147]
Bigioni, M.; Parlani, M.; Bressan, A.; Bellarosa, D.; Rivoltini, L.; Animati, F.; Crea, A.; Bugianesi, R.; Maggi, C.A.; Manzini, S.; Binaschi, M. Antitumor activity of delimotecan against human metastatic melanoma: Pharmacokinetics and molecular determinants. Int. J. Cancer, 2009, 125(10), 2456-2464.
[http://dx.doi.org/10.1002/ijc.24661] [PMID: 19536774]
[148]
Kim, D.Y.; Paik, Y.H.; Ahn, S.H.; Youn, Y.J.; Choi, J.W.; Kim, J.K.; Lee, K.S.; Chon, C.Y.; Han, K.H. PIVKA-II is a useful tumor marker for recurrent hepatocellular carcinoma after surgical resection. Oncology, 2007, 72(Suppl. 1), 52-57.
[http://dx.doi.org/10.1159/000111707]
[149]
Pinnix, C.; Perkins, G.H.; Strom, E.A.; Tereffe, W.; Woodward, W.; Oh, J.L.; Arriaga, L.; Munsell, M.F.; Kelly, P.; Hoffman, K.E.; Smith, B.D.; Buchholz, T.A.; Yu, T.K. Topical hyaluronic acid vs. standard of care for the prevention of radiation dermatitis after adjuvant radiotherapy for breast cancer: single-blind randomized phase III clinical trial. Int. J. Radiat. Oncol. Biol. Phys., 2012, 83(4), 1089-1094.
[http://dx.doi.org/10.1016/j.ijrobp.2011.09.021] [PMID: 22172912]
[150]
Bassi, P.F.; Volpe, A.; D’Agostino, D.; Palermo, G.; Renier, D.; Franchini, S.; Rosato, A.; Racioppi, M. Paclitaxel-hyaluronic acid for intravesical therapy of bacillus Calmette-Guérin refractory carcinoma in situ of the bladder: results of a phase I study. J. Urol., 2011, 185(2), 445-449.
[http://dx.doi.org/10.1016/j.juro.2010.09.073] [PMID: 21167517]
[151]
CRLX101 in Combination With Bevacizumab for Recurrent Ovarian/Tubal/Peritoneal Cancer - Full Text View - ClinicalTrials.gov Available from: https://clinicaltrials.gov/ct2/show/NCT01652079 (Accessed on: February 26, 2021).
[152]
Pham, E.; Birrer, M.J.; Eliasof, S.; Garmey, E.G.; Lazarus, D.; Lee, C.R.; Man, S.; Matulonis, U.A.; Peters, C.G.; Xu, P.; Krasner, C.; Kerbel, R.S. Translational impact of nanoparticle-drug conjugate CRLX101 with or without bevacizumab in advanced ovarian cancer. Clin. Cancer Res., 2015, 21(4), 808-818.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2810] [PMID: 25524310]
[153]
Neoadjuvant Chemoradiotherapy With CRLX-101 and Capecitabine for Rectal Cancer - Full Text View - ClinicalTrials.gov Available from: https://clinicaltrials.gov/ct2/show/NCT02010567 (Accessed on: February 26, 2021).
[154]
Weiss, G.J.; Chao, J.; Neidhart, J.D.; Ramanathan, R.K.; Bassett, D.; Neidhart, J.A.; Choi, C.H.J.; Chow, W.; Chung, V.; Forman, S.J.; Garmey, E.; Hwang, J.; Kalinoski, D.L.; Koczywas, M.; Longmate, J.; Melton, R.J.; Morgan, R.; Oliver, J.; Peterkin, J.J.; Ryan, J.L.; Schluep, T.; Synold, T.W.; Twardowski, P.; Davis, M.E.; Yen, Y. First-in-human phase 1/2a trial of CRLX101, a cyclodextrin-containing polymer-camptothecin nanopharmaceutical in patients with advanced solid tumor malignancies. Invest. New Drugs, 2013, 31(4), 986-1000.
[http://dx.doi.org/10.1007/s10637-012-9921-8] [PMID: 23397498]
[155]
Study of CRLX101 (NLG207) in the Treatment of Advanced Solid Tumors - Full Text View - ClinicalTrials.gov Available from: https://www.clinicaltrials.gov/ct2/show/NCT00333502 (Accessed on: February 26, 2021).
[156]
Schluep, T.; Hwang, J.; Cheng, J.; Heidel, J.D.; Bartlett, D.W.; Hollister, B.; Davis, M.E. Preclinical efficacy of the camptothecin-polymer conjugate IT-101 in multiple cancer models. Clin. Cancer Res., 2006, 12(5), 1606-1614.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1566] [PMID: 16533788]
[157]
Trial of EP0057, a nanoparticle camptothecin with olaparib in people with relapsed/refractory small cell lung cancer - full text view - ClinicalTrials.gov Available from: https://clinicaltrials.gov/ct2/show/NCT02769962 (Accessed on: February 26, 2021).
[158]
Tan, P.L. Company profile: Tissue regeneration for diabetes and neurological diseases at Living Cell Technologies. Regen. Med., 2010, 5(2), 181-187.
[http://dx.doi.org/10.2217/rme.10.4] [PMID: 20210578]
[159]
Living Cell Technologies Ltd. New Zealand Pigs Free of Viruses | BioSpace Available from: https://www.biospace.com/article/releases/living-cell-technologies-ltd-new-zealand-pigs-free-of-viruses-/?s=111 (Accessed on: February 26, 2021).
[160]
IK-5001 for the Prevention of Remodeling of the Ventricle and Congestive Heart Failure After Acute Myocardial Infarction - Full Text View - ClinicalTrials.gov Available from: https://clinicaltrials.gov/ct2/show/NCT01226563 (Accessed on: February 26, 2021).
[161]
Frey, N.; Linke, A.; Süselbeck, T.; Müller-Ehmsen, J.; Vermeersch, P.; Schoors, D.; Rosenberg, M.; Bea, F.; Tuvia, S.; Leor, J. Intracoronary delivery of injectable bioabsorbable scaffold (IK-5001) to treat left ventricular remodeling after ST-elevation myocardial infarction: a first-in-man study. Circ. Cardiovasc. Interv., 2014, 7(6), 806-812.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.114.001478] [PMID: 25351198]
[162]
Pritchard, M.F.; Oakley, J.L.; Brilliant, C.D.; Rye, P.D.; Forton, J.; Doull, I.J.M.; Ketchell, I.; Hill, K.E.; Thomas, D.W.; Lewis, P.D. Mucin structural interactions with an alginate oligomer mucolytic in cystic fibrosis sputum. Vib. Spectrosc., 2019, 103, 102932.
[http://dx.doi.org/10.1016/j.vibspec.2019.102932]
[163]
Yong-Hee, K.; Lee, H. Short interface RNA gene delivery system for systemic circulation. W.O. Patent 2014051318A2, 2014.
[164]
Mitchell, W.M. Conjugated RNAi therapeutics. U.S. Patent 20090142391A1, 2009.
[165]
Philips, A.; Raemaekers, R. Methods and compositions for increasing RNA interface. W.O. Patent 2009103808A2, 2009.
[166]
Chaddock, J.; Beard, M. RNA delivery vehicles. W.O. Patent 2009083738A2, 2009.
[167]
Chatterton, J.E.; Clark, A.F.; Wax, M.B. RNAi-Mediated inhibition of CONNEXIN 43 for treatment of IOP-related conditions. W.O. Patent 2009102931, 2009.
[168]
James, M.; Leonid, B. RNAi mediated inhibition of intercellular adhesion molecule (ICAM) gene expression using short interfering nucleic acid (siNA). U.S. Patent 20090192105A1, 2009.
[169]
Sakurai, K. (Nucleic acid)-polysaccharide complex. E.P. Patent 2594592A1, 2014.
[170]
Slager, J. Functionalized polysaccharides for active agent delivery. U.S. Patent 20120190726A1, 2014.
[171]
Lieberman, J.; Song, E. Method of delivering RNA interference and uses thereof. US20080153737A1, 2012.
[172]
Richardson, T.; Chu, C.; Hrkach, J. Polysaccharides for delivery of active agents. U.S. Patent 20070037776A1, 2007.
[173]
Robert, W.J.; Hasan, U.; Mehmet Yaman, B. Polyamine-containing polymers and methods of synthesis and use. U.S. Patent 20130102079A1, 2013.
[174]
Takeuchi, H.; Tozuka, Y.; Hira, Y.; Toyobuku, H. Nucleic acid complex, and nucleic acid delivery composition. W.O. Patent 2009061003A3, 2010.
[175]
Stephen, J.M.; Balint, K.; Robert, J.N. Polysaccharide-containing block copolymer particles and use thereof. U.S. Patent 20140017331A1, 2014.
[176]
Ralph Leon, B.; Nathalie Marie-Josephe, G.; Phillippe Vincent, H.; Jan, P.; Marcelle Paulette, V.M. Pneumococcal polysaccharides conjugate vaccine. E.P. Patent 3017827B1, 2018.
[177]
Manoharan, M.; Kallanthottathil, G.R.; Jayaprakash, K.N.; Martin, M. Carbohydrate conjugates as delivery agents for oligonucleotides. W.O. Patent 2009073809A2, 2009.
[178]
Chen, J.; Herman, N.E.; Qing, G. Compositions and methods for delivery of siRNA and shRNA. W.O. Patent 2004029213A3, 2004.
[179]
Bettencourt, B. Methods of treating TTR mediated amyloidosis. W.O. Patent 2016033326A2, 2016.
[180]
Muthiah, M.; Kallanthottathil, G.R. Modified RNAi agents. A.U. Patent 2013296321B2, 2019.
[181]
Giese, K.; Kaufmann, J.; Anke, K-G. Interfering RNA molecules. U.S. Patent 20190390201A1, 2020.
[182]
Boe, S.; Hovig, E.J. Method for introducing siRNA into cells by photochemical internalization. U.S. Patent 9700622B2, 2017.
[183]
Sun-Hwa, K.; Ji-Hoon, J.; Tae-Gwan, P. siRNA-hydrophilic polymer conjugates for intracellular delivery of siRNA and method thereof. E.P. Patent 1915449B1, 2016.
[184]
Paul, A.G.; Shuyuan, C. Gene or RNA delivery system. W.O. Patent 2007008220A8, 2008.
[185]
Giese, K.; Joerg, K. Use of double-stranded ribonucleic acid for inducing cell lysis. U.S. Patent 20050043263A1, 2008.
[186]
Aiping, H.Y.; Jim, A. Wright Antisense oligonucleotides directed to ribonucleotide reductase R1 and uses thereof in the treatment of cancer. C.A. Patent 2526393A1, 2004.
[187]
Lollo, B.; Jain, R. Oligomeric compounds and compositions for use in modulation of pri-miRNAs. U.S. Patent 8466120B2, 2017.
[188]
Tariq, M. Delivery of siRNA. W.O. Patent 2004048545A3, 2005.
[189]
Khvorova, A.; Reynolds, A.; Leake, D.; Marshall, W.; Scaringe, S. siRNA molecules targeting Bcl-2. E.P. Patent 2213738A3, 2012.
[190]
Kay, P.A.; Artuo, C.-R.; Charles, N. L.; Gabriel, L.-B. Delivery of siRNA by neutral lipid composition. J.P. Patent 2008536874A, 2008.
[191]
Minomi, K.; Harborth, J.; Cina, C.; Tsang, K.Y.; Ying, W.; Takahashi, H. RNA agents for P21 gene modulation. U.S. Patent 10405749B2, 2019.
[192]
Bob, B. Compositions and methods for specific inhibition of gene expression by dsRNA with modifications. J.P. Patent 6295232B2, 2018.
[193]
Edelstein, M.L.; Abedi, M.R.; Wixon, J. Gene therapy clinical trials worldwide to 2007--an update. J. Gene Med., 2007, 9(10), 833-842.
[http://dx.doi.org/10.1002/jgm.1100] [PMID: 17721874]
[194]
Gao, X.; Huang, L. Potentiation of cationic liposome-mediated gene delivery by polycations. Biochemistry, 1996, 35(3), 1027-1036.
[http://dx.doi.org/10.1021/bi952436a] [PMID: 8547238]
[195]
Yhee, J.Y.; Koo, H.; Lee, D.E.; Choi, K.; Kwon, I.C.; Kim, K. Multifunctional chitosan nanoparticles for tumor imaging and therapy. Adv. Polym. Sci., 2011, 243, 139-162.
[http://dx.doi.org/10.1007/12_2011_119]
[196]
De Smedt, S.C.; Demeester, J.; Hennink, W.E. Cationic polymer based gene delivery systems. Pharm. Res., 2000, 17(2), 113-126.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy