Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Natural Products as Bioactive Agents in the Prevention of Dementia

Author(s): Hamid Ullah, Abrar Hussain, Muhammad Asif, Faheem Nawaz and Mahmood Rasool*

Volume 22, Issue 4, 2023

Published on: 13 July, 2022

Page: [466 - 476] Pages: 11

DOI: 10.2174/1871527321666220422085835

open access plus

Abstract

Dementia is a complex syndrome of neurological disorders which is associated with cognitive functions of the body. The present review focuses on the role and application of natural products in the treatment of dementia and related diseases. The studies highlight that there exist some potent synthetic/semisynthetic drugs that can effectively target dementia and related diseases. In contrast, despite the existence of a large library of natural products, only a few of them (galantamine, huperzine A, etc.) have been approved as drugs against dementia. This fact is not discouraging because a large number of natural products, including classes of polyphenols, alkaloids, isothiocyanates, phytocannabinoids, and terpenoids, are in the process of drug development stages against dementia and related diseases. It is because they display some promising and diverse biological activities, including antioxidant, acetylcholinesterase inhibitory activity, and anti-amyloidogenic properties, which are significantly associated with the prevention of dementia syndrome. The studies reported in the literature reveal that bioactive natural products particularly target Alzheimer’s and Parkinson’s diseases by suppressing the risks responsible for dementia. Huperzine A has been identified as a potent natural product against Alzheimer’s disease. Despite the efficient role of natural products in preventing dementia, their direct application as drugs is still limited due to some controversial results obtained from their clinical trials; however, bioassay-guided drug development studies can prove them potential drugs against dementia and related diseases. This review provides useful information for researchers, pharmacologists, and medical doctors.

Keywords: Dementia, natural products, Alzheimer’s disease, Parkinson's disease, antioxidants, acetylcholinesterase, antiamyloidogenicactivity.

[1]
Chang D, Liu J, Bilinski K, et al. Herbal medicine for the treatment of vascular dementia: An overview of scientific evidence. Evid Based Complement Alternat Med 2016; 2016: 7293626.
[http://dx.doi.org/10.1155/2016/7293626]
[2]
Bansal N, Parle M. Dementia: An overview. J Pharm Technol Res 2014; 2(1): 29-45.
[3]
Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020; 396(10248): 413-46.
[http://dx.doi.org/10.1016/S0140-6736(20)30367-6] [PMID: 32738937]
[4]
Maiese K. Impacting dementia and cognitive loss with innovative strategies: Mechanistic target of rapamycin, clock genes, circular non-coding ribonucleic acids, and Rho/Rock. Neural Regen Res 2019; 14(5): 773-4.
[http://dx.doi.org/10.4103/1673-5374.249224] [PMID: 30688262]
[5]
Akter R, Rahman H, Behl T, et al. Prospective role of polyphenolic compounds in the treatment of neurodegenerative diseases. CNS Neurol Disord Drug Targets 2021; 20(5): 430-50.
[http://dx.doi.org/10.2174/1871527320666210218084444] [PMID: 33602109]
[6]
Dening T, Sandilyan MB. Dementia: Definitions and types. Nursing Standard 2015; 29(37): 37.
[http://dx.doi.org/10.7748/ns.29.37.37.e9405]
[7]
Arya A, Chahal R, Rao R, et al. Acetylcholinesterase inhibitory potential of various sesquiterpene analogues for Alzheimer’s disease therapy. Biomolecules 2021; 11(3): 350.
[http://dx.doi.org/10.3390/biom11030350] [PMID: 33669097]
[8]
Grover S, Somani A. Etiologies and risk factors for dementia. J Geriatr Mental Health 2016; 3(2): 100.
[http://dx.doi.org/10.4103/2348-9995.195601]
[9]
Buchman AS, Schneider JA, Leurgans S, Bennett DA. Physical frailty in older persons is associated with Alzheimer disease pathology. Neurology 2008; 71(7): 499-504.
[http://dx.doi.org/10.1212/01.wnl.0000324864.81179.6a] [PMID: 18695161]
[10]
Carrion C, Folkvord F, Anastasiadou D, Aymerich M. Cognitive therapy for dementia patients: A systematic review. Dement Geriatr Cogn Disord 2018; 46(1-2): 1-26.
[http://dx.doi.org/10.1159/000490851] [PMID: 30092585]
[11]
Perry E, Howes MJR. Medicinal plants and dementia therapy: Herbal hopes for brain aging? CNS Neurosci Ther 2011; 17(6): 683-98.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00202.x] [PMID: 22070157]
[12]
De la Rosa A, Olaso-Gonzalez G, Arc-Chagnaud C, et al. Physical exercise in the prevention and treatment of Alzheimer’s disease. J Sport Health Sci 2020; 9(5): 394-404.
[http://dx.doi.org/10.1016/j.jshs.2020.01.004] [PMID: 32780691]
[13]
Iuliano E, di Cagno A, Cristofano A, et al. Physical exercise for prevention of dementia (EPD) study: Background, design and methods. BMC Public Health 2019; 19(1): 659.
[http://dx.doi.org/10.1186/s12889-019-7027-3] [PMID: 31142290]
[14]
Bahar-Fuchs A, Clare L, Woods B. Cognitive training and cognitive rehabilitation for persons with mild to moderate dementia of the Alzheimer’s or vascular type: A review. Alzheimers Res Ther 2013; 5(4): 35.
[http://dx.doi.org/10.1186/alzrt189] [PMID: 23924584]
[15]
Nakajima A, Ohizumi Y, Yamada K. Anti-dementia activity of nobiletin, a citrus flavonoid: A review of animal studies. Clin Psychopharmacol Neurosci 2014; 12(2): 75-82.
[http://dx.doi.org/10.9758/cpn.2014.12.2.75] [PMID: 25191498]
[16]
Winblad B, Amouyel P, Andrieu S, et al. Defeating Alzheimer’s disease and other dementias: A priority for European science and socie-ty. Lancet Neurol 2016; 15(5): 455-532.
[http://dx.doi.org/10.1016/S1474-4422(16)00062-4] [PMID: 26987701]
[17]
Danysz W, Parsons CG. The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer’s disease: Preclinical evidence. Int J Geriatr Psychiatry 2003; 18 (Suppl. 1): S23-32.
[http://dx.doi.org/10.1002/gps.938] [PMID: 12973747]
[18]
Tewari D, Stankiewicz AM, Mocan A, et al. Ethnopharmacological approaches for dementia therapy and significance of natural products and herbal drugs. Front Aging Neurosci 2018; 10: 3.
[http://dx.doi.org/10.3389/fnagi.2018.00003] [PMID: 29483867]
[19]
Masopust J, Protopopová D, Vališ M, Pavelek Z, Klímová B. Treatment of behavioral and psychological symptoms of dementias with psychopharmaceuticals: A review. Neuropsychiatr Dis Treat 2018; 14: 1211-20.
[http://dx.doi.org/10.2147/NDT.S163842] [PMID: 29785112]
[20]
Libro R, Giacoppo S, Soundara Rajan T, Bramanti P, Mazzon E. Natural phytochemicals in the treatment and prevention of dementia: An overview. Molecules 2016; 21(4): 518.
[http://dx.doi.org/10.3390/molecules21040518] [PMID: 27110749]
[21]
Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010; 2(12): 1231-46.
[http://dx.doi.org/10.3390/nu2121231] [PMID: 22254006]
[22]
Vauzour D. Effect of flavonoids on learning, memory and neurocognitive performance: Relevance and potential implications for Alz-heimer’s disease pathophysiology. J Sci Food Agric 2014; 94(6): 1042-56.
[http://dx.doi.org/10.1002/jsfa.6473] [PMID: 24338740]
[23]
Dai J, Mumper RJ. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010; 15(10): 7313-52.
[http://dx.doi.org/10.3390/molecules15107313] [PMID: 20966876]
[24]
Rahman MH, Bajgai J, Fadriquela A, et al. Therapeutic potential of natural products in treating neurodegenerative disorders and their future prospects and challenges. Molecules 2021; 26(17): 5327.
[http://dx.doi.org/10.3390/molecules26175327] [PMID: 34500759]
[25]
Vauzour D, Rodriguez-Mateos A, Corona G, Oruna-Concha MJ, Spencer JP. Polyphenols and human health: Prevention of disease and mechanisms of action. Nutrients 2010; 2(11): 1106-31.
[http://dx.doi.org/10.3390/nu2111106] [PMID: 22254000]
[26]
Mukhtar H, Ahmad N. Tea polyphenols: Prevention of cancer and optimizing health. Am J Clin Nutr 2000; 71(6) (Suppl.): 1698S-702S.
[http://dx.doi.org/10.1093/ajcn/71.6.1698S] [PMID: 10837321]
[27]
Albarracin SL, Stab B, Casas Z, et al. Effects of natural antioxidants in neurodegenerative disease. Nutr Neurosci 2012; 15(1): 1-9.
[http://dx.doi.org/10.1179/1476830511Y.0000000028] [PMID: 22305647]
[28]
Shah SAA, Hassan SSU, Bungau S, et al. Chemically diverse and biologically active secondary metabolites from marine Phylum chlorophyta. Mar Drugs 2020; 18(10): 493.
[http://dx.doi.org/10.3390/md18100493] [PMID: 32993146]
[29]
Bhattacharya T, Dey PS, Akter R, Kabir MT, Rahman MH, Rauf A. Effect of natural leaf extracts as phytomedicine in curing geriatrics. Exp Gerontol 2021; 150: 111352.
[http://dx.doi.org/10.1016/j.exger.2021.111352] [PMID: 33894308]
[30]
Commenges D, Scotet V, Renaud S, Jacqmin-Gadda H, Barberger-Gateau P, Dartigues J-F. Intake of flavonoids and risk of dementia. Eur J Epidemiol 2000; 16(4): 357-63.
[http://dx.doi.org/10.1023/A:1007614613771] [PMID: 10959944]
[31]
Dai Q, Borenstein AR, Wu Y, Jackson JC, Larson EB. Fruit and vegetable juices and Alzheimer’s disease: The Kame Project. Am J Med 2006; 119(9): 751-9.
[http://dx.doi.org/10.1016/j.amjmed.2006.03.045] [PMID: 16945610]
[32]
Checkoway H, Powers K, Smith-Weller T, Franklin GM, Longstreth WT Jr, Swanson PD. Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol 2002; 155(8): 732-8.
[http://dx.doi.org/10.1093/aje/155.8.732] [PMID: 11943691]
[33]
Youdim KA, Joseph JA. A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: A multiplicity of effects. Free Radic Biol Med 2001; 30(6): 583-94.
[http://dx.doi.org/10.1016/S0891-5849(00)00510-4] [PMID: 11295356]
[34]
Hsieh H-M, Wu W-M, Hu M-L. Soy isoflavones attenuate oxidative stress and improve parameters related to aging and Alzheimer’s disease in C57BL/6J mice treated with D-galactose. Food Chem Toxicol 2009; 47(3): 625-32.
[http://dx.doi.org/10.1016/j.fct.2008.12.026] [PMID: 19146912]
[35]
Datla KP, Christidou M, Widmer WW, Rooprai HK, Dexter DT. Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of Parkinson’s disease. Neuroreport 2001; 12(17): 3871-5.
[http://dx.doi.org/10.1097/00001756-200112040-00053] [PMID: 11726811]
[36]
Noguchi S, Atsumi H, Iwao Y, Kan T, Itai S. Nobiletin: A citrus flavonoid displaying potent physiological activity. Acta Crystallogr C Struct Chem 2016; 72(Pt 2): 124-7.
[http://dx.doi.org/10.1107/S2053229616000577] [PMID: 26846496]
[37]
Bui TT, Nguyen TH. Natural product for the treatment of Alzheimer’s disease. J Basic Clin Physiol Pharmacol 2017; 28(5): 413-23.
[http://dx.doi.org/10.1515/jbcpp-2016-0147] [PMID: 28708573]
[38]
Grundman M, Grundman M, Delaney P. Antioxidant strategies for Alzheimer’s disease. Proc Nutr Soc 2002; 61(2): 191-202.
[http://dx.doi.org/10.1079/PNS2002146] [PMID: 12133201]
[39]
Pu F, Mishima K, Irie K, et al. Neuroprotective effects of quercetin and rutin on spatial memory impairment in an 8-arm radial maze task and neuronal death induced by repeated cerebral ischemia in rats. J Pharmacol Sci 2007; 104(4): 329-34.
[http://dx.doi.org/10.1254/jphs.FP0070247] [PMID: 17666865]
[40]
Cheng-Chung Wei J, Huang H-C, Chen W-J, Huang C-N, Peng C-H, Lin C-L. Epigallocatechin gallate attenuates amyloid β-induced inflammation and neurotoxicity in EOC 13.31 microglia. Eur J Pharmacol 2016; 770: 16-24.
[http://dx.doi.org/10.1016/j.ejphar.2015.11.048] [PMID: 26643169]
[41]
Cole GM, Teter B, Frautschy SA. Neuroprotective effects of curcumin. Adv Exp Med Biol 2007; 197-212.
[http://dx.doi.org/10.1007/978-0-387-46401-5_8]
[42]
Rege SD, Geetha T, Griffin GD, Broderick TL, Babu JR. Neuroprotective effects of resveratrol in Alzheimer disease pathology. Front Aging Neurosci 2014; 6: 218.
[http://dx.doi.org/10.3389/fnagi.2014.00218] [PMID: 25309423]
[43]
Fahey JW, Zalcmann AT, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 2001; 56(1): 5-51.
[http://dx.doi.org/10.1016/S0031-9422(00)00316-2] [PMID: 11198818]
[44]
de Figueiredo SM, Binda NS, Nogueira-Machado JA, Vieira-Filho SA, Caligiorne RB. The antioxidant properties of organosulfur compounds (sulforaphane). Recent Pat Endocr Metab Immune Drug Discov 2015; 9(1): 24-39.
[http://dx.doi.org/10.2174/1872214809666150505164138] [PMID: 25944116]
[45]
Giacoppo S, Galuppo M, Montaut S, et al. An overview on neuroprotective effects of isothiocyanates for the treatment of neurodegenerative diseases. Fitoterapia 2015; 106: 12-21.
[http://dx.doi.org/10.1016/j.fitote.2015.08.001] [PMID: 26254971]
[46]
Abdull Razis AF, Ibrahim MD, Kntayya SB. Health benefits of Moringa oleifera. Asian Pac J Cancer Prev 2014; 15(20): 8571-6.
[http://dx.doi.org/10.7314/APJCP.2014.15.20.8571] [PMID: 25374169]
[47]
Sutalangka C, Wattanathorn J, Muchimapura S, Thukham-mee W. Moringa oleifera mitigates memory impairment and neurodegeneration in animal model of age-related dementia. Oxid Med Cell Longev 2013; 2013
[48]
Kurek J. Introductory chapter: Alkaloids-their importance in nature and for human life. In: Kurek J, Ed. Alkaloids. London: IntechOpen 2019.
[http://dx.doi.org/10.5772/intechopen.85400]
[49]
Konrath EL, Passos CS, Klein LC Jr, Henriques AT. Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer’s disease. J Pharm Pharmacol 2013; 65(12): 1701-25.
[http://dx.doi.org/10.1111/jphp.12090] [PMID: 24236981]
[50]
Heinrich M. Galanthamine from Galanthus and other amaryllidaceae--chemistry and biology based on traditional use. Alkaloids Chem Biol 2010; 68: 157-65.
[http://dx.doi.org/10.1016/S1099-4831(10)06804-5] [PMID: 20334038]
[51]
Kertesz A, Morlog D, Light M, et al. Galantamine in frontotemporal dementia and primary progressive aphasia. Dement Geriatr Cogn Disord 2008; 25(2): 178-85.
[http://dx.doi.org/10.1159/000113034] [PMID: 18196898]
[52]
Famitafreshi H, Karimian M, Marefati N. Long-term morphine addiction reduces neurogenesis and memory performance and alters emotional reactivity and anxiety levels in male rats. Open Access Anim Physiol 2015; 7: 129-36.
[53]
Ritchie K, Carrière I, de Mendonca A, et al. The neuroprotective effects of caffeine: A prospective population study (the Three City Study). Neurology 2007; 69(6): 536-45.
[http://dx.doi.org/10.1212/01.wnl.0000266670.35219.0c] [PMID: 17679672]
[54]
Ascherio A, Zhang SM, Hernán MA, et al. Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann Neurol 2001; 50(1): 56-63.
[http://dx.doi.org/10.1002/ana.1052] [PMID: 11456310]
[55]
Maia L, de Mendonça A. Does caffeine intake protect from Alzheimer's disease? Eur J Neurol 2002; 9(4): 377-82.
[http://dx.doi.org/10.1046/j.1468-1331.2002.00421.x] [PMID: 12099922]
[56]
Cao C, Loewenstein DA, Lin X, et al. High Blood caffeine levels in MCI linked to lack of progression to dementia. J Alzheimers Dis 2012; 30(3): 559-72.
[http://dx.doi.org/10.3233/JAD-2012-111781] [PMID: 22430531]
[57]
Picciotto MR, Zoli M. Nicotinic receptors in aging and dementia. J Neurobiol 2002; 53(4): 641-55.
[http://dx.doi.org/10.1002/neu.10102] [PMID: 12436427]
[58]
Echeverria V, Yarkov A, Aliev G. Positive modulators of the α7 nicotinic receptor against neuroinflammation and cognitive impairment in Alzheimer’s disease. Prog Neurobiol 2016; 144: 142-57.
[http://dx.doi.org/10.1016/j.pneurobio.2016.01.002] [PMID: 26797042]
[59]
Newhouse P, Kellar K, Aisen P, et al. Nicotine treatment of mild cognitive impairment: A 6-month double-blind pilot clinical trial. Neurology 2012; 78(2): 91-101.
[http://dx.doi.org/10.1212/WNL.0b013e31823efcbb] [PMID: 22232050]
[60]
Ma X, Tan C, Zhu D, Gang DR, Xiao P. Huperzine A from Huperzia species--an ethnopharmacolgical review. J Ethnopharmacol 2007; 113(1): 15-34.
[http://dx.doi.org/10.1016/j.jep.2007.05.030] [PMID: 17644292]
[61]
Xing S-h, Zhu C-x, Zhang R, An L. Huperzine A in the treatment of Alzheimer’s disease and vascular dementia: A meta-analysis. Evid Based Complement Alternat Med 2014; 2014: 363985.
[http://dx.doi.org/10.1155/2014/363985]
[62]
Wang H, Tang XC. Anticholinesterase effects of huperzine A, E2020, and tacrine in rats. Zhongguo Yao Li Xue Bao 1998; 19(1): 27-30.
[PMID: 10375753]
[63]
Colović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr Neuropharmacol 2013; 11(3): 315-35.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[64]
Wang R, Zhang HY, Tang XC. Huperzine A attenuates cognitive dysfunction and neuronal degeneration caused by β-amyloid protein-(1-40) in rat. Eur J Pharmacol 2001; 421(3): 149-56.
[http://dx.doi.org/10.1016/S0014-2999(01)01030-5] [PMID: 11516430]
[65]
Yang G, Wang Y, Tian J, Liu J-P. Huperzine A for Alzheimer’s disease: A systematic review and meta-analysis of randomized clinical trials. PLoS One 2013; 8(9): e74916.
[http://dx.doi.org/10.1371/journal.pone.0074916] [PMID: 24086396]
[66]
Xu Z-Q, Liang X-M, Juan- Wu, Zhang YF, Zhu CX, Jiang XJ. Treatment with Huperzine A improves cognition in vascular dementia patients. Cell Biochem Biophys 2012; 62(1): 55-8.
[http://dx.doi.org/10.1007/s12013-011-9258-5] [PMID: 21833673]
[67]
Kettmann V, Kosfálová D, Jantová S, Cernáková M, Drímal J. In vitro cytotoxicity of berberine against HeLa and L1210 cancer cell lines. Pharmazie 2004; 59(7): 548-51.
[PMID: 15296093]
[68]
Racková L, Májeková M, Kost’álová D, Štefek M. Antiradical and antioxidant activities of alkaloids isolated from Mahonia aquifolium. Structural aspects. Bioorg Med Chem 2004; 12(17): 4709-15.
[http://dx.doi.org/10.1016/j.bmc.2004.06.035] [PMID: 15358297]
[69]
Han J, Lin H, Huang W. Modulating gut microbiota as an anti-diabetic mechanism of berberine. Med Sci Monit 2011; 17(7): RA164-7.
[http://dx.doi.org/10.12659/MSM.881842] [PMID: 21709646]
[70]
Wang X, Wang R, Xing D, et al. Kinetic difference of berberine between hippocampus and plasma in rat after intravenous administration of Coptidis rhizoma extract. Life Sci 2005; 77(24): 3058-67.
[http://dx.doi.org/10.1016/j.lfs.2005.02.033] [PMID: 15996686]
[71]
Kulkarni SK, Dhir A. Berberine: A plant alkaloid with therapeutic potential for central nervous system disorders. Phytother Res 2010; 24(3): 317-24.
[http://dx.doi.org/10.1002/ptr.2968] [PMID: 19998323]
[72]
Su T, Xie S, Wei H, Yan J, Huang L, Li X. Synthesis and biological evaluation of berberine-thiophenyl hybrids as multi-functional agents: Inhibition of acetylcholinesterase, butyrylcholinesterase, and Aβ aggregation and antioxidant activity. Bioorg Med Chem 2013; 21(18): 5830-40.
[http://dx.doi.org/10.1016/j.bmc.2013.07.011] [PMID: 23932451]
[73]
Yin J, Xing H, Ye J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism 2008; 57(5): 712-7.
[http://dx.doi.org/10.1016/j.metabol.2008.01.013] [PMID: 18442638]
[74]
Chen C, Tao C, Liu Z, et al. A randomized clinical trial of berberine hydrochloride in patients with diarrhea‐predominant irritable bowel syndrome. Phytother Res 2015; 29(11): 1822-7.
[http://dx.doi.org/10.1002/ptr.5475] [PMID: 26400188]
[75]
Yan H-M, Xia M-F, Wang Y, et al. Efficacy of berberine in patients with non-alcoholic fatty liver disease. PLoS One 2015; 10(8): e0134172.
[http://dx.doi.org/10.1371/journal.pone.0134172] [PMID: 26252777]
[76]
Ma B-J, Shen J-W, Yu H-Y, Ruan Y, Wu T-T, Zhao X. Hericenones and erinacines: Stimulators of Nerve Growth Factor (NGF) biosynthesis in Hericium erinaceus. Mycology 2010; 1(2): 92-8.
[http://dx.doi.org/10.1080/21501201003735556]
[77]
Adams M, Gmünder F, Hamburger M. Plants traditionally used in age related brain disorders--a survey of ethnobotanical literature. J Ethnopharmacol 2007; 113(3): 363-81.
[http://dx.doi.org/10.1016/j.jep.2007.07.016] [PMID: 17720341]
[78]
Nisa M, Farhi S. Isolation of Moenjodaramine from Buxus papilosa. Planta Med 1983; 49(10): 126.
[http://dx.doi.org/10.1055/s-2007-969830] [PMID: 17405032]
[79]
Lam CW, Wakeman A, James A, Ata A, Gengan RM, Ross SA. Bioactive steroidal alkaloids from Buxus macowanii oliv. Steroids 2015; 95: 73-9.
[http://dx.doi.org/10.1016/j.steroids.2014.12.002] [PMID: 25528196]
[80]
Ata A, Andersh BJ. Buxus steroidal alkaloids: Chemistry and biology. Alkaloids Chem Biol 2008; 66: 191-213.
[http://dx.doi.org/10.1016/S1099-4831(08)00203-4] [PMID: 19025099]
[81]
Russo E, Guy GW. A tale of two cannabinoids: The therapeutic rationale for combining tetrahydrocannabinol and cannabidiol. Med Hypotheses 2006; 66(2): 234-46.
[http://dx.doi.org/10.1016/j.mehy.2005.08.026] [PMID: 16209908]
[82]
Giacoppo S, Mandolino G, Galuppo M, Bramanti P, Mazzon E. Cannabinoids: New promising agents in the treatment of neurological diseases. Molecules 2014; 19(11): 18781-816.
[http://dx.doi.org/10.3390/molecules191118781] [PMID: 25407719]
[83]
Iuvone T, Esposito G, Esposito R, Santamaria R, Di Rosa M, Izzo AA. Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on β-amyloid-induced toxicity in PC12 cells. J Neurochem 2004; 89(1): 134-41.
[http://dx.doi.org/10.1111/j.1471-4159.2003.02327.x] [PMID: 15030397]
[84]
Cargnin ST, Gnoatto SB. Ursolic acid from apple pomace and traditional plants: A valuable triterpenoid with functional properties. Food Chem 2017; 220: 477-89.
[http://dx.doi.org/10.1016/j.foodchem.2016.10.029] [PMID: 27855928]
[85]
Dembitsky VM, Dzhemileva L, Gloriozova T, D’yakonov V. Natural and synthetic drugs used for the treatment of the dementia. Biochem Biophys Res Commun 2020; 524(3): 772-83.
[http://dx.doi.org/10.1016/j.bbrc.2020.01.123] [PMID: 32037088]
[86]
Zhong YL, Xu GJ, Huang S, et al. Celastrol induce apoptosis of human multiple myeloma cells involving inhibition of proteasome activity. Eur J Pharmacol 2019; 853: 184-92.
[http://dx.doi.org/10.1016/j.ejphar.2019.03.036] [PMID: 30928629]
[87]
Hsieh M-J, Wang C-W, Lin J-T, et al. Celastrol, a plant-derived triterpene, induces cisplatin-resistance nasopharyngeal carcinoma cancer cell apoptosis though ERK1/2 and p38 MAPK signaling pathway. Phytomedicine 2019; 58: 152805.
[http://dx.doi.org/10.1016/j.phymed.2018.12.028] [PMID: 31022663]
[88]
Orhan I, Terzioglu S, Şener B. α-onocerin: An acetylcholinesterase inhibitor from Lycopodium clavatum. Planta Med 2003; 69(3): 265-7.
[http://dx.doi.org/10.1055/s-2003-38489] [PMID: 12677532]
[89]
Tiwari S, Atluri VSR, Yndart Arias A, et al. Withaferin a suppresses beta amyloid in APP expressing cells: Studies for tat and cocaine associated neurological dysfunctions. Front Aging Neurosci 2018; 10: 291.
[http://dx.doi.org/10.3389/fnagi.2018.00291] [PMID: 30356847]
[90]
Das R, Rauf A, Akhter S, et al. Role of withaferin A and its derivatives in the management of Alzheimer’s disease: Recent trends and future perspectives. Molecules 2021; 26(12): 3696.
[http://dx.doi.org/10.3390/molecules26123696] [PMID: 34204308]
[91]
Merad M, Soufi W, Ghalem S, et al. Molecular interaction of acetylcholinesterase with carnosic acid derivatives: A neuroinformatics study. CNS Neurol Disord Drug Targets 2014; 13(3): 440-6.
[http://dx.doi.org/10.2174/18715273113126660157]
[92]
Liu W, Wu TC, Hong DM, et al. Carnosic acid enhances the anti-lung cancer effect of cisplatin by inhibiting myeloid-derived suppressor cells. Chin J Nat Med 2018; 16(12): 907-15.
[http://dx.doi.org/10.1016/S1875-5364(18)30132-8] [PMID: 30595215]
[93]
Lee D-S, Lee S-H, Noh J-G, Hong S-D. Antibacterial activities of cryptotanshinone and dihydrotanshinone I from a medicinal herb, Salvia miltiorrhiza bunge. Biosci Biotechnol Biochem 1999; 63(12): 2236-9.
[http://dx.doi.org/10.1271/bbb.63.2236] [PMID: 10664860]
[94]
Yu X-Y, Lin S-G, Chen X, et al. Transport of cryptotanshinone, a major active triterpenoid in Salvia miltiorrhiza bunge widely used in the treatment of stroke and Alzheimer’s disease, across the blood-brain barrier. Curr Drug Metab 2007; 8(4): 365-78.
[http://dx.doi.org/10.2174/138920007780655441] [PMID: 17504224]
[95]
Chen X, Yu J, Zhong B, et al. Pharmacological activities of dihydrotanshinone I, a natural product from Salvia miltiorrhiza bunge. Pharmacol Res 2019; 145: 104254.
[http://dx.doi.org/10.1016/j.phrs.2019.104254] [PMID: 31054311]
[96]
Avram S, Mernea M, Limban C, Borcan F, Chifiriuc C. Potential therapeutic approaches to Alzheimer’s disease by bioinformatics, cheminformatics and predicted adme-tox tools. Curr Neuropharmacol 2020; 18(8): 696-719.
[http://dx.doi.org/10.2174/1570159X18666191230120053] [PMID: 31885353]

© 2025 Bentham Science Publishers | Privacy Policy