Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Perspective

Automated Cultivation System for Microalgae: Growth Factors and Control

Author(s): Jiun Gia Khor, Hooi Ren Lim, Wen Yi Chia and Kit Wayne Chew*

Volume 18, Issue 9, 2022

Published on: 02 June, 2022

Page: [776 - 779] Pages: 4

DOI: 10.2174/1573401318666220421132428

Abstract

Background: Microalgae have been a hot research topic due to their various biorefinery applications, particularly microalgae as potential alternative nutraceuticals and supplements have a large and rapidly growing market. However, commercial production is limited due to high processing cost, low efficiency, and scale up of biomass production.

Objective: It is important to control the microalgae cultivation system with optimal parameters to maximize biomass productivity. The growth factors, including pH, temperature, light intensity, salinity, and nutrients, are discussed as these can significantly affect the cultivation. To monitor and control these in real-time, an automated system incorporating advanced digital technologies like sensors, controllers, artificial intelligence (AI), and the Internet of Things (IoT) could be applied.

Conclusion: This perspective provides insights into the implementation of an automated microalgae cultivation system that improves productivity, effectiveness, and efficiency.

Keywords: Artificial Intelligence (AI), growth parameters, Internet of Things (IoT), light intensity, nutrients, pH, salinity, temperature.

[1]
Amos Richmond QH. Handbook of Microalgal Culture: Applied Phycology and Biotechnology. 2nd ed. Hoboken, New Jersey: John Wiley and Sons 2013.
[http://dx.doi.org/10.1002/9781118567166]
[2]
Chapman RL. Algae: The world’s most important “plants”—an introduction. Mitig Adapt Strategies Glob Change 2013; 18(1): 5-12.
[http://dx.doi.org/10.1007/s11027-010-9255-9]
[3]
Danquah MK, Gladman B, Moheimani N, Forde GM. Microalgal growth characteristics and subsequent influence on dewatering efficiency. Chem Eng J 2009; 151(1-3): 73-8.
[http://dx.doi.org/10.1016/j.cej.2009.01.047]
[4]
Perdana BA, Chaidir Z, Kusnanda AJ, Dharma A, Zakaria IJ. Omega-3 fatty acids of microalgae as a food supplement: A review of exogenous factors for production enhancement. Algal Res 2021; 60102542
[http://dx.doi.org/10.1016/j.algal.2021.102542]
[5]
Dasan YK, Lam MK, Yusup S, Lim JW, Lee KT. Life cycle evaluation of microalgae biofuels production: Effect of cultivation system on energy, carbon emission and cost balance analysis. ScTEn 2019; 688: 112-28.
[http://dx.doi.org/10.1016/j.scitotenv.2019.06.181] [PMID: 31229809]
[6]
Ananthi V, Balaji P, Sindhu R, Kim S-H, Pugazhendhi A, Arun A. A critical review on different harvesting techniques for algal based biodiesel production. ScTEn 2021; 780146467
[http://dx.doi.org/10.1016/j.scitotenv.2021.146467] [PMID: 33774295]
[7]
Souza MPd, Hoeltz M, Gressler PD, Benitez LB, Schneider RCS. Potential of microalgal bioproducts: General perspectives and main challenges. Waste Biomass Valoriz 2019; 10: 2139-56.
[http://dx.doi.org/10.1007/s12649-018-0253-6]
[8]
Mehar J, Shekh A, U. Automation of pilot-scale open raceway pond: A case study of CO2-fed pH control on Spirulina biomass, protein and phycocyanin production J CO2 Util 2019; 33: 384-93.
[9]
Kamelia L, Ramdhani MA, Faroqi A, Rifadiapriyana V. Implementation of automation system for humidity monitoring and irrigation system. IOP Conf Ser: Mater Sci Eng 2018; 288(1): 012092.
[10]
Bartley ML, Boeing WJ, Dungan BN, Holguin FO, Schaub T. pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis salina and invading organism. J Appl Phycol 2013; 26: 1431-7.
[http://dx.doi.org/10.1007/s10811-013-0177-2]
[11]
Moheimani NR. Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp. (Chlorophyta) grown outdoors in bag photobioreactors. J Appl Phycol 2012; 25: 387-98.
[http://dx.doi.org/10.1007/s10811-012-9873-6]
[12]
Qiu R, Gao S, Lopez PA, Ogden KL. Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Res 2017; 28: 192-9.
[http://dx.doi.org/10.1016/j.algal.2017.11.004]
[13]
Ying K, Gilmour DJ, Zimmerman WB. Effects of CO2 and pH on growth of the microalga Dunaliella salina. J Microb Biochem Technol 2014; 6(3): 167-73.
[http://dx.doi.org/10.4172/1948-5948.1000138]
[14]
Chaisutyakorn P, Praiboon J, Kaewsuralikhit C. The effect of temperature on growth and lipid and fatty acid composition on marine microalgae used for biodiesel production. J Appl Phycol 2017; 30: 37-45.
[http://dx.doi.org/10.1007/s10811-017-1186-3]
[15]
Ras M, Steyer J-P, Bernard O. Temperature effect on microalgae: A crucial factor for outdoor production. Rev Environ Sci Biotechnol 2013; 12: 153-64.
[http://dx.doi.org/10.1007/s11157-013-9310-6]
[16]
Renaud SM, Zhou HC, Parry DL, Thinh L-V, Woo KC. Effect of temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgae Isochrysis sp., Nitzschia closterium, Nitzschia paleacea, and commercial species Isochrysis sp. (clone T.ISO). J Appl Phycol 1995; 7: 595-602.
[http://dx.doi.org/10.1007/BF00003948]
[17]
Gonçalves AL, Pires JCM, Simõesa M. The effects of light and temperature on microalgal growth and nutrient removal: An experimental and mathematical approach. RSC Advances 2016; 6: 22896-907.
[18]
Ra CH, Sirisuk P, Jung J-H, Jeong G-T, Kim S-K. Effects of Light-Emitting Diode (LED) with a mixture of wavelengths on the growth and lipid content of microalgae. Bioprocess Biosyst Eng 2018; 41(4): 457-65.
[http://dx.doi.org/10.1007/s00449-017-1880-1] [PMID: 29260319]
[19]
Pugkaew W, Meetam M, Yokthongwattana K, Leeratsuwan N, Pokethitiyook P. Effects of salinity changes on growth, photosynthetic activity, biochemical composition, and lipid productivity of marine microalga Tetraselmis suecica. J Appl Phycol 2018; 31: 969-79.
[http://dx.doi.org/10.1007/s10811-018-1619-7]
[20]
Sui Y, Vlaeminck SE. Effects of salinity, pH and growth phase on the protein productivity by Dunaliella salina. J Chem Technol Biotechnol 2018; 94(4): 1032-40.
[http://dx.doi.org/10.1002/jctb.5850]
[21]
Poddar N, Sen R, Martin GJO. Glycerol and nitrate utilisation by marine microalgae Nannochloropsis salina and Chlorella sp. and associated bacteria during mixotrophic and heterotrophic growth. Algal Res 2018; 33: 298-309.
[http://dx.doi.org/10.1016/j.algal.2018.06.002]
[22]
Liu SY. Artificial intelligence (AI) in agriculture. IT Prof 2020; 22(3): 14-5.
[http://dx.doi.org/10.1109/MITP.2020.2986121]
[23]
Fabris M, Abbriano RM, Pernice M, et al. Emerging technologies in algal biotechnology: Toward the establishment of a sustainable, algae-based bioeconomy. Front Plant Sci 2020; 11: 279.
[http://dx.doi.org/10.3389/fpls.2020.00279] [PMID: 32256509]
[24]
Quentin Béchet ML, Arsapin N, Bonnefond H, Bernard O. Modeling the impact of high temperatures on microalgal viability and photosynthetic activity. Biotechnol Biofuels 2017; 10: 136.
[25]
Dormido R, Sánchez J, Duro N, Dormido-Canto S, Guinaldo M, Dormido S. An interactive tool for outdoor computer controlled cultivation of microalgae in a tubular photobioreactor system. Sensors (Basel) 2014; 14(3): 4466-83.
[http://dx.doi.org/10.3390/s140304466] [PMID: 24662450]
[26]
Chowdury KH, Nahar N, Deb UK. The growth factors involved in microalgae cultivation for biofuel production: A review. CWEEE 2020; 9(4): 185-215.
[27]
Tillich UM, Wolter N, Schulze K, Kramer D, Brödel O, Frohme M. High-throughput cultivation and screening platform for unicellular phototrophs. BMC Microbiol 2014; 14(1): 239.
[http://dx.doi.org/10.1186/s12866-014-0239-x] [PMID: 25223876]
[28]
Hermadi I, Setiadianto IR, Al Zahran DFI, et al. Development of smart algae pond system for microalgae biomass production. IOP Conf Ser Earth Environ Sci 2021; 749(1)012068
[http://dx.doi.org/10.1088/1755-1315/749/1/012068]
[29]
Hadfi IH, Yusoh ZIM. Banana ripeness detection and servings recommendation system using artificial intelligence techniques. J Telecommun Electron Comput Eng 2018; 10: 83-7.
[30]
Morschett H, Schiprowski D, Müller C, et al. Design and validation of a parallelized micro-photobioreactor enabling phototrophic bioprocess development at elevated throughput. Biotechnol Bioeng 2017; 114(1): 122-31.
[http://dx.doi.org/10.1002/bit.26051] [PMID: 27424867]
[31]
Morschett H, Freier L, Rohde J, Wiechert W, von Lieres E, Oldiges M. A framework for accelerated phototrophic bioprocess development: Integration of parallelized microscale cultivation, laboratory automation and Kriging-assisted experimental design. Biotechnol Biofuels 2017; 10(1): 26.
[http://dx.doi.org/10.1186/s13068-017-0711-6] [PMID: 28163783]
[32]
Ambriz-Pérez DL, Orozco-Guillen EE, Galán-Hernández ND, Luna-Avelar KD, Valdez-Ortiz A, Santos-Ballardo DU. Accurate method for rapid biomass quantification based on specific absorbance of microalgae species with biofuel importance. Lett Appl Microbiol 2021; 73(3): 343-51.
[http://dx.doi.org/10.1111/lam.13519] [PMID: 34091927]
[33]
Yew GY, Puah BK, Chew KW, Teng SY, Show PL, Nguyen THP. Chlorella vulgaris FSP-E cultivation in waste molasses: Photo-to-property estimation by artificial intelligence. Chem Eng J 2020; 402126230
[http://dx.doi.org/10.1016/j.cej.2020.126230]
[34]
D’Agostin DAL, Domene GM, Oliveira AS, Bonfim MJC, Mariano AB. Automated system for continuous microalgae cultivation in photobioreactors. Therm Eng 2017; 16(2): 3-9.
[35]
Podevin M, Fotidis IA, Angelidaki I. Microalgal process-monitoring based on high-selectivity spectroscopy tools: Status and future perspectives. Crit Rev Biotechnol 2018; 38(5): 704-18.
[http://dx.doi.org/10.1080/07388551.2017.1398132] [PMID: 29179641]
[36]
Wang K, Khoo KS, Leong HY, et al. How does the Internet of Things (IoT) help in microalgae biorefinery? Biotechnol Adv 2022; 54107819
[PMID: 34454007]
[37]
Zhu C, Chen S, Ji Y, Schwaneberg U, Chi Z. Progress toward a bicarbonate-based microalgae production system. Trends Biotechnol 2022; 40(2): 180-93.
[http://dx.doi.org/10.1016/j.tibtech.2021.06.005] [PMID: 34325913]

© 2025 Bentham Science Publishers | Privacy Policy