Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Graphene-based Nanomaterials for Electrochemical Sensing of Hydrazine: A Short Review

Author(s): Manorama Singh*, Smita R. Bhardiya, Ankita Rai and Vijai K. Rai

Volume 19, Issue 1, 2023

Published on: 30 June, 2022

Page: [27 - 37] Pages: 11

DOI: 10.2174/1573411018666220421104413

Price: $65

Abstract

Background: Hydrazine is a well-known hepatotoxic, mutagen, and carcinogen. It adversely affects not only the liver, DNA, and kidney but the central nervous system also. As per the record of the Environmental Protection Agency (EPA), the United States, the optimum concentration of it has been permitted in sewage and industrial and agricultural effluents is 0.1 ppm. Therefore, monitoring hydrazine concentration is essential at the trace level. This review focuses on the preparation, characterization, and application of graphene-based nanomaterials for the development of electrochemical sensors for hydrazine sensing.

Methods: Several literature reports over the last decade, i.e., 2010 to 2021, have been tried to summarize the development of different electrochemical sensors using graphene-based nanomaterials for the detection of hydrazine in water and other environmental samples. The performance of several reported modified electrodes has been reviewed in terms of limit of detection, linear range, selectivity, etc.

Results: Graphene-based nanomaterials/nanocomposites offer a new path toward the development of high-performance electrochemical sensors due to their greater active surface area and good electron transference property. Furthermore, these nanostructures have defects in edges, and they can be expected to show more reactivity towards chemical species compared to pristine graphene. However, these novel graphene nanostructures have been scantily explored in the development of electrochemical sensors.

Conclusion: The review presents that graphene-based nanomaterials offer excellent electrocatalytic and electrochemical behavior toward hydrazine detection. The performance of fabricated electrochemical sensors has been compared in terms of linear range, limit of detection, stability, and sensitivity. Still, no commercialized electrochemical sensor is available and there is enough scope to synthesize an efficient graphene-based nanomaterial to develop a portable and on-site electrochemical sensor for hydrazine detection.

Keywords: Graphene, functionalized nanomaterials, electrochemical, sensor, hydrazine, toxic.

Graphical Abstract

[1]
Sutton, A.D.; Burrell, A.K.; Dixon, D.A.; Garner, E.B., III; Gordon, J.C.; Nakagawa, T.; Ott, K.C.; Robinson, J.P.; Vasiliu, M. Regeneration of ammonia borane spent fuel by direct reaction with hydrazine and liquid ammonia. Science, 2011, 331(6023), 1426-1429.
[http://dx.doi.org/10.1126/science.1199003] [PMID: 21415349]
[2]
Serov, A.; Padilla, M.; Roy, A.J.; Atanassov, P.; Sakamoto, T.; Asazawa, K.; Tanaka, H. Anode catalysts for direct hydrazine fuel cells: From laboratory test to an electric vehicle. Angew. Chem. Int. Ed. Engl., 2014, 53(39), 10336-10339.
[http://dx.doi.org/10.1002/anie.201404734] [PMID: 25115735]
[3]
Dutta, S.; Ray, C.; Mallick, S.; Sarkar, S.; Roy, A.; Pal, T. Au@Pd core-shell nanoparticles-decorated reduced graphene oxide: A highly sensitive and selective platform for electrochemical detection of hydrazine. RSC Advances, 2015, 5, 51690-51700.
[http://dx.doi.org/10.1039/C5RA04817F]
[4]
Zhou, B.; Yang, J.; Jiang, X.Q. Porous MnO nanorods synthesized from thermal decomposition of coordination polymer and used in hydrazine electrochemical sensing. Mater. Lett., 2015, 159, 362-365.
[http://dx.doi.org/10.1016/j.matlet.2015.07.031]
[5]
Beitollahi, H.; Khalilzadeh, M.A.; Tajik, S.; Safaei, M.; Zhang, K.; Jang, H.W.; Shokouhimehr, M. Recent advances in applications of voltammetric sensors modified with ferrocene and its derivatives. ACS Omega, 2020, 5(5), 2049-2059.
[http://dx.doi.org/10.1021/acsomega.9b03788] [PMID: 32064365]
[6]
Lee, M.H.; Yoon, B.; Kim, J.S. Naphthalimide tri-fluoro acetylacetonate: A hydrazine-selective chemodosimetric sensor. Chem. Sci. (Camb.), 2013, 4, 4121-4126.
[http://dx.doi.org/10.1039/c3sc51813b]
[7]
Tajik, S.; Beitollahi, H.; Dourandish, Z.; Zhang, K.; Le, Q.V.; Nguyen, T.P.; Kim, S.Y.; Shokouhimehr, M. Recent advances in the electrochemical sensing of venlafaxine: An antidepressant drug and environmental contaminant. Sensors (Basel), 2020, 20(13), 3675-3688.
[http://dx.doi.org/10.3390/s20133675] [PMID: 32630056]
[8]
Ayaz, S.; Dilgin, Y. Flow injection amperometric determination of hydrazine based on its electrocatalytic oxidation at pyrocatechol violet modified pencil graphite electrode. Electrochim. Acta, 2017, 258, 1086-1095.
[http://dx.doi.org/10.1016/j.electacta.2017.11.162]
[9]
Rahman, M.M.; Alam, M.M.; Alamry, K.A. Sensitive and selective m-tolyl hydrazine chemical sensor development based on CdO nanomaterial decorated multiwalled carbon nanotubes. J. Ind. Eng. Chem., 2019, 77, 309-316.
[http://dx.doi.org/10.1016/j.jiec.2019.04.053]
[10]
Ahmad, R.; Beduk, T.; Majhi, S.M.; Salama, K.N. One-step synthesis and decoration of nickel oxide nanosheets with gold nanoparticles by reduction method for hydrazine sensing application. Sens. Actuators B Chem., 2019, 286, 139-147.
[http://dx.doi.org/10.1016/j.snb.2019.01.132]
[11]
Sherigara, B.S.; Kutner, W.; D’Souza, F. Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes. Electroanal, 2003, 15, 753-772.
[http://dx.doi.org/10.1002/elan.200390094]
[12]
Zhao, G.; Wen, T.; Chen, C.; Wang, X. Synthesis of graphene-based nanomaterials and their application in energy-related and environmental-related areas. RSC Advances, 2012, 2, 9286-9303.
[http://dx.doi.org/10.1039/c2ra20990j]
[13]
Sakthinathan, S.; Chen, S.M. Graphene supported nanocomposite for electrochemical detection of pollutant materials: A short review. Int. J. Electrochem. Sci., 2015, 10, 6527-6536.
[14]
Han, M.Y.; Özyilmaz, B.; Zhang, Y.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett., 2007, 98(20), 206805-206808.
[http://dx.doi.org/10.1103/PhysRevLett.98.206805] [PMID: 17677729]
[15]
Fang, T.; Konar, A.; Xing, H.; Jena, D. Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl. Phys. Lett., 2007, 91, 092109-092111.
[http://dx.doi.org/10.1063/1.2776887]
[16]
Wu, J.; Agrawal, M.; Becerril, H.A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano, 2010, 4(1), 43-48.
[http://dx.doi.org/10.1021/nn900728d] [PMID: 19902961]
[17]
Karimi-Maleh, H.; Cellat, K.; Arikan, K.; Savk, A.; Karimi, F.; Sen, F. Palladium-Nickel nanoparticles decorated on functionalized-MWCNTs for high precision non-enzymatic glucose sensing. Mater. Chem. Phys., 2020, 250, 123042.
[http://dx.doi.org/10.1016/j.matchemphys.2020.123042]
[18]
Sabzi, R.E.; Rasouli, F.; Kheiri, F. Amperometric hydrogen peroxide biosensor based on horseradish peroxidase entrapped in titania sol-gel film on screen-printed electrode. Am. J. Anal. Chem., 2013, 4, 607-615.
[http://dx.doi.org/10.4236/ajac.2013.411072]
[19]
Chen, Z.; Zhou, M.; Cao, Y.; Ai, X.; Yang, H.; Liu, J. In situ generation of few-layer graphene coatings on SnO -SiC core-shell nanoparticles for high-performance lithium-ion storage. Adv. Energy Mater., 2012, 2, 95.
[http://dx.doi.org/10.1002/aenm.201100464]
[20]
Wang, D.W.; Li, F.; Zhao, J.; Ren, W.; Chen, Z.G.; Tan, J.; Wu, Z.S.; Gentle, I.; Lu, G.Q.; Cheng, H.M. Fabrication of graphene/polyaniline composite paper via in situ anodic electro-polymerization for high-performance flexible electrode. ACS Nano, 2009, 3(7), 1745-1752.
[http://dx.doi.org/10.1021/nn900297m] [PMID: 19489559]
[21]
Kou, R.; Shao, Y.; Wang, D.; Engelhard, M.H.; Kwak, J.H.; Wang, J.; Viswanathan, V.V.; Wang, C.; Lin, Y.; Wang, Y. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem. Commun., 2009, 11, 954-957.
[http://dx.doi.org/10.1016/j.elecom.2009.02.033]
[22]
Zhao, G.; Jiang, L.; He, Y.; Li, J.; Dong, H.; Wang, X.; Hu, W. Sulfonated graphene for persistent aromatic pollutant management. Adv. Mater., 2011, 23(34), 3959-3963.
[http://dx.doi.org/10.1002/adma.201101007] [PMID: 21800380]
[23]
Di Crescenzo, A.; Di Profio, P.; Siani, G.; Zappacosta, R.; Fontana, A. Optimizing the interactions of surfactants with graphitic surfaces and clathrate hydrates. Langmuir, 2016, 32(26), 6559-6570.
[http://dx.doi.org/10.1021/acs.langmuir.6b01435] [PMID: 27264111]
[24]
Yu, W.; Sisi, L.; Haiyan, Y.; Jie, L. Progress in the functional modification of graphene/graphene oxide: A review. RSC Advances, 2020, 10, 15328-15345.
[http://dx.doi.org/10.1039/D0RA01068E]
[25]
Liu, H.; Ryu, S.; Chen, Z.; Steigerwald, M.L.; Nuckolls, C.; Brus, L.E. Photochemical reactivity of graphene. J. Am. Chem. Soc., 2009, 131(47), 17099-17101.
[http://dx.doi.org/10.1021/ja9043906] [PMID: 19902927]
[26]
Kuila, T.; Bose, S.; Mishra, A.K.; Khanra, P.; Kim, N.H.; Lee, J.H. Chemical functionalization of graphene and its applications. Prog. Mater. Sci., 2012, 57, 1061-1105.
[http://dx.doi.org/10.1016/j.pmatsci.2012.03.002]
[27]
Tang, X.Z.; Li, W.; Yu, Z.Z.; Rafiee, M.A.; Rafiee, J.; Yavari, F.; Koratkar, N. Enhanced thermal stability in graphene oxide covalently functionalized with 2-amino-4,6-didodecylamino-1,3,5-triazine. Carbon, 2011, 49, 1258-1265.
[http://dx.doi.org/10.1016/j.carbon.2010.11.044]
[28]
Yang, H.; Shan, C.; Li, F.; Han, D.; Zhang, Q.; Niu, L. Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem. Commun. (Camb.), 2009, (26), 3880-3882.
[http://dx.doi.org/10.1039/b905085j] [PMID: 19662239]
[29]
Sarkar, S.; Bekyarova, E.; Haddon, R.C. Covalent chemistry in graphene electronics. Mater. Today, 2012, 15, 276-285.
[http://dx.doi.org/10.1016/S1369-7021(12)70118-9]
[30]
Sulleiro, M.V.; Quiroga, S.; Peña, D.; Pérez, D.; Guitián, E.; Criado, A.; Prato, M. Microwave-induced covalent functionalization of few-layer graphene with arynes under solvent-free conditions. Chem. Commun. (Camb.), 2018, 54(17), 2086-2089.
[http://dx.doi.org/10.1039/C7CC08676H] [PMID: 29334096]
[31]
Yu, D.; Yang, Y.; Durstock, M.; Baek, J.B.; Dai, L. Soluble P3HT-grafted graphene for efficient bilayer-heterojunction photovoltaic devices. ACS Nano, 2010, 4(10), 5633-5640.
[http://dx.doi.org/10.1021/nn101671t] [PMID: 20831214]
[32]
Luo, H.; Xiong, G.; Yang, Z.; Raman, S.R.; Si, H.; Wan, Y. A novel three-dimensional graphene/bacterial cellulose nanocomposite prepared by in situ biosynthesis. RSC Advances, 2014, 4, 4369-14372.
[http://dx.doi.org/10.1039/C4RA00318G]
[33]
Piao, Y.; Chen, B. One-pot synthesis and characterization of reduced graphene oxide-gelatin nanocomposite hydrogels. RSC Advances, 2016, 6, 6171-6181.
[http://dx.doi.org/10.1039/C5RA20674J]
[34]
Zhang, Y.; Xiao, J.; Lv, Q.; Wang, L.; Dong, X.; Asif, M.; Ren, J.; He, W.; Sun, Y.; Xiao, F.; Wang, S. In situ electrochemical sensing and real-time monitoring live cells based on freestanding nanohybrid paper electrode assembled from 3d functionalized graphene framework. ACS Appl. Mater. Interfaces, 2017, 9(44), 38201-38210.
[http://dx.doi.org/10.1021/acsami.7b08781] [PMID: 28727416]
[35]
Pandele, A.M.; Andronescu, C.; Vasile, E.; Radu, I.C.; Stanescu, P.; Iovu, H. Non-covalent functionalization of GO for improved mechanical performances of pectin composite films. Composite A. Appl. Sci. Manuf, 2017, 103, 188-195.
[http://dx.doi.org/10.1016/j.compositesa.2017.10.005]
[36]
Basiuk, V.A.; Carvajal, N.A.; Henao-Holguín, L.V.; Rybak-Akimova, E.V.; Basiuk, E.V. Coordination functionalization of graphene oxide with tetraazamacrocyclic complexes of nickel (II): Generation of paramagnetic centres. Appl. Surf. Sci., 2016, 371, 16-27.
[http://dx.doi.org/10.1016/j.apsusc.2016.02.166]
[37]
Gray, D.; McCaughan, A.; Mookerji, B. Crystal structure of graphite, graphene and silicon. Phys. Solid State Appl., 2009, 6, 1-3.
[38]
Singh, N.J.; Lee, H.M.; Suh, S.B.; Kim, K.S. De novo design approach based on nano recognition toward development of functional molecules/materials and nanosensors/nanodevices. Pure Appl. Chem., 2007, 79, 1057.
[http://dx.doi.org/10.1351/pac200779061057]
[39]
Son, J.Y.; Shin, Y.H.; Kim, H.; Jang, H.M. NiO resistive random access memory nanocapacitor array on graphene. ACS Nano, 2010, 4(5), 2655-2658.
[http://dx.doi.org/10.1021/nn100234x] [PMID: 20438101]
[40]
Reddy, Y.V.M.; Sravani, B.; Luczak, T.; Mallikarjuna, K.; Madhavi, G. An ultra-sensitive rifampicin electrochemical sensor based on titanium nanoparticles anchored reduced graphene oxide modified glassy carbon electrode. Colloids Surf. A Physicochem. Eng. Asp., 2021, 608, 125533.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125533]
[41]
Haldoraia, Y.; Voitb, W.; Shima, J.J. Nano ZnO@reduced graphene oxide composite for high performance supercapacitor: Green synthesis in supercritical fluid. Electrochim. Acta, 2014, 120, 65-72.
[http://dx.doi.org/10.1016/j.electacta.2013.12.063]
[42]
Zhang, M.; Yan, F.; Tang, X.; Li, Q.; Wang, T.; Cao, G. Flexible CoO graphene- carbon nanofiber mats as binder-free anodes for lithium ion batteries with superior rate capacity and cyclic stability. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2, 5890-5897.
[http://dx.doi.org/10.1039/C4TA00311J]
[43]
Prabakar, S.J.R.; Hwang, Y.H.; Bae, E.G.; Shim, S.; Kim, D.; Lah, M.S.; Sohn, K.S.; Pyo, M. SnO₂/graphene composites with self-assembled alternating oxide and amine layers for high Li-storage and excellent stability. Adv. Mater., 2013, 25(24), 3307-3312.
[http://dx.doi.org/10.1002/adma.201301264] [PMID: 23670979]
[44]
Le, Z.G.; Liu, Z.; Qian, Y.; Wang, C. A facile and efficient approach to decoration of graphene nanosheets with gold nanoparticles. Appl. Surf. Sci., 2012, 258, 5348-5353.
[http://dx.doi.org/10.1016/j.apsusc.2012.01.169]
[45]
Yang, Y.K.; He, C.E.; He, W.J. Reduction of silver nanoparticles onto graphene oxide nanosheets with N, N-dimethylformamide and SERS activities of GO/Ag composites. J. Nanopart. Res., 2011, 13, 5571-5581.
[http://dx.doi.org/10.1007/s11051-011-0550-5]
[46]
Baby, T.T.; Aravind, S.S.J.; Arockiadoss, T.; Rakhi, R.B.; Ramaprabhu, S. Metal decorated graphene nanosheets as immobilization matrix for amperometric glucose biosensor. Sens. Actuators B Chem., 2010, 145, 71-77.
[http://dx.doi.org/10.1016/j.snb.2009.11.022]
[47]
Sravani, B.; Kiranmai, S.; Rajasekhara Reddy, G.; Park, J.P. VeeraManohara Reddy, Y.; Madhavi, G. Highly sensitive detection of anti-cancer drug based on bimetallic reduced graphene oxide nanocomposite. Chemosphere, 2022, 287(Pt 3), 132281.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132281] [PMID: 34826940]
[48]
Singh, M.; Bhardiya, S.R.; Kashyap, H.; Verma, F.; Rai, V.K.; Tiwari, I. Decoration of GO with Fe spinel-Naf/DMAP: An electrochemical probe for sensing H2O2 reduction. RSC Advances, 2016, 6, 104868-104874.
[http://dx.doi.org/10.1039/C6RA23409G]
[49]
Wang, H.; Cui, L.F.; Yang, Y.; Sanchez Casalongue, H.; Robinson, J.T.; Liang, Y.; Cui, Y.; Dai, H. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc., 2010, 132(40), 13978-13980.
[http://dx.doi.org/10.1021/ja105296a] [PMID: 20853844]
[50]
Sahu, A.; Shukla, P.; Mahata, S.; Rai, V.K.; Rai, A.; Singh, M. First biocovalent functionalization of graphene with threonine towards drug sensing via electrocatalytic transfer hydrogenation. Sens. Actuators B Chem., 2018, 281, 1045-1053.
[http://dx.doi.org/10.1016/j.snb.2018.11.015]
[51]
Shi, K.; Zhitomirsky, I. Electrophoretic nanotechnology of graphene-carbon nanotube and graphene-polypyrrole nanofiber composites for electrochemical supercapacitors. J. Colloid Interface Sci., 2013, 407, 474-481.
[http://dx.doi.org/10.1016/j.jcis.2013.06.058] [PMID: 23880521]
[52]
Xu, M.; Zhu, J.; Su, H.; Dong, J.; Ai, S.; Li, R. Electrochemical determination of methyl parathion using poly (malachite green)/graphene nanosheets-nafion composite film-modified glassy carbon electrode. J. Appl. Electrochem., 2012, 42, 509-516.
[http://dx.doi.org/10.1007/s10800-012-0425-1]
[53]
Kowsari, E.; Morad, F.; Seifvand, N.; Bazri, B.; Karimi, M. Synthesis of reduced graphene oxide functionalized with methyl red dye and its role in enhancing photoactivity in TiO2-IL/WO3 composite for toluene degradation. Res. Chem. Intermed., 2020, 46, 1-18.
[http://dx.doi.org/10.1007/s11164-019-04030-9]
[54]
Korkmaz, K. Beşer, B.M.; Şenol, A.M.; Onganer, Y.; Safranin, T. Safranin T- SDS- GO ternary system: A fluorescent pH sensor. Colloids Surf. B Biointerfaces, 2021, 206, 111977.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111977] [PMID: 34293576]
[55]
Zhao, D.; Sheng, G.; Chen, C.; Wang, X. Enhanced photocatalytic degradation of methylene blue under visible irradiation with graphene@TiO diode structure. Appl. Catal. B, 2012, 111, 303-308.
[http://dx.doi.org/10.1016/j.apcatb.2011.10.012]
[56]
Zhang, J.; Ding, J.; Li, C.; Li, B.; Li, D.; Liu, Z.; Cai, Q.; Zhang, J.; Liu, Y. fabrication of novel ternary three-dimensional RuO2/graphitic-C3N4@reduced graphene oxide aerogel composites for supercapacitors. ACS Sustain. Chem.& Eng., 2017, 5, 4982-4991.
[http://dx.doi.org/10.1021/acssuschemeng.7b00358]
[57]
Seenivasan, R.; Chang, W.J.; Gunasekaran, S. Highly sensitive detection and removal of lead ions in water using cysteine-functionalized graphene oxide/polypyrrole nanocomposite film electrode. ACS Appl. Mater. Interfaces, 2015, 7(29), 15935-15943.
[http://dx.doi.org/10.1021/acsami.5b03904] [PMID: 26146883]
[58]
Miao, R.; Compton, R.G. The electro-oxidation of hydrazine: A self-inhibiting reaction. J. Phys. Chem. Lett., 2021, 12(6), 1601-1605.
[http://dx.doi.org/10.1021/acs.jpclett.1c00070] [PMID: 33545004]
[59]
Hush, N. Adiabatic rate processes at electrodes. I. Energy charge relationships. J. Chem. Phys., 1958, 28(5), 962-972.
[http://dx.doi.org/10.1063/1.1744305]
[60]
Butler, J.A.V. The mechanism of overvoltage and its relation to the combination of hydrogen atoms at metal electrodes. Trans. Faraday Soc., 1932, 28, 379-382.
[http://dx.doi.org/10.1039/tf9322800379]
[61]
Erdey-Gruz, T.; Volmer, M. Zur frage der elektrolytischen ́ metallüberspannung. Z. Phys. Chem., 1931, 157(1), 165-181.
[http://dx.doi.org/10.1515/zpch-1931-15710]
[62]
Wang, C.; Zhang, L.; Guo, Z.; Xu, J.; Wang, H.; Zhai, K.; Zhuo, X. A novel hydrazine electrochemical sensor based on the high specific surface area grapheme. Mikrochim. Acta, 2010, 169, 1-6.
[http://dx.doi.org/10.1007/s00604-010-0304-6]
[63]
Lei, J.; Lu, X.; Wang, W.; Bian, X.; Xue, Y.; Wang, C.; Lib, L. Fabrication of MnO2/graphene oxide composite nanosheets and their application in hydrazine detection. RSC Advances, 2012, 2, 2541-2544.
[http://dx.doi.org/10.1039/c2ra01065h]
[64]
Ameena, S.; Akhtarb, M.S.; Shin, H.S. Hydrazine chemical sensing by modified electrode based on in situ electrochemically synthesized polyaniline/graphene composite thin film. Sens. Actuators B Chem., 2012, 173, 177-183.
[http://dx.doi.org/10.1016/j.snb.2012.06.065]
[65]
Liu, Y.; Li, B.B.; Wei, W.; Wan, Q.J.; Yang, N.J. A simple and high-performance hydrazine sensor based on graphene nano -plate-lets supporting metal nanoparticles. Adv. Mat. Res., 2013, 704, 246-251.
[http://dx.doi.org/10.4028/www.scientic.net/AMR.704.246]
[66]
Qin, X.; Li, Q.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. One-pot synthesis of Au nanoparticles/reduced graphene oxide nanocomposites and their application for electrochemical H2O2, glucose, and hydrazine sensing. Gold Bull., 2014, 47, 3-8.
[http://dx.doi.org/10.1007/s13404-013-0094-9]
[67]
Baghmabidi, S.E.; Beitollahi, H.; Tajik, S. Graphene oxide nanosheets/ferrocene derivative modified carbon paste electrode as an electrochemical sensor for determination of hydrazine. Anal Bioanal. Electrochem, 2014, 6, 634-645.
[68]
Krittayavathananon, A.; Srimuk, P.; Luanwuthi, S.; Sawangphruk, M. Palladium nanoparticles decorated on reduced graphene oxide rotating disk electrodes toward ultrasensitive hydrazine detection: Effects of particle size and hydrodynamic diffusion. Anal. Chem., 2014, 86, 12272-12278.
[http://dx.doi.org/10.1021/ac503446q]
[69]
Luo, X.; Pan, J.; Pan, K.; Yu, Y.; Zhong, A.; Wei, S.; Li, J.; Shi, J.; Li, X. An electrochemical sensor for hydrazine and nitrite based on graphene-cobalt hexacyanoferrate nanocomposite: On the environment and food detection. J. Electroanal. Chem., 2015, 745, 80-87.
[http://dx.doi.org/10.1016/j.jelechem.2015.03.017]
[70]
Ejaz, A.; Ahmed, M.S.; Jeon, S. Highly efficient benzylamine functionalized graphene supported palladium for electrocatalytic hydrazine determination. Sens. Actuators B, 2015, 221, 1256-1263.
[http://dx.doi.org/10.1016/j.snb.2015.07.093]
[71]
Ramachandran, K.; Babu, K.J.; Kumar, G.G.; Kim, A.R.; Yoo, D.J. One-pot synthesis of graphene supported CuO nanorods for the electrochemical hydrazine sensor applications. Sci. Adv. Mater., 2015, 7, 329-336.
[http://dx.doi.org/10.1166/sam.2015.2025]
[72]
Jeena, S.E. Selvaraju. Facile growth of Ag@Pt bimetallic nanorods on electrochemically reduced graphene oxide for an enhanced electrooxidation of hydrazine. T. J. Chem. Sci., 2016, 128, 357-363.
[http://dx.doi.org/10.1007/s12039-015-1024-6]
[73]
Lu, X.; Wang, P.; Wang, X.; Guo, Y. Electrodeposition of gold nanoparticles on electrochemically reduced graphene oxide for sensitive hydrazine electrochemical determination in agriculture wastewater. Inc. J. Electrochem. Sci., 2016, 11, 5279-5288.
[http://dx.doi.org/10.20964/2016.06.94]
[74]
Zhao, Z.; Sun, Y.; Li, P.; Zhang, W.; Lian, K.; Hu, J.; Chen, Y. Preparation and characterization of AuNPs/CNTs-ErGO electrochemical sensors for highly sensitive detection of hydrazine. Talanta, 2016, 158, 283-291.
[http://dx.doi.org/10.1016/j.talanta.2016.05.065]
[75]
Rahman, M.M.; Marwani, H.M.; Algethami, F.K.; Asir, A.M. Comparative performance of hydrazine sensors developed with Mn3O4/carbon nanotubes, Mn3O4/graphene oxides and Mn3O4/carbon black nanocomposites. Mater. Express, 2017, 7, 169-180.
[http://dx.doi.org/10.1166/mex.2017.1367]
[76]
Sakthinathan, S.; Kubendhiran, S.; Chen, S.M.; Govindasamy, M.; Al-Hemaid, F.M.A.; Ali, M.A.; Tamizhdurai, P.; Sivasanker, S. Metallated porphyrin on covalent interaction with reduced graphene oxide-modified electrode for amperometric detection of environmental pollutant hydrazine. Appl. Organomet. Chem., 2017, 31, e3703.
[http://dx.doi.org/10.1002/aoc.3703]
[77]
Peng, H.; Liang, C. Electrochemical determination of hydrazine based on polydopamine-reduced graphene oxide nanocomposite. Fuller. Nanotub. Carbon Nanostruct., 2017, 25, 29-33.
[http://dx.doi.org/10.1080/1536383X.2016.1248759]
[78]
Shahid, M.M.; Rameshkumar, P.; Basirunc, W.J.; Wijayantha, U.; Chiu, W.S.; Khiew, P.S.; Huang, N.M. An electrochemical sensing platform of cobalt oxide @gold nanocubes interleaved reduced graphene oxide for the selective determination of hydrazine. Electrochim. Acta, 2018, 259, 606-616.
[http://dx.doi.org/10.1016/j.electacta.2017.10.157]
[79]
Zhang, Y.; Zhang, Y.; Zhang, D.; Li, S.; Jiang, C.; Su, Y. Confinement preparation of Au nanoparticles embedded in ZIF-67-derived N-doped porous carbon for high-performance detection of hydrazine in liquid/gas phase. Sens. Actuators B., 2019, 285, 607-616.
[http://dx.doi.org/10.1016/j.snb.2019.01.105]
[80]
Ghasemi, S.; Hosseini, S.R.; Hasanpoor, F.; Nabipour, S. Amperometric hydrazine sensor based on the use of Pt-Pd nanoparticles placed on reduced graphene oxide nanosheets. Microchim. Acta, 2019, 186, 601-610.
[http://dx.doi.org/10.1007/s00604-019-3704-2]
[81]
Ramanathan, S.; Elanthamilan, E.; Obadiah, A.; Durairaj, A.; Kumar, P.S.; Merlin, J.P.; Ramasundaram, S.; Vasanthkumar, S. HRGO-Co@SnO2 nanocomposite for electrochemical detection of hydrazine. Electron. Mater., 2019, 48, 542-550.
[82]
Kaladevi, G.; Wilson, P.; Pandian, K. Silver nanoparticle decorated PANI/reduced graphene oxide for sensing of hydrazine in water and inhibition studies on microorganisms. Ionics, 2020, 26, 3123-3133.
[83]
Zhang, X.; Zhen, J. Amperometric hydrazine sensor based on the use of a gold nanoparticle-modified nanocomposite consisting of porous polydopamine, multiwalled carbon nanotubes and reduced graphene oxide. Microchim. Acta, 2020, 187, 89-99.
[http://dx.doi.org/10.1007/s00604-019-4014-4]
[84]
Mohiuddin, A.K.; Ahmed, M.S.; Roy, N.; Jeon, S. Electrochemical determination of hydrazine in surface water on Co (OH)2 nanoparticles immobilized on functionalized graphene interface. Appl. Surf. Sci., 2021, 540, 148346.
[http://dx.doi.org/10.1016/j.apsusc.2020.148346]
[85]
Gharani, M.; Bahari, A.; Ghasemi, S. Preparation of MoS2-reduced graphene oxide/Au nanohybrid for electrochemical sensing of hydrazine. J. Mater. Sci., 2021, 32, 7765-7777.
[http://dx.doi.org/10.1007/s10854-021-05496-3]
[86]
Rani, K.S.; Muyala, S.; Reddy, S.M. Electrocatalytic oxidation of hydrazine at sulphur-doped graphene-modified glassy carbon electrode. Bull. Mater. Sci., 2021, 44, 204-213.
[http://dx.doi.org/10.1007/s12034-021-02498-z]
[87]
Xie, J.; Yang, H.; Wang, X.; Gao, F. ZIF-8/electro-reduced graphene oxide nanocomposite for highly electrocatalytic oxidation of hydrazine in industrial waste wáter. Microchem. J., 2021, 168, 106521.
[http://dx.doi.org/10.1016/j.microc.2021.106521]
[88]
Singh, M.; Bhardiya, S.R.; Asati, A.; Sheshma, H.; Rai, A.; Rai, V.K. Design of a sensitive electrochemical sensor based on ferrocene-reduced graphene oxide/Mn-spinel for hydrazine detection. Electroanal., 2021, 33, 464.
[http://dx.doi.org/10.1002/elan.202060345]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy