Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Recent Insights into Therapeutic Potential of Plant-Derived Flavonoids against Cancer

Author(s): Roohi Mohi-ud-din, Reyaz Hassan Mir, Saba Sabreen, Rafia Jan, Faheem Hyder Pottoo* and Inder Pal Singh*

Volume 22, Issue 20, 2022

Published on: 17 August, 2022

Page: [3343 - 3369] Pages: 27

DOI: 10.2174/1871520622666220421094055

Price: $65

Abstract

Flavonoids, a class of polyphenolic secondary metabolites, are present in fruits, vegetables, beverages such as wine and tea abundantly. Flavonoids exhibit a diverse array of pharmacological activities, including anticancer activity, and are toxic to cancer cells but not harmful to healthy cells. Besides, humans and animals cannot synthesize flavonoids, which leads to a dramatic increase in the consumption of plant flavonoids. Flavonoids consist of a 15- carbon skeleton in C6-C3-C6 rings with divergent substitution patterns to form a series of compounds. Due to their multi-faceted mechanism of action by modulating various signaling pathways associated with apoptosis, cellular proliferation, inflammation, differentiation, metastasis, angiogenesis, they interrupt the initiation, promotion, and progression of cancer. The present review highlights the Structural Activity Relationship (SAR) of flavonoids and recent insights on the progress of natural flavonoids and their synthetic analogs as prospective drug candidates against cancer, along with molecular mechanisms of action.

Keywords: Flavonoids, anti-cancer, signaling pathways, apigenin, fisetin, morin, quercetin, isoflavones.

Graphical Abstract

[1]
Raffa, D.; Maggio, B.; Raimondi, M.V.; Plescia, F.; Daidone, G. Recent discoveries of anticancer fla-vonoids. Eur. J. Med. Chem., 2017, 142, 213-228.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.034] [PMID: 28793973]
[2]
Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod., 2000, 63(7), 1035-1042.
[http://dx.doi.org/10.1021/np9904509] [PMID: 10924197]
[3]
Mir, R.H.; Masoodi, M.H. Anti-inflammatory plant polyphenolics and cellular action mechanisms. Curr. Bioact. Compd., 2020, 16(6), 809-817.
[http://dx.doi.org/10.2174/1573407215666190419205317]
[4]
Hassan, R.; Mohi-Ud-Din, R.; Dar, M.O.; Shah, A.J.; Mir, P.A.; Shaikh, M. Bioactive heterocyclic compounds as potential therapeutics in the treatment of gliomas: A review. Anticancer. Agents Med. Chem., 2022, 22(3), 551-565.
[PMID: 34488596]
[5]
Choy, K.W.; Murugan, D.; Leong, X-F.; Abas, R.; Alias, A.; Mustafa, M.R. Flavonoids as natural anti-inflammatory agents targeting nuclear factor-kappa B (NFκB) signaling in cardiovascular diseases: A mini review. Front. Pharmacol., 2019, 10(1295), 1295.
[http://dx.doi.org/10.3389/fphar.2019.01295] [PMID: 31749703]
[6]
Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem., 2019, 299, 125124.
[http://dx.doi.org/10.1016/j.foodchem.2019.125124] [PMID: 31288163]
[7]
Mir, R.H.; Shah, A.J.; Mohi-Ud-Din, R.; Potoo, F.H.; Dar, M.; Jachak, S.M. Natural Anti-inflammatory compounds as drug candidates in Alzheimer’s disease. Curr. Med. Chem., 2021, 28(23), 4799-4825.
[PMID: 32744957]
[8]
Ahmad, G.; Hassan, R.; Dhiman, N.; Ali, A. Anti-inflammatory assessment of 3-Acetylmyricadiol in LPS-stimulated raw 264.7 macrophages. Comb. Chem. High Throughput Screen., 2022, 25(1), 204-210.
[http://dx.doi.org/10.2174/1386207324666210319122650]
[9]
Testai, L.; Martelli, A.; Cristofaro, M.; Breschi, M.C.; Calderone, V. Cardioprotective effects of differ-ent flavonoids against myocardial ischaemia/reperfusion injury in Langendorff-perfused rat hearts. J. Pharm. Pharmacol., 2013, 65(5), 750-756.
[http://dx.doi.org/10.1111/jphp.12032] [PMID: 23600393]
[10]
Nguyen, T.P.; Tran, C.L.; Vuong, C.H.; Do, T.H.T.; Le, T.D.; Mai, D.T.; Phan, N.M. Flavonoids with hepatoprotective activity from the leaves of Cleome viscosa L. Nat. Prod. Res., 2017, 31(22), 2587-2592.
[http://dx.doi.org/10.1080/14786419.2017.1283497] [PMID: 28135851]
[11]
Wu, Y.; Wang, F.; Zheng, Q.; Lu, L.; Yao, H.; Zhou, C.; Wu, X.; Zhao, Y. Hepatoprotective effect of total flavonoids from Laggera alata against carbon tetrachloride-induced injury in primary cultured neonatal rat hepatocytes and in rats with hepatic damage. J. Biomed. Sci., 2006, 13(4), 569-578.
[http://dx.doi.org/10.1007/s11373-006-9081-y] [PMID: 16547767]
[12]
Akachi, T.; Shiina, Y.; Ohishi, Y.; Kawaguchi, T.; Kawagishi, H.; Morita, T.; Mori, M.; Sugiyama, K. Hepatoprotective effects of flavonoids from shekwasha (Citrus depressa) against D-galactosamine-induced liver injury in rats. J. Nutr. Sci. Vitaminol. (Tokyo), 2010, 56(1), 60-67.
[http://dx.doi.org/10.3177/jnsv.56.60] [PMID: 20354348]
[13]
Mohi-Ud-Din, R.; Mir, R.H.; Sawhney, G.; Dar, M.A.; Bhat, Z.A. Possible pathways of hepatotoxici-ty caused by chemical agents. Curr. Drug Metab., 2019, 20(11), 867-879.
[http://dx.doi.org/10.2174/1389200220666191105121653] [PMID: 31702487]
[14]
Vauzour, D.; Vafeiadou, K.; Rodriguez-Mateos, A.; Rendeiro, C.; Spencer, J.P.E. The neuroprotec-tive potential of flavonoids: A multiplicity of effects. Genes Nutr., 2008, 3(3-4), 115-126.
[http://dx.doi.org/10.1007/s12263-008-0091-4] [PMID: 18937002]
[15]
Ayaz, M.; Sadiq, A.; Junaid, M.; Ullah, F.; Ovais, M.; Ullah, I.; Ahmed, J.; Shahid, M. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disor-ders. Front. Aging Neurosci., 2019, 11(155), 155.
[http://dx.doi.org/10.3389/fnagi.2019.00155] [PMID: 31293414]
[16]
Mohi-Ud-Din, R.; Mir, R.H.; Wani, T.U.; Shah, A.J.; Banday, N.; Pottoo, F.H. Berberine in the treatment of neurodegenerative diseases and nanotechnology enabled targeted delivery. Comb. Chem. High Throughput Screen., 2022, 25(4), 616-633.
[PMID: 34348611]
[17]
Mohi-Ud-Din, R.; Mir, R.H.; Wani, T.U.; Shah, A.J.; Mohi-Ud-Din, I.; Dar, M.A. Novel drug deliv-ery system for curcumin: Implementation to improve therapeutic efficacy against neurological disor-ders. Comb. Chem. High Throughput Screen., 2021.
[PMID: 34225614]
[18]
Mir, R.H.; Sawhney, G.; Verma, R.; Ahmad, B.; Kumar, P.; Ranjana, S. Oreganum vulgare: In-vitro assessment of cytotoxicity, molecular docking studies, antioxidant, and evaluation of anti-inflammatory activity in LPS stimulated RAW 264.7 cells. Med. Chem., 2021, 17(9), 983-993.
[19]
Jan, R.; Shah, A.J.; Wani, T.U.; Farooq, S.; Jachak, S.M.; Masoodi, M.H. Curry Leaf: An insight into its pharmacological activities, medicinal profile, and phytochemistry. In: Science of Spices and Culinary HerbsLatest Laboratory, Pre-clinical, and Clinical Studies; Atta-ur-Rahman, Iqbal C.M.; Sammer, Y., Eds.; Sharjah; Bentham Science Publisher, 2021; vol. 4, pp. 145-168.
[http://dx.doi.org/10.2174/9789814998123121040007]
[20]
Mohi-Ud-Din, R.; Mir, R.H.; Mir, P.A.; Farooq, S.; Raza, S.N.; Raja, W.Y.; Masoodi, M.H.; Singh, I.P.; Bhat, Z.A. Ethnomedicinal uses, phytochemistry and pharmacological aspects of the genus Berberis Linn: A comprehensive review. Comb. Chem. High Throughput Screen., 2021, 24(5), 624-644.
[http://dx.doi.org/10.2174/1386207323999201102141206] [PMID: 33143603]
[21]
Hassan, R.; Masoodi, M.H. Saussurea lappa: A comprehensive review on its pharmacological activity and phytochemistry. Curr. Tradit. Med., 2020, 6(1), 13-23.
[http://dx.doi.org/10.2174/2215083805666190626144909]
[22]
Mohi-Ud-Din, R.; Mir, R.H.; Shah, A.J.; Sabreen, S.; Wani, T.U.; Masoodi, M.H. Plant-derived natu-ral compounds for the treatment of amyotrophic lateral sclerosis: An update. Curr. Neuropharmacol., 2022, 20(1), 179-193.
[http://dx.doi.org/10.2174/1570159X19666210428120514] [PMID: 33913406]
[23]
Shah, A.J.; Mir, R.H.; Mohi-Ud-Din, R.; Pottoo, F.H.; Masoodi, M.H.; Bhat, Z.A. Depression: An insight into heterocyclic and cyclic hydrocarbon compounds inspired from natural sources. Curr. Neuropharmacol., 2021, 19(11), 2020-2037.
[http://dx.doi.org/10.2174/1570159X19666210426115234] [PMID: 33902421]
[24]
Mir, R.H.; Bhat, M.F.; Sawhney, G.; Kumar, P.; Andrabi, N.I.; Shaikh, M. Prunella vulgaris L: Criti-cal pharmacological, expository traditional uses and extensive phytochemistry: A review. Curr. Drug Discov. Technol., 2022, 19(1), 9-21.
[PMID: 33538676]
[25]
Mumtaz, S.M.; Bhardwaj, G.; Goswami, S.; Tonk, R.K.; Goyal, R.K.; Pottoo, F. Management of gli-oblastoma multiforme by phytochemicals: Applications of nanoparticle based targeted drug delivery system. Curr. Drug Targets, 2021, 22(4), 429-442.
[PMID: 32718288]
[26]
Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as anticancer agents. Nutrients, 2020, 12(2), 457.
[http://dx.doi.org/10.3390/nu12020457] [PMID: 32059369]
[27]
Androutsopoulos, V.P.; Papakyriakou, A.; Vourloumis, D.; Tsatsakis, A.M.; Spandidos, D.A. Dietary flavonoids in cancer therapy and prevention: Substrates and inhibitors of cytochrome P450 CYP1 enzymes. Pharmacol. Ther., 2010, 126(1), 9-20.
[http://dx.doi.org/10.1016/j.pharmthera.2010.01.009] [PMID: 20153368]
[28]
Kawaii, S.; Tomono, Y.; Katase, E.; Ogawa, K.; Yano, M. Antiproliferative activity of flavonoids on several cancer cell lines. Biosci. Biotechnol. Biochem., 1999, 63(5), 896-899.
[http://dx.doi.org/10.1271/bbb.63.896] [PMID: 10380632]
[29]
Jiang, C.; Agarwal, R.; Lü, J. Anti-angiogenic potential of a cancer chemopreventive flavonoid anti-oxidant, silymarin: Inhibition of key attributes of vascular endothelial cells and angiogenic cytokine secretion by cancer epithelial cells. Biochem. Biophys. Res. Commun., 2000, 276(1), 371-378.
[http://dx.doi.org/10.1006/bbrc.2000.3474] [PMID: 11006131]
[30]
Haddad, A.Q.; Venkateswaran, V.; Viswanathan, L.; Teahan, S.J.; Fleshner, N.E.; Klotz, L.H. Novel antiproliferative flavonoids induce cell cycle arrest in human prostate cancer cell lines. Prostate Cancer Prostatic Dis., 2006, 9(1), 68-76.
[http://dx.doi.org/10.1038/sj.pcan.4500845] [PMID: 16314891]
[31]
Vidya Priyadarsini, R.; Senthil Murugan, R.; Maitreyi, S.; Ramalingam, K.; Karunagaran, D.; Nagini, S. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition. Eur. J. Pharmacol., 2010, 649(1-3), 84-91.
[http://dx.doi.org/10.1016/j.ejphar.2010.09.020] [PMID: 20858478]
[32]
Narayana, K.R.; Reddy, M.S.; Chaluvadi, M.; Krishna, D. Bioflavonoids classification, pharmacolog-ical, biochemical effects and therapeutic potential. Indian J. Pharmacol., 2001, 33(1), 2-16.
[33]
Venigalla, M.; Gyengesi, E.; Münch, G. Curcumin and Apigenin - novel and promising therapeutics against chronic neuroinflammation in Alzheimer’s disease. Neural Regen. Res., 2015, 10(8), 1181-1185.
[http://dx.doi.org/10.4103/1673-5374.162686] [PMID: 26487830]
[34]
Lefort, É.C.; Blay, J. Apigenin and its impact on gastrointestinal cancers. Mol. Nutr. Food Res., 2013, 57(1), 126-144.
[http://dx.doi.org/10.1002/mnfr.201200424] [PMID: 23197449]
[35]
Ginwala, R.; Bhavsar, R.; Chigbu, D.I.; Jain, P.; Khan, Z.K. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants, 2019, 8(2), 35.
[http://dx.doi.org/10.3390/antiox8020035] [PMID: 30764536]
[36]
Salehi, B.; Venditti, A.; Sharifi-Rad, M. Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; San-tini, A.; Souto, E.B.; Novellino, E.; Antolak, H.; Azzini, E.; Setzer, W.N.; Martins, N. The therapeu-tic potential of apigenin. Int. J. Mol. Sci., 2019, 20(6), 1305.
[http://dx.doi.org/10.3390/ijms20061305] [PMID: 30875872]
[37]
Mak, P.; Leung, Y-K.; Tang, W-Y.; Harwood, C.; Ho, S-M. Apigenin suppresses cancer cell growth through ERbeta. Neoplasia, 2006, 8(11), 896-904.
[http://dx.doi.org/10.1593/neo.06538] [PMID: 17132221]
[38]
Sung, B.; Chung, H.Y.; Kim, N.D. Role of apigenin in cancer prevention via the induction of apopto-sis and autophagy. J. Cancer Prev., 2016, 21(4), 216-226.
[http://dx.doi.org/10.15430/JCP.2016.21.4.216] [PMID: 28053955]
[39]
Tong, X.; Pelling, J.C. Targeting the PI3K/Akt/mTOR axis by apigenin for cancer prevention. Anticancer. Agents Med. Chem., 2013, 13(7), 971-978.
[http://dx.doi.org/10.2174/18715206113139990119] [PMID: 23272913]
[40]
Johnson, J.L.; de Mejia, E.G. Flavonoid apigenin modified gene expression associated with inflamma-tion and cancer and induced apoptosis in human pancreatic cancer cells through inhibition of GSK-3β/NF-κB signaling cascade. Mol. Nutr. Food Res., 2013, 57(12), 2112-2127.
[http://dx.doi.org/10.1002/mnfr.201300307] [PMID: 23943362]
[41]
Wu, D-G.; Yu, P.; Li, J-W.; Jiang, P.; Sun, J.; Wang, H-Z.; Zhang, L.D.; Wen, M.B.; Bie, P. Apigenin potentiates the growth inhibitory effects by IKK-β-mediated NF-κB activation in pancreatic cancer cells. Toxicol. Lett., 2014, 224(1), 157-164.
[http://dx.doi.org/10.1016/j.toxlet.2013.10.007] [PMID: 24148603]
[42]
Oishi, M.; Iizumi, Y.; Taniguchi, T.; Goi, W.; Miki, T.; Sakai, T. Apigenin sensitizes prostate cancer cells to Apo2L/TRAIL by targeting adenine nucleotide translocase-2. PLoS One, 2013, 8(2), e55922.
[http://dx.doi.org/10.1371/journal.pone.0055922] [PMID: 23431365]
[43]
Shukla, S.; Fu, P.; Gupta, S. Apigenin induces apoptosis by targeting inhibitor of apoptosis proteins and Ku70-Bax interaction in prostate cancer. Apoptosis, 2014, 19(5), 883-894.
[http://dx.doi.org/10.1007/s10495-014-0971-6] [PMID: 24563225]
[44]
Bai, H.; Jin, H.; Yang, F.; Zhu, H.; Cai, J. Apigenin induced MCF-7 cell apoptosis-associated reactive oxygen species. J. Scan. Microscop., 2014, 36(6), 622-631.
[http://dx.doi.org/10.1002/sca.21170] [PMID: 25327419]
[45]
Kumar, J.; Eraña, H.; López-Martínez, E.; Claes, N.; Martín, V.F.; Solís, D.M.; Bals, S.; Cortajarena, A.L.; Castilla, J.; Liz-Marzán, L.M. Detection of amyloid fibrils in Parkinson’s disease using plas-monic chirality. Proc. Natl. Acad. Sci. USA, 2018, 115(13), 3225-3230.
[http://dx.doi.org/10.1073/pnas.1721690115] [PMID: 29531058]
[46]
Perrott, K.M.; Wiley, C.D.; Desprez, P-Y.; Campisi, J. Apigenin suppresses the senescence-associated secretory phenotype and paracrine effects on breast cancer cells. Geroscience, 2017, 39(2), 161-173.
[http://dx.doi.org/10.1007/s11357-017-9970-1] [PMID: 28378188]
[47]
Ittiudomrak, T. Puthong, S.; Roytrakul, S.; Chanchao, C. α-mangostin and apigenin induced cell cy-cle arrest and programmed cell death in SKOV-3 ovarian cancer cells. Toxicol. Res., 2019, 35(2), 167-179.
[http://dx.doi.org/10.5487/TR.2019.35.2.167] [PMID: 31015899]
[48]
Qi, Y.; Ding, Z.; Yao, Y.; Ren, F.; Yin, M.; Yang, S.; Chen, A. Apigenin induces apoptosis and coun-teracts cisplatin-induced chemoresistance via Mcl-1 in ovarian cancer cells. Exp. Ther. Med., 2020, 20(2), 1329-1336.
[http://dx.doi.org/10.3892/etm.2020.8880] [PMID: 32742367]
[49]
Liu, M-M.; Ma, R-H.; Ni, Z-J.; Thakur, K.; Cespedes-Acuña, C.L.; Jiang, L.; Wei, Z.J. Apigenin 7-O-glucoside promotes cell apoptosis through the PTEN/PI3K/AKT pathway and inhibits cell migration in cervical cancer HeLa cells. Food Chem. Toxicol., 2020, 146, 111843.
[http://dx.doi.org/10.1016/j.fct.2020.111843] [PMID: 33152472]
[50]
Souza, RP Oxidative stress triggered by apigenin induces apoptosis in a comprehensive panel of hu-man cervical cancer-derived cell lines. Oxid. Med. Cell. Longevity, 2017, 2017
[51]
Zhou, Z.; Tang, M.; Liu, Y.; Zhang, Z.; Lu, R.; Lu, J. Apigenin inhibits cell proliferation, migration, and invasion by targeting Akt in the A549 human lung cancer cell line. Anticancer Drugs, 2017, 28(4), 446-456.
[http://dx.doi.org/10.1097/CAD.0000000000000479] [PMID: 28125432]
[52]
Chen, M.; Wang, X.; Zha, D.; Cai, F.; Zhang, W.; He, Y.; Huang, Q.; Zhuang, H.; Hua, Z.C. Apig-enin potentiates TRAIL therapy of non-small cell lung cancer via upregulating DR4/DR5 expression in a p53-dependent manner. Sci. Rep., 2016, 6, 35468.
[http://dx.doi.org/10.1038/srep35468] [PMID: 27752089]
[53]
Mahmoudi, S.; Ghorbani, M.; Sabzichi, M.; Ramezani, F.; Hamishehkar, H.; Samadi, N. Targeted hya-luronic acid-based lipid nanoparticle for apigenin delivery to induce Nrf2-dependent apoptosis in lung cancer cells. J. Drug Deliv. Sci. Technol., 2019, 49, 268-276.
[http://dx.doi.org/10.1016/j.jddst.2018.11.013]
[54]
Shankar, E.; Goel, A.; Gupta, K.; Gupta, S. Plant flavone apigenin: An emerging anticancer agent. Curr. Pharmacol. Rep., 2017, 3(6), 423-446.
[http://dx.doi.org/10.1007/s40495-017-0113-2] [PMID: 29399439]
[55]
Meng, S.; Zhu, Y.; Li, J-F.; Wang, X.; Liang, Z.; Li, S-Q.; Xu, X.; Chen, H.; Liu, B.; Zheng, X.Y.; Xie, L.P. Apigenin inhibits renal cell carcinoma cell proliferation. Oncotarget, 2017, 8(12), 19834-19842.
[http://dx.doi.org/10.18632/oncotarget.15771] [PMID: 28423637]
[56]
Zhao, G.; Han, X.; Cheng, W.; Ni, J.; Zhang, Y.; Lin, J.; Song, Z. Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells. Oncol. Rep., 2017, 37(4), 2277-2285.
[http://dx.doi.org/10.3892/or.2017.5450] [PMID: 28260058]
[57]
Zhou, X.; Wang, F.; Zhou, R.; Song, X.; Xie, M. Apigenin: A current review on its beneficial biologi-cal activities. J. Food Biochem., 2017, 41(4), e12376.
[http://dx.doi.org/10.1111/jfbc.12376]
[58]
Yan, X.; Qi, M.; Li, P.; Zhan, Y.; Shao, H. Apigenin in cancer therapy: Anti-cancer effects and mech-anisms of action. Cell Biosci., 2017, 7(1), 50.
[http://dx.doi.org/10.1186/s13578-017-0179-x] [PMID: 29034071]
[59]
Montané, X.; Kowalczyk, O.; Reig-Vano, B.; Bajek, A.; Roszkowski, K.; Tomczyk, R.; Pawliszak, W.; Giamberini, M. Mocek-Płóciniak, A.; Tylkowski, B. Current perspectives of the applications of polyphenols and flavonoids in cancer therapy. Molecules, 2020, 25(15), 3342.
[http://dx.doi.org/10.3390/molecules25153342] [PMID: 32717865]
[60]
Gilardini Montani, M.S.; Cecere, N.; Granato, M.; Romeo, M.A.; Falcinelli, L.; Ciciarelli, U.; D’Orazi, G.; Faggioni, A.; Cirone, M. Mutant p53, stabilized by its interplay with HSP90, activates a positive feed-back loop between NRF2 and p62 that induces chemo-resistance to apigenin in pancreatic can-cer cells. Cancers (Basel), 2019, 11(5), 703.
[http://dx.doi.org/10.3390/cancers11050703] [PMID: 31121848]
[61]
Kasala, E.R.; Bodduluru, L.N.; Madana, R.M. v, A.K.; Gogoi, R.; Barua, C.C. Chemopreventive and therapeutic potential of chrysin in cancer: Mechanistic perspectives. Toxicol. Lett., 2015, 233(2), 214-225.
[http://dx.doi.org/10.1016/j.toxlet.2015.01.008] [PMID: 25596314]
[62]
Karthikeyan, S.; Srinivasan, R.; Wani, S.A.; Manoharan, S. Chemopreventive potential of chrysin in 7, 12-dimethylbenz (a) anthracene-induced hamster buccal pouch carcinogenesis. Int. J. Nutr. Pharmacol. Neurol. Dis., 2013, 3(1), 46.
[http://dx.doi.org/10.4103/2231-0738.106993]
[63]
Mani, R.; Natesan, V. Chrysin: Sources, beneficial pharmacological activities, and molecular mecha-nism of action. Phytochemistry, 2018, 145, 187-196.
[http://dx.doi.org/10.1016/j.phytochem.2017.09.016] [PMID: 29161583]
[64]
Lirdprapamongkol, K.; Sakurai, H.; Abdelhamed, S.; Yokoyama, S.; Athikomkulchai, S.; Viriyaroj, A.; Awale, S.; Ruchirawat, S.; Svasti, J.; Saiki, I. Chrysin overcomes TRAIL resistance of cancer cells through Mcl-1 downregulation by inhibiting STAT3 phosphorylation. Int. J. Oncol., 2013, 43(1), 329-337.
[http://dx.doi.org/10.3892/ijo.2013.1926] [PMID: 23636231]
[65]
Moghadam, E.R.; Ang, H.L.; Asnaf, S.E.; Zabolian, A.; Saleki, H.; Yavari, M.; Esmaeili, H.; Zarrabi, A.; Ashrafizadeh, M.; Kumar, A.P. Broad-spectrum preclinical antitumor activity of chrysin: Current trends and future perspectives. Biomolecules, 2020, 10(10), 1374.
[http://dx.doi.org/10.3390/biom10101374] [PMID: 32992587]
[66]
Mistry, B.M.; Patel, R.V.; Keum, Y-S.; Kim, D.H. Chrysin-benzothiazole conjugates as antioxidant and anticancer agents. Bioorg. Med. Chem. Lett., 2015, 25(23), 5561-5565.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.052] [PMID: 26514745]
[67]
Martins, I.L.; Charneira, C.; Gandin, V.; Ferreira da Silva, J.L.; Justino, G.C.; Telo, J.P.; Vieira, A.J.; Marzano, C.; Antunes, A.M. Selenium-containing chrysin and quercetin derivatives: Attractive scaf-folds for cancer therapy. J. Med. Chem., 2015, 58(10), 4250-4265.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00230] [PMID: 25906385]
[68]
Al-Oudat, B.A.; Ramapuram, H.; Malla, S.; Audat, S.A.; Hussein, N.; Len, J.M.; Kumari, S.; Bedi, M.F.; Ashby, C.R., Jr; Tiwari, A.K. Novel Chrysin-De-Allyl PAC-1 hybrid analogues as anticancer compounds: Design, synthesis, and biological evaluation. Molecules, 2020, 25(13), 3063.
[http://dx.doi.org/10.3390/molecules25133063] [PMID: 32635530]
[69]
Abourashed, E.A. Review of Discovery and Development of Neuroprotective Agents from Natural Products; ACS Publications, 2018.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00515]
[70]
Manju, V.; Balasubramaniyan, V.; Nalini, N. Rat colonic lipid peroxidation and antioxidant status: The effects of dietary luteolin on 1,2-dimethylhydrazine challenge. Cell. Mol. Biol. Lett., 2005, 10(3), 535-551.
[PMID: 16217561]
[71]
Manju, V.; Nalini, N. Protective role of luteolin in 1, 2‐dimethylhydrazine induced experimental colon carcinogenesis. Cell Biochem. Funct., 2007, 25(2), 189-194.
[72]
Elangovan, V.; Sekar, N.; Govindasamy, S. Chemopreventive potential of dietary bioflavonoids against 20-methylcholanthrene-induced tumorigenesis. Cancer Lett., 1994, 87(1), 107-113.
[http://dx.doi.org/10.1016/0304-3835(94)90416-2] [PMID: 7954363]
[73]
Manju, V.; Nalini, N. Chemopreventive potential of luteolin during colon carcinogenesis induced by 1,2-dimethylhydrazine. Ital. J. Biochem., 2005, 54(3-4), 268-275.
[PMID: 16688936]
[74]
Ueda, H.; Yamazaki, C.; Yamazaki, M. Inhibitory effect of Perilla leaf extract and luteolin on mouse skin tumor promotion. Biol. Pharm. Bull., 2003, 26(4), 560-563.
[http://dx.doi.org/10.1248/bpb.26.560] [PMID: 12673045]
[75]
López-Lázaro, M. Distribution and biological activities of the flavonoid luteolin. Mini Rev. Med. Chem., 2009, 9(1), 31-59.
[http://dx.doi.org/10.2174/138955709787001712] [PMID: 19149659]
[76]
Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhan, I.E.; Rizwan, M.; Atif, M.; Gondal, T.A.; Mubarak, M.S. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother., 2019, 112, 108612.
[http://dx.doi.org/10.1016/j.biopha.2019.108612] [PMID: 30798142]
[77]
Singh, S.; Gupta, P.; Meena, A.; Luqman, S. Acacetin, a flavone with diverse therapeutic potential in cancer, inflammation, infections and other metabolic disorders. Food Chem. Toxicol., 2020, 145, 111708.
[http://dx.doi.org/10.1016/j.fct.2020.111708] [PMID: 32866514]
[78]
Zhou, D.; Bai, Z.; Guo, T.; Li, J.; Li, Y.; Hou, Y.; Chen, G.; Li, N. Dietary flavonoids and human top-ranked diseases: The perspective of in vivo bioactivity and bioavailability. Trends Food Sci. Technol., 2022.
[http://dx.doi.org/10.1016/j.tifs.2022.01.019]
[79]
Cirmi, S.; Ferlazzo, N.; Lombardo, G.E.; Maugeri, A.; Calapai, G.; Gangemi, S.; Navarra, M. Chemo-preventive agents and inhibitors of cancer hallmarks: May citrus offer new perspectives? Nutrients, 2016, 8(11), 698.
[http://dx.doi.org/10.3390/nu8110698] [PMID: 27827912]
[80]
Raza, W.; Luqman, S.; Meena, A. Prospects of tangeretin as a modulator of cancer targets/pathways. Pharmacol. Res., 2020, 161, 105202.
[http://dx.doi.org/10.1016/j.phrs.2020.105202] [PMID: 32942013]
[81]
Tomaszewski, J.; Smith, A.; Covey, J.; Donohue, S.; Rhie, J.; Schweikart, K. Relevance of preclinical pharmacology and toxicology to Phase I trial extrapolation techniques. In: Relevance of Animal Tox-icology; Anticancer Drug Design, 2001; pp. 301-328.
[82]
Sedlacek, H.H. Mechanisms of action of flavopiridol. Crit. Rev. Oncol. Hematol., 2001, 38(2), 139-170.
[http://dx.doi.org/10.1016/S1040-8428(00)00124-4] [PMID: 11311660]
[83]
Ahn, Y.M.; Vogeti, L.; Liu, C-J.; Santhapuram, H.K.; White, J.M.; Vasandani, V.; Mitscher, L.A.; Lushington, G.H.; Hanson, P.R.; Powell, D.R.; Himes, R.H.; Roby, K.F.; Ye, Q.; Georg, G.I. De-sign, synthesis, and antiproliferative and CDK2-cyclin a inhibitory activity of novel flavopiridol ana-logues. Bioorg. Med. Chem., 2007, 15(2), 702-713.
[http://dx.doi.org/10.1016/j.bmc.2006.10.063] [PMID: 17123821]
[84]
Kupchan, S.M.; Knox, J.R.; Udayamurthy, M.S. Tumor inhibitors. 8. Eupatorin, new cytotoxic fla-vone from Eupatorium semiserratum. J. Pharm. Sci., 1965, 54(6), 929-930.
[http://dx.doi.org/10.1002/jps.2600540632] [PMID: 5847037]
[85]
Tuzun, B.S.; Hohmann, J.; Kivcak, B. Green Bio-inspired synthesis, characterization and activity of silver nanoparticle forms of Centaurea virgata Lam. and the isolated flavonoid eupatorin. Green Process. Synthesis., 2018, 7(4), 372-379.
[http://dx.doi.org/10.1515/gps-2017-0027]
[86]
Rashid, M.U.; Alamzeb, M.; Ali, S.; Shah, Z.A.; Naz, I.; Khan, A.A.; Semaan, D.; Khan, M.R. A new irregular monoterpene acetate along with eight known compounds with antifungal potential from the aerial parts of Artemisia incisa Pamp (Asteraceae). Nat. Prod. Res., 2017, 31(4), 428-435.
[http://dx.doi.org/10.1080/14786419.2016.1185718] [PMID: 27187805]
[87]
Bautista, E.; Calzada, F.; Yepez-Mulia, L.; Bedolla-García, B.Y.; Fragoso-Serrano, M.; Pastor-Palacios, G. Salvia connivens, a source of bioactive flavones with amoebicidal and giardicidal activi-ty. Rev. Bras. Farmacogn., 2020, 30(5), 729-732.
[http://dx.doi.org/10.1007/s43450-020-00103-8]
[88]
Salimi, A.; Pourahmad, J. Role of natural compounds in prevention and treatment of chronic lympho-cytic leukemia. Polyphenols, 2018, 195-203.
[http://dx.doi.org/10.1016/B978-0-12-813008-7.00016-3]
[89]
Tai, M.C.; Tsang, S.Y.; Chang, L.Y.; Xue, H. Therapeutic potential of wogonin: A naturally occurring flavonoid. CNS Drug Rev., 2005, 11(2), 141-150.
[http://dx.doi.org/10.1111/j.1527-3458.2005.tb00266.x] [PMID: 16007236]
[90]
Dinda, B.; Dinda, S.; DasSharma, S.; Banik, R.; Chakraborty, A.; Dinda, M. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders. Eur. J. Med. Chem., 2017, 131, 68-80.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.004] [PMID: 28288320]
[91]
Chen, H.; Gao, Y.; Wu, J.; Chen, Y.; Chen, B.; Hu, J.; Zhou, J. Exploring therapeutic potentials of baicalin and its aglycone baicalein for hematological malignancies. Cancer Lett., 2014, 354(1), 5-11.
[http://dx.doi.org/10.1016/j.canlet.2014.08.003] [PMID: 25128647]
[92]
Wang, N.; Ren, D.; Deng, S.; Yang, X. Differential effects of baicalein and its sulfated derivatives in inhibiting proliferation of human breast cancer MCF-7 cells. Chem. Biol. Interact., 2014, 221, 99-108.
[http://dx.doi.org/10.1016/j.cbi.2014.08.003] [PMID: 25130856]
[93]
Lee, S.H.; Ryu, J.K.; Lee, K-Y.; Woo, S.M.; Park, J.K.; Yoo, J.W.; Kim, Y.T.; Yoon, Y.B. Enhanced anti-tumor effect of combination therapy with gemcitabine and apigenin in pancreatic cancer. Cancer Lett., 2008, 259(1), 39-49.
[http://dx.doi.org/10.1016/j.canlet.2007.09.015] [PMID: 17967505]
[94]
Kashyap, D.; Sharma, A.; Tuli, H.S.; Sak, K.; Garg, V.K.; Buttar, H.S. Apigenin: A natural bioactive flavone-type molecule with promising therapeutic function. J. Funct. Foods, 2018, 48, 457-471.
[http://dx.doi.org/10.1016/j.jff.2018.07.037]
[95]
Das, S.; Das, J.; Samadder, A.; Boujedaini, N.; Khuda-Bukhsh, A.R. Apigenin-induced apoptosis in A375 and A549 cells through selective action and dysfunction of mitochondria. Exp. Biol. Med. (Maywood), 2012, 237(12), 1433-1448.
[http://dx.doi.org/10.1258/ebm.2012.012148] [PMID: 23354402]
[96]
Horinaka, M.; Yoshida, T.; Shiraishi, T.; Nakata, S.; Wakada, M.; Sakai, T. The dietary flavonoid apigenin sensitizes malignant tumor cells to tumor necrosis factor-related apoptosis-inducing ligand. Mol. Cancer Ther., 2006, 5(4), 945-951.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0431] [PMID: 16648565]
[97]
Zheng, P-W.; Chiang, L-C.; Lin, C-C. Apigenin induced apoptosis through p53-dependent pathway in human cervical carcinoma cells. Life Sci., 2005, 76(12), 1367-1379.
[http://dx.doi.org/10.1016/j.lfs.2004.08.023] [PMID: 15670616]
[98]
Maggioni, D.; Garavello, W.; Rigolio, R.; Pignataro, L.; Gaini, R.; Nicolini, G. Apigenin impairs oral squamous cell carcinoma growth in vitro inducing cell cycle arrest and apoptosis. Int. J. Oncol., 2013, 43(5), 1675-1682.
[http://dx.doi.org/10.3892/ijo.2013.2072] [PMID: 23969487]
[99]
Iizumi, Y.; Oishi, M.; Taniguchi, T.; Goi, W.; Sowa, Y.; Sakai, T. The flavonoid apigenin downregu-lates CDK1 by directly targeting ribosomal protein S9. PLoS One, 2013, 8(8), e73219.
[http://dx.doi.org/10.1371/journal.pone.0073219] [PMID: 24009741]
[100]
Gupta, S.; Afaq, F.; Mukhtar, H. Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells. Biochem. Biophys. Res. Commun., 2001, 287(4), 914-920.
[http://dx.doi.org/10.1006/bbrc.2001.5672] [PMID: 11573952]
[101]
Lindenmeyer, F.; Li, H.; Menashi, S.; Soria, C.; Lu, H. Apigenin acts on the tumor cell invasion pro-cess and regulates protease production. Nutr. Cancer, 2001, 39(1), 139-147.
[http://dx.doi.org/10.1207/S15327914nc391_19] [PMID: 11588896]
[102]
Shukla, S.; Gupta, S. Molecular targets for apigenin-induced cell cycle arrest and apoptosis in pros-tate cancer cell xenograft. Mol. Cancer Ther., 2006, 5(4), 843-852.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0370] [PMID: 16648554]
[103]
Erdogan, S.; Doganlar, O.; Doganlar, Z.B.; Serttas, R.; Turkekul, K.; Dibirdik, I.; Bilir, A. The fla-vonoid apigenin reduces prostate cancer CD44(+) stem cell survival and migration through PI3K/Akt/NF-κB signaling. Life Sci., 2016, 162, 77-86.
[http://dx.doi.org/10.1016/j.lfs.2016.08.019] [PMID: 27569589]
[104]
Zhong, X.; Liu, D.; Jiang, Z.; Li, C.; Chen, L.; Xia, Y.; Liu, D.; Yao, Q.; Wang, D. Chrysin induced cell apoptosis and inhibited invasion through regulation of tet1 expression in gastric cancer cells. OncoTargets Ther., 2020, 13, 3277-3287.
[http://dx.doi.org/10.2147/OTT.S246031] [PMID: 32368086]
[105]
Wu, T-C.; Chan, S-T.; Chang, C-N.; Yu, P-S.; Chuang, C-H.; Yeh, S-L. Quercetin and chrysin inhib-it nickel-induced invasion and migration by downregulation of TLR4/NF-κB signaling in A549 cells. Chem. Biol. Interact., 2018, 292, 101-109.
[http://dx.doi.org/10.1016/j.cbi.2018.07.010] [PMID: 30016632]
[106]
Javan, M.Z.; Pilehvar, S.Y.; Dadashpour, M.; Alipour, S.H.; Abolhasani, S.; Zarghami, N. Synergistic anticancer effects of silibinin and chrysin in T47D breast cancer cells. APJCP, 2017, 18(5), 1283-1287.
[PMID: 28610415]
[107]
Debnath, S.; Kanakaraju, M.; Islam, M.; Yeeravalli, R.; Sen, D.; Das, A. In silico design, synthesis and activity of potential drug-like chrysin scaffold-derived selective EGFR inhibitors as anticancer agents. Comput. Biol. Chem., 2019, 83, 107156.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.107156] [PMID: 31710991]
[108]
Lirdprapamongkol, K.; Sakurai, H.; Abdelhamed, S.; Yokoyama, S.; Maruyama, T.; Athikomkulchai, S.; Viriyaroj, A.; Awale, S.; Yagita, H.; Ruchirawat, S.; Svasti, J.; Saiki, I. A flavonoid chrysin sup-presses hypoxic survival and metastatic growth of mouse breast cancer cells. Oncol. Rep., 2013, 30(5), 2357-2364.
[http://dx.doi.org/10.3892/or.2013.2667] [PMID: 23969634]
[109]
Nagasaka, M.; Hashimoto, R.; Inoue, Y.; Ishiuchi, K.; Matsuno, M.; Itoh, Y.; Tokugawa, M.; Ohoka, N.; Morishita, D.; Mizukami, H.; Makino, T.; Hayashi, H. Anti-tumorigenic activity of chrysin from Oroxylum indicum via non-genotoxic p53 activation through the ATM-Chk2 pathway. Molecules, 2018, 23(6), 1394.
[http://dx.doi.org/10.3390/molecules23061394] [PMID: 29890668]
[110]
Tang, Q.; Ji, F.; Guo, J.; Wang, J.; Li, Y.; Bao, Y. Directional modification of chrysin for exerting apoptosis and enhancing significantly anti-cancer effects of 10-hydroxy camptothecin. Biomed. Pharmacother., 2016, 82, 693-703.
[http://dx.doi.org/10.1016/j.biopha.2016.06.008] [PMID: 27470413]
[111]
Li, H.Z.; Chen, Y.H.; Fang, Y.L.; Zhong, L.Y.; Yuan, Q.Q.; Xu, X.Y.; Cao, J.G. [Effects of chrysin on sphere formation and CK2α expression of ovarian cancer stem-like cells derived from SKOV3 cell line] Zhonghua Yi Xue Za Zhi, 2016, 96(25), 2013-2016.
[PMID: 27470961]
[112]
Samarghandian, S.; Afshari, J.T.; Davoodi, S. Chrysin reduces proliferation and induces apoptosis in the human prostate cancer cell line pc-3. Clinics (São Paulo), 2011, 66(6), 1073-1079.
[http://dx.doi.org/10.1590/S1807-59322011000600026] [PMID: 21808878]
[113]
Ryu, S.; Lim, W.; Bazer, F.W.; Song, G. Chrysin induces death of prostate cancer cells by inducing ROS and ER stress. J. Cell. Physiol., 2017, 232(12), 3786-3797.
[http://dx.doi.org/10.1002/jcp.25861] [PMID: 28213961]
[114]
Dong, W.; Chen, A.; Chao, X.; Li, X.; Cui, Y.; Xu, C.; Cao, J.; Ning, Y. Chrysin inhibits proinflam-matory factor-induced EMT phenotype and cancer stem cell-like features in HeLa cells by blocking the NF-κB/twist axis. Cell. Physiol. Biochem., 2019, 52(5), 1236-1250.
[http://dx.doi.org/10.33594/000000084] [PMID: 31001962]
[115]
Laishram, S.; Moirangthem, D.S.; Borah, J.C.; Pal, B.C.; Suman, P.; Gupta, S.K.; Kalita, M.C.; Ta-lukdar, N.C. Chrysin rich Scutellaria discolor Colebr. induces cervical cancer cell death via the in-duction of cell cycle arrest and caspase-dependent apoptosis. Life Sci., 2015, 143, 105-113.
[http://dx.doi.org/10.1016/j.lfs.2015.10.035] [PMID: 26541229]
[116]
Ni, Z.; He, J.; Wu, Y.; Hu, C.; Dai, X.; Yan, X.; Li, B.; Li, X.; Xiong, H.; Li, Y.; Li, S.; Xu, L.; Li, Y.; Lian, J.; He, F. AKT-mediated phosphorylation of ATG4B impairs mitochondrial activity and enhances the Warburg effect in hepatocellular carcinoma cells. Autophagy, 2018, 14(4), 685-701.
[http://dx.doi.org/10.1080/15548627.2017.1407887] [PMID: 29165041]
[117]
Xu, D.; Jin, J.; Yu, H.; Zhao, Z.; Ma, D.; Zhang, C.; Jiang, H. Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2. J. Exp. Clin. Cancer Res., 2017, 36(1), 44.
[http://dx.doi.org/10.1186/s13046-017-0514-4] [PMID: 28320429]
[118]
Zhang, Y.; Chen, F.; Xiao, X.; Pan, W.; Yuan, Q.; Cao, J. Chrysin inhibits sphere formation in SMMC-7721 cells via modulation of SHP-1/STAT3 signaling pathway. Cancer Manag. Res., 2019, 11, 2977-2985.
[http://dx.doi.org/10.2147/CMAR.S193647] [PMID: 31114345]
[119]
Sassi, A.; Maatouk, M.; El Gueder, D.; Bzéouich, I.M.; Abdelkefi-Ben Hatira, S.; Jemni-Yacoub, S.; Ghedira, K.; Chekir-Ghedira, L. Chrysin, a natural and biologically active flavonoid suppresses tu-mor growth of mouse B16F10 melanoma cells: In vitro and in vivo study. Chem. Biol. Interact., 2018, 283, 10-19.
[http://dx.doi.org/10.1016/j.cbi.2017.11.022] [PMID: 29352974]
[120]
Cai, X.; Ye, T.; Liu, C.; Lu, W.; Lu, M.; Zhang, J.; Wang, M.; Cao, P. Luteolin induced G2 phase cell cycle arrest and apoptosis on non-small cell lung cancer cells. Toxicol. In Vitro, 2011, 25(7), 1385-1391.
[http://dx.doi.org/10.1016/j.tiv.2011.05.009] [PMID: 21601631]
[121]
Jiang, Z-Q.; Li, M-H.; Qin, Y-M.; Jiang, H-Y.; Zhang, X.; Wu, M-H. Luteolin inhibits tumorigenesis and induces apoptosis of non-small cell lung cancer cells via regulation of MicroRNA-34a-5p. Int. J. Mol. Sci., 2018, 19(2), 447.
[http://dx.doi.org/10.3390/ijms19020447] [PMID: 29393891]
[122]
Yang, S-F.; Yang, W-E.; Chang, H-R.; Chu, S-C.; Hsieh, Y-S. Luteolin induces apoptosis in oral squamous cancer cells. J. Dent. Res., 2008, 87(4), 401-406.
[http://dx.doi.org/10.1177/154405910808700413] [PMID: 18362328]
[123]
Abotaleb, M.; Samuel, S.M.; Varghese, E.; Varghese, S.; Kubatka, P.; Liskova, A.; Büsselberg, D. Flavonoids in cancer and apoptosis. Cancers (Basel), 2018, 11(1), 28.
[http://dx.doi.org/10.3390/cancers11010028] [PMID: 30597838]
[124]
Park, S-H.; Park, H.S.; Lee, J.H.; Chi, G.Y.; Kim, G-Y.; Moon, S-K.; Chang, Y.C.; Hyun, J.W.; Kim, W.J.; Choi, Y.H. Induction of endoplasmic reticulum stress-mediated apoptosis and non-canonical autophagy by luteolin in NCI-H460 lung carcinoma cells. Food Chem. Toxicol., 2013, 56, 100-109.
[http://dx.doi.org/10.1016/j.fct.2013.02.022] [PMID: 23454208]
[125]
Yang, M-Y.; Wang, C-J.; Chen, N-F.; Ho, W-H.; Lu, F-J.; Tseng, T-H. Luteolin enhances paclitaxel-induced apoptosis in human breast cancer MDA-MB-231 cells by blocking STAT3. Chem. Biol. Interact., 2014, 213, 60-68.
[http://dx.doi.org/10.1016/j.cbi.2014.02.002] [PMID: 24525192]
[126]
Cook, M.T.; Liang, Y.; Besch-Williford, C.; Hyder, S.M. Luteolin inhibits lung metastasis, cell mi-gration, and viability of triple-negative breast cancer cells. Breast Cancer (Dove Med. Press), 2016, 9, 9-19.
[http://dx.doi.org/10.2147/BCTT.S124860] [PMID: 28096694]
[127]
Fong, Y.; Shen, K.H.; Chiang, T.A.; Shih, Y.W. Acacetin inhibits TPA-induced MMP-2 and u-PA expressions of human lung cancer cells through inactivating JNK signaling pathway and reducing binding activities of NF-kappaB and AP-1. J. Food Sci., 2010, 75(1), H30-H38.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01438.x] [PMID: 20492175]
[128]
Chien, S-T.; Lin, S-S.; Wang, C-K.; Lee, Y-B.; Chen, K-S.; Fong, Y.; Shih, Y.W. Acacetin inhibits the invasion and migration of human non-small cell lung cancer A549 cells by suppressing the p38α MAPK signaling pathway. Mol. Cell. Biochem., 2011, 350(1-2), 135-148.
[http://dx.doi.org/10.1007/s11010-010-0692-2] [PMID: 21210297]
[129]
Punia, R.; Raina, K.; Agarwal, R.; Singh, R.P. Acacetin enhances the therapeutic efficacy of doxo-rubicin in non-small-cell lung carcinoma cells. PLoS One, 2017, 12(8), e0182870.
[http://dx.doi.org/10.1371/journal.pone.0182870] [PMID: 28859099]
[130]
Singh, R.P.; Agrawal, P.; Yim, D.; Agarwal, C.; Agarwal, R. Acacetin inhibits cell growth and cell cycle progression, and induces apoptosis in human prostate cancer cells: Structure-activity relation-ship with linarin and linarin acetate. Carcinogenesis, 2005, 26(4), 845-854.
[http://dx.doi.org/10.1093/carcin/bgi014] [PMID: 15637089]
[131]
Shen, K-H.; Hung, S-H.; Yin, L-T.; Huang, C-S.; Chao, C-H.; Liu, C-L.; Shih, Y.W. Acacetin, a fla-vonoid, inhibits the invasion and migration of human prostate cancer DU145 cells via inactivation of the p38 MAPK signaling pathway. Mol. Cell. Biochem., 2010, 333(1-2), 279-291.
[http://dx.doi.org/10.1007/s11010-009-0229-8] [PMID: 19693651]
[132]
Kim, H.R.; Park, C.G.; Jung, J.Y. Acacetin (5,7-dihydroxy-4′-methoxyflavone) exhibits in vitro and in vivo anticancer activity through the suppression of NF-κB/Akt signaling in prostate cancer cells. Int. J. Mol. Med., 2014, 33(2), 317-324.
[http://dx.doi.org/10.3892/ijmm.2013.1571] [PMID: 24285354]
[133]
Watanabe, K.; Kanno, S.; Tomizawa, A.; Yomogida, S.; Ishikawa, M. Acacetin induces apoptosis in human T cell leukemia Jurkat cells via activation of a caspase cascade. Oncol. Rep., 2012, 27(1), 204-209.
[PMID: 21993665]
[134]
Boege, F.; Straub, T.; Kehr, A.; Boesenberg, C.; Christiansen, K.; Andersen, A.; Jakob, F.; Köhrle, J. Selected novel flavones inhibit the DNA binding or the DNA religation step of eukaryotic topoiso-merase I. J. Biol. Chem., 1996, 271(4), 2262-2270.
[http://dx.doi.org/10.1074/jbc.271.4.2262] [PMID: 8567688]
[135]
Salimi, A.; Roudkenar, M.H.; Sadeghi, L.; Mohseni, A.; Seydi, E.; Pirahmadi, N.; Pourahmad, J. Se-lective anticancer activity of acacetin against chronic lymphocytic leukemia using both in vivo and in vitro methods: Key role of oxidative stress and cancerous mitochondria. Nutr. Cancer, 2016, 68(8), 1404-1416.
[http://dx.doi.org/10.1080/01635581.2016.1235717] [PMID: 27779444]
[136]
Chen, J.; Teng, J.; Ma, L.; Tong, H.; Ren, B.; Wang, L.; Li, W. Flavonoids isolated from the flowers of Limonium bicolor and their in vitro antitumor evaluation. Pharmacogn. Mag., 2017, 13(50), 222-225.
[http://dx.doi.org/10.4103/0973-1296.204566] [PMID: 28539711]
[137]
Periyasamy, K.; Baskaran, K.; Ilakkia, A.; Vanitha, K.; Selvaraj, S.; Sakthisekaran, D. Antitumor efficacy of tangeretin by targeting the oxidative stress mediated on 7,12-dimethylbenz(a) anthra-cene-induced proliferative breast cancer in Sprague-Dawley rats. Cancer Chemother. Pharmacol., 2015, 75(2), 263-272.
[http://dx.doi.org/10.1007/s00280-014-2629-z] [PMID: 25431347]
[138]
Dong, Y.; Cao, A.; Shi, J.; Yin, P.; Wang, L.; Ji, G.; Xie, J.; Wu, D. Tangeretin, a citrus polymethox-yflavonoid, induces apoptosis of human gastric cancer AGS cells through extrinsic and intrinsic sig-naling pathways. Oncol. Rep., 2014, 31(4), 1788-1794.
[http://dx.doi.org/10.3892/or.2014.3034] [PMID: 24573532]
[139]
Ma, L-L.; Wang, D.W.; Yu, X-D.; Zhou, Y-L. Tangeretin induces cell cycle arrest and apoptosis through upregulation of PTEN expression in glioma cells. Biomed. Pharmacother., 2016, 81, 491-496.
[http://dx.doi.org/10.1016/j.biopha.2016.04.006] [PMID: 27261630]
[140]
Liu, X.; Chen, L.; Liu, Y.; Zhang, T. Tangeretin sensitises human lung cancer cells to TRAILinduced apoptosis via ROS-JNK/ERK-CHOP pathwaymediated up-regulation of death receptor. Trop. J. Pharm. Res., 2017, 16(1), 17-29.
[http://dx.doi.org/10.4314/tjpr.v16i1.4]
[141]
Wiernik, P.H. Alvocidib (flavopiridol) for the treatment of chronic lymphocytic leukemia. Expert Opin. Investig. Drugs, 2016, 25(6), 729-734.
[http://dx.doi.org/10.1517/13543784.2016.1169273] [PMID: 26998706]
[142]
Zhang, H-P.; Li, G-Q.; Zhang, Y.; Guo, W-Z.; Zhang, J-K.; Li, J.; Lv, J.F.; Zhang, S.J. Upregulation of Mcl-1 inhibits JQ1-triggered anticancer activity in hepatocellular carcinoma cells. Biochem. Biophys. Res. Commun., 2018, 495(4), 2456-2461.
[http://dx.doi.org/10.1016/j.bbrc.2017.12.153] [PMID: 29287727]
[143]
Gokce, O.; Dogan Turacli, I.; Ilke Onen, H.; Erdem, O.; Erguven Kayaa, E.; Ekmekci, A. Flavopiri-dol induces apoptosis via mitochondrial pathway in b16f10 murine melanoma cells and a subcutane-ous melanoma tumor model. Acta Dermatovenerol. Croat., 2016, 24(1), 2-12.
[PMID: 27149123]
[144]
Zocchi, L.; Wu, S.C.; Wu, J.; Hayama, K.L.; Benavente, C.A. The cyclin-dependent kinase inhibitor flavopiridol (alvocidib) inhibits metastasis of human osteosarcoma cells. Oncotarget, 2018, 9(34), 23505-23518.
[http://dx.doi.org/10.18632/oncotarget.25239] [PMID: 29805751]
[145]
Androutsopoulos, V.; Arroo, R.R.; Hall, J.F.; Surichan, S.; Potter, G.A. Antiproliferative and cyto-static effects of the natural product eupatorin on MDA-MB-468 human breast cancer cells due to CYP1-mediated metabolism. Breast Cancer Res., 2008, 10(3), R39.
[http://dx.doi.org/10.1186/bcr2090] [PMID: 18454852]
[146]
Lee, K.; Jung, Y.J.; Shin, S.Y.; Lee, Y.H. The natural flavone eupatorin induces cell cycle arrest at the G2/M phase and apoptosis in HeLa cells. Appl. Biol. Chem., 2016, 59(2), 193-199.
[http://dx.doi.org/10.1007/s13765-016-0160-0]
[147]
Sarvestani, N.; Sepehri, H.; Farimani, M. Anticancer effect of eupatorin via bax/bcl-2 and mitochon-drial membrane potential changes through ros mediated pathway in human colon cancer. Int. J. Pharmacogn. Phytochem. Res., 2015, 7, 1039-1046.
[148]
Namazi Sarvestani, N.; Sepehri, H.; Delphi, L.; Moridi Farimani, M. Eupatorin and salvigenin poten-tiate doxorubicin-induced apoptosis and cell cycle arrest in ht-29 and sw948 human colon cancer cells. APJCP, 2018, 19(1), 131-139.
[PMID: 29373904]
[149]
Estévez, S.; Marrero, M.T.; Quintana, J.; Estévez, F. Eupatorin-induced cell death in human leuke-mia cells is dependent on caspases and activates the mitogen-activated protein kinase pathway. PLoS One, 2014, 9(11), e112536.
[http://dx.doi.org/10.1371/journal.pone.0112536] [PMID: 25390937]
[150]
Huang, S-T.; Wang, C-Y.; Yang, R-C.; Chu, C-J.; Wu, H-T.; Pang, J-H.S. Wogonin, an active com-pound in Scutellaria baicalensis, induces apoptosis and reduces telomerase activity in the HL-60 leukemia cells. Phytomedicine, 2010, 17(1), 47-54.
[http://dx.doi.org/10.1016/j.phymed.2009.06.005] [PMID: 19577445]
[151]
Boozari, M.; Mohammadi, A.; Asili, J.; Emami, S.A.; Tayarani-Najaran, Z. Growth inhibition and apoptosis induction by Scutellaria pinnatifida A. Ham. on HL-60 and K562 leukemic cell lines. Environ. Toxicol. Pharmacol., 2015, 39(1), 307-312.
[http://dx.doi.org/10.1016/j.etap.2014.12.002] [PMID: 25546119]
[152]
Ozmen, A.; Madlener, S.; Bauer, S.; Krasteva, S.; Vonach, C.; Giessrigl, B.; Gridling, M.; Viola, K.; Stark, N.; Saiko, P.; Michel, B.; Fritzer-Szekeres, M.; Szekeres, T.; Askin-Celik, T.; Krenn, L.; Krupitza, G. In vitro anti-leukemic activity of the ethno-pharmacological plant Scutellaria orientalis ssp. carica endemic to western Turkey. Phytomedicine, 2010, 17(1), 55-62.
[http://dx.doi.org/10.1016/j.phymed.2009.06.001] [PMID: 19576743]
[153]
Wu, X.; Zhang, H.; Salmani, J.M.M.; Fu, R.; Chen, B. Advances of wogonin, an extract from Scutel-laria baicalensis, for the treatment of multiple tumors. OncoTargets Ther., 2016, 9, 2935-2943.
[PMID: 27274287]
[154]
Xu, M.; Lu, N.; Zhang, H.; Dai, Q.; Wei, L.; Li, Z.; You, Q.; Guo, Q. Wogonin induced cytotoxicity in human hepatocellular carcinoma cells by activation of unfolded protein response and inactivation of AKT. Hepatol. Res., 2013, 43(8), 890-905.
[http://dx.doi.org/10.1111/hepr.12036] [PMID: 23294370]
[155]
Zhao, K.; Song, X.; Huang, Y.; Yao, J.; Zhou, M.; Li, Z.; You, Q.; Guo, Q.; Lu, N. Wogonin inhibits LPS-induced tumor angiogenesis via suppressing PI3K/Akt/NF-κB signaling. Eur. J. Pharmacol., 2014, 737, 57-69.
[http://dx.doi.org/10.1016/j.ejphar.2014.05.011] [PMID: 24858369]
[156]
Zhao, L.; Miao, H.C.; Li, W.J.; Sun, Y.; Huang, S.L.; Li, Z.Y.; Guo, Q.L. LW-213 induces G2/M cell cycle arrest through AKT/GSK3β/β-catenin signaling pathway in human breast cancer cells. Mol. Carcinog., 2016, 55(5), 778-792.
[http://dx.doi.org/10.1002/mc.22321] [PMID: 25945460]
[157]
Safdari, Y.; Khalili, M.; Ebrahimzadeh, M.A.; Yazdani, Y.; Farajnia, S. Natural inhibitors of PI3K/AKT signaling in breast cancer: Emphasis on newly-discovered molecular mechanisms of ac-tion. Pharmacol. Res., 2015, 93, 1-10.
[http://dx.doi.org/10.1016/j.phrs.2014.12.004] [PMID: 25533812]
[158]
Huang, K.F.; Zhang, G.D.; Huang, Y.Q.; Diao, Y. Wogonin induces apoptosis and down-regulates survivin in human breast cancer MCF-7 cells by modulating PI3K-AKT pathway. Int. Immunopharmacol., 2012, 12(2), 334-341.
[http://dx.doi.org/10.1016/j.intimp.2011.12.004] [PMID: 22182776]
[159]
Gao, J.; Morgan, W.A.; Sanchez-Medina, A.; Corcoran, O. The ethanol extract of Scutellaria bai-calensis and the active compounds induce cell cycle arrest and apoptosis including upregulation of p53 and Bax in human lung cancer cells. Toxicol. Appl. Pharmacol., 2011, 254(3), 221-228.
[http://dx.doi.org/10.1016/j.taap.2011.03.016] [PMID: 21457722]
[160]
Yang, L.; Zhang, H.W.; Hu, R.; Yang, Y.; Qi, Q.; Lu, N.; Liu, W.; Chu, Y.Y.; You, Q.D.; Guo, Q.L. Wogonin induces G1 phase arrest through inhibiting Cdk4 and cyclin D1 concomitant with an elevation in p21Cip1 in human cervical carcinoma HeLa cells. Biochem. Cell Biol., 2009, 87(6), 933-942.
[http://dx.doi.org/10.1139/O09-060] [PMID: 19935879]
[161]
Kim, M.S.; Bak, Y.; Park, Y.S.; Lee, D.H.; Kim, J.H.; Kang, J.W.; Song, H.H.; Oh, S.R.; Yoon, D.Y. Wogonin induces apoptosis by suppressing E6 and E7 expressions and activating intrinsic sig-naling pathways in HPV-16 cervical cancer cells. Cell Biol. Toxicol., 2013, 29(4), 259-272.
[http://dx.doi.org/10.1007/s10565-013-9251-4] [PMID: 23955116]
[162]
Ruibin, J; Bo, J; Danying, W; Chihong, Z; Jianguo, F; Linhui, G Therapy effects of wogonin on ovarian cancer cells. BioMed Res. Int., 2017, 2017
[http://dx.doi.org/10.1155/2017/9381513]
[163]
Ma, X.; Yan, W.; Dai, Z.; Gao, X.; Ma, Y.; Xu, Q.; Jiang, J.; Zhang, S. Baicalein suppresses metasta-sis of breast cancer cells by inhibiting EMT via downregulation of SATB1 and Wnt/β-catenin path-way. Drug Des. Devel. Ther., 2016, 10, 1419-1441.
[http://dx.doi.org/10.2147/DDDT.S102541] [PMID: 27143851]
[164]
Wang, Y.; Han, E.; Xing, Q.; Yan, J.; Arrington, A.; Wang, C.; Tully, D.; Kowolik, C.M.; Lu, D.M.; Frankel, P.H.; Zhai, J.; Wen, W.; Horne, D.; Yip, M.L.R.; Yim, J.H. Baicalein upregulates DDIT4 expression which mediates mTOR inhibition and growth inhibition in cancer cells. Cancer Lett., 2015, 358(2), 170-179.
[http://dx.doi.org/10.1016/j.canlet.2014.12.033] [PMID: 25543165]
[165]
Liu, H.; Dong, Y.; Gao, Y.; Du, Z.; Wang, Y.; Cheng, P.; Chen, A.; Huang, H. The fascinating ef-fects of baicalein on cancer: A review. Int. J. Mol. Sci., 2016, 17(10), 1681.
[http://dx.doi.org/10.3390/ijms17101681] [PMID: 27735841]
[166]
Chiu, Y-W.; Lin, T-H.; Huang, W-S.; Teng, C-Y.; Liou, Y-S.; Kuo, W-H.; Lin, W.L.; Huang, H.I.; Tung, J.N.; Huang, C.Y.; Liu, J.Y.; Wang, W.H.; Hwang, J.M.; Kuo, H.C. Baicalein inhibits the mi-gration and invasive properties of human hepatoma cells. Toxicol. Appl. Pharmacol., 2011, 255(3), 316-326.
[http://dx.doi.org/10.1016/j.taap.2011.07.008] [PMID: 21803068]
[167]
Liang, R-R.; Zhang, S.; Qi, J-A.; Wang, Z-D.; Li, J.; Liu, P-J.; Huang, C.; Le, X.F.; Yang, J.; Li, Z.F. Preferential inhibition of hepatocellular carcinoma by the flavonoid Baicalein through blocking MEK-ERK signaling. Int. J. Oncol., 2012, 41(3), 969-978.
[http://dx.doi.org/10.3892/ijo.2012.1510] [PMID: 22684543]
[168]
Xu, X-M.; Yuan, G-J.; Deng, J-J.; Guo, H-T.; Xiang, M.; Yang, F.; Ge, W.; Chen, S.Y. Inhibition of 12-lipoxygenase reduces proliferation and induces apoptosis of hepatocellular carcinoma cells in vitro and in vivo. Hepatobiliary Pancreat. Dis. Int., 2012, 11(2), 193-202.
[http://dx.doi.org/10.1016/S1499-3872(12)60147-7] [PMID: 22484589]
[169]
Chandrashekar, N.; Selvamani, A.; Subramanian, R.; Pandi, A.; Thiruvengadam, D. Baicalein inhib-its pulmonary carcinogenesis-associated inflammation and interferes with COX-2, MMP-2 and MMP-9 expressions in-vivo. Toxicol. Appl. Pharmacol., 2012, 261(1), 10-21.
[http://dx.doi.org/10.1016/j.taap.2012.02.004] [PMID: 22369883]
[170]
Naveenkumar, C.; Asokkumar, S.; Raghunandhakumar, S.; Jagan, S.; Anandakumar, P.; Augustine, T.A.; Kamaraj, S.; Devaki, T. Potent antitumor and antineoplastic efficacy of baicalein on ben-zo(a)pyrene-induced experimental pulmonary tumorigenesis. Fundam. Clin. Pharmacol., 2012, 26(2), 259-270.
[http://dx.doi.org/10.1111/j.1472-8206.2010.00910.x] [PMID: 21323996]
[171]
Tong, W-G.; Ding, X-Z.; Witt, R.C.; Adrian, T.E. Lipoxygenase inhibitors attenuate growth of hu-man pancreatic cancer xenografts and induce apoptosis through the mitochondrial pathway. Mol. Cancer Ther., 2002, 1(11), 929-935.
[PMID: 12481414]
[172]
Bonham, M.; Posakony, J.; Coleman, I.; Montgomery, B.; Simon, J.; Nelson, P.S. Characterization of chemical constituents in Scutellaria baicalensis with antiandrogenic and growth-inhibitory activities toward prostate carcinoma. Clin. Cancer Res., 2005, 11(10), 3905-3914.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1974] [PMID: 15897592]
[173]
Ma, G-Z.; Liu, C-H.; Wei, B.; Qiao, J.; Lu, T.; Wei, H-C.; Chen, H.D.; He, C.D. Baicalein inhibits DMBA/TPA-induced skin tumorigenesis in mice by modulating proliferation, apoptosis, and in-flammation. Inflammation, 2013, 36(2), 457-467.
[http://dx.doi.org/10.1007/s10753-012-9566-y] [PMID: 23108957]
[174]
Lee, M-J.; Wang, C-J.; Tsai, Y-Y.; Hwang, J-M.; Lin, W-L.; Tseng, T-H.; Chu, C.Y. Inhibitory ef-fect of 12-O-tetradecanoylphorbol-13-acetate-caused tumor promotion in benzo[a]pyrene-initiated CD-1 mouse skin by baicalein. Nutr. Cancer, 1999, 34(2), 185-191.
[http://dx.doi.org/10.1207/S15327914NC3402_9] [PMID: 10578486]
[175]
Calderón-Montaño, J.M.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem., 2011, 11(4), 298-344.
[http://dx.doi.org/10.2174/138955711795305335] [PMID: 21428901]
[176]
Chen, A.Y.; Chen, Y.C. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem., 2013, 138(4), 2099-2107.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.139] [PMID: 23497863]
[177]
Taheri, Y.; Suleria, H.A.R.; Martins, N.; Sytar, O.; Beyatli, A.; Yeskaliyeva, B.; Seitimova, G.; Salehi, B.; Semwal, P.; Painuli, S.; Kumar, A.; Azzini, E.; Martorell, M.; Setzer, W.N.; Maroyi, A.; Sharifi-Rad, J. Myricetin bioactive effects: Moving from preclinical evidence to potential clinical ap-plications. BMC Complement. Med. Ther., 2020, 20(1), 241.
[http://dx.doi.org/10.1186/s12906-020-03033-z] [PMID: 32738903]
[178]
Shukla, R.; Pandey, V.; Vadnere, G.P.; Lodhi, S. Role of flavonoids in management of inflammato-ry disorders. In: Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Dis-eases; Elsevier, 2019; pp. 293-322.
[179]
Naeimi, A.F.; Alizadeh, M. Antioxidant properties of the flavonoid fisetin: An updated review of in vivo and in vitro studies. Trends Food Sci. Technol., 2017, 70, 34-44.
[http://dx.doi.org/10.1016/j.tifs.2017.10.003]
[180]
Kelly, G.S. Quercetin. Monograph. Altern. Med. Rev., 2011, 16(2), 172-194.
[PMID: 21649459]
[181]
Formica, J.V.; Regelson, W. Review of the biology of Quercetin and related bioflavonoids. Food Chem. Toxicol., 1995, 33(12), 1061-1080.
[http://dx.doi.org/10.1016/0278-6915(95)00077-1] [PMID: 8847003]
[182]
Gadhwal, M.K.; Patil, S.; D’Mello, P.; Joshi, U.; Sinha, R.; Govil, G. Synthesis, characterisation and antitumour activity of some quercetin analogues. Indian J. Pharm. Sci., 2013, 75(2), 233-237.
[PMID: 24019576]
[183]
Kellici, T.F.; Chatziathanasiadou, M.V.; Lee, M-S.; Sayyad, N.; Geromichalou, E.G.; Vrettos, E.I.; Tsiailanis, A.D.; Chi, S.W.; Geromichalos, G.D.; Mavromoustakos, T.; Tzakos, A.G. Rational design and structure-activity relationship studies of quercetin-amino acid hybrids targeting the anti-apoptotic protein Bcl-xL. Org. Biomol. Chem., 2017, 15(37), 7956-7976.
[http://dx.doi.org/10.1039/C7OB02045G] [PMID: 28902204]
[184]
Bule, M.; Abdurahman, A.; Nikfar, S.; Abdollahi, M.; Amini, M. Antidiabetic effect of quercetin: A systematic review and meta-analysis of animal studies. Food Chem. Toxicol., 2019, 125, 494-502.
[http://dx.doi.org/10.1016/j.fct.2019.01.037] [PMID: 30735748]
[185]
Chen, Y-W.; Chou, H-C.; Lin, S-T.; Chen, Y-H.; Chang, Y-J.; Chen, L.; Chan, H.L. Cardioprotec-tive effects of quercetin in cardiomyocyte under ischemia/reperfusion injury. Evid. Based Complement. Alternat. Med., 2013, 2013, 364519.
[http://dx.doi.org/10.1155/2013/364519] [PMID: 23573126]
[186]
Xu, D.; Hu, M-J.; Wang, Y-Q.; Cui, Y-L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 2019, 24(6), 1123.
[http://dx.doi.org/10.3390/molecules24061123] [PMID: 30901869]
[187]
Lee, H.N.; Shin, S.A.; Choo, G.S.; Kim, H.J.; Park, Y.S.; Kim, B.S.; Kim, S.K.; Cho, S.D.; Nam, J.S.; Choi, C.S.; Che, J.H.; Park, B.K.; Jung, J.Y. Anti-inflammatory effect of quercetin and galangin in LPS-stimulated RAW264.7 macrophages and DNCB-induced atopic dermatitis animal models. Int. J. Mol. Med., 2018, 41(2), 888-898.
[PMID: 29207037]
[188]
Duan, Y.; Sun, N.; Xue, M.; Wang, X.; Yang, H. Synthesis of regioselectively acylated quercetin analogues with improved antiplatelet activity. Mol. Med. Rep., 2017, 16(6), 9735-9740.
[http://dx.doi.org/10.3892/mmr.2017.7781] [PMID: 29039540]
[189]
Iacopetta, D.; Grande, F.; Caruso, A.; Mordocco, R.A.; Plutino, M.R.; Scrivano, L.; Ceramella, J.; Muià, N.; Saturnino, C.; Puoci, F.; Rosano, C.; Sinicropi, M.S. New insights for the use of quercetin analogs in cancer treatment. Future Med. Chem., 2017, 9(17), 2011-2028.
[http://dx.doi.org/10.4155/fmc-2017-0118] [PMID: 29076772]
[190]
Huang, H.; Chen, A.Y.; Rojanasakul, Y.; Ye, X.; Rankin, G.O.; Chen, Y.C. Dietary compounds galangin and myricetin suppress ovarian cancer cell angiogenesis. J. Funct. Foods, 2015, 15, 464-475.
[http://dx.doi.org/10.1016/j.jff.2015.03.051] [PMID: 26113875]
[191]
Bacanlı, M.; Başaran, A.A.; Başaran, N. Galangin as a plant phenolic and usage in health and disease. In: Polyphenols: Prevention and Treatment of Human Disease;; Elsevier, 2018; pp. 433-438.
[192]
Sivaramakrishnan, V.; Devaraj, S.N. Morin fosters apoptosis in experimental hepatocellular carcino-genesis model. Chem. Biol. Interact., 2010, 183(2), 284-292.
[http://dx.doi.org/10.1016/j.cbi.2009.11.011] [PMID: 19931519]
[193]
Govindasamy, C.; Alnumair, K.S.; Alsaif, M.A. GW25-e5392 Morin, a flavonoid, on lipid peroxida-tion and antioxidant status in experimental myocardial ischemic rats. J. Am. Coll. Cardiol., 2014, 64(16S), C56-C.
[http://dx.doi.org/10.1016/j.jacc.2014.06.271]
[194]
Prahalathan, P.; Saravanakumar, M.; Raja, B. The flavonoid morin restores blood pressure and lipid metabolism in DOCA-salt hypertensive rats. Redox Rep., 2012, 17(4), 167-175.
[http://dx.doi.org/10.1179/1351000212Y.0000000015] [PMID: 22781105]
[195]
Iglesias, C.V.; Aparicio, R.; Rodrigues-Simioni, L.; Camargo, E.A.; Antunes, E.; Marangoni, S.; de Oliveira Toyama, D.; Beriam, L.O.; Monteiro, H.S.; Toyama, M.H. Effects of morin on snake venom phospholipase A2 (PLA2). Toxicon, 2005, 46(7), 751-758.
[http://dx.doi.org/10.1016/j.toxicon.2005.07.017] [PMID: 16185736]
[196]
Arriagada, F.; Correa, O.; Günther, G.; Nonell, S.; Mura, F.; Olea-Azar, C.; Morales, J. Morin flavo-noid adsorbed on mesoporous silica, a novel antioxidant nanomaterial. PLoS One, 2016, 11(11), e0164507.
[http://dx.doi.org/10.1371/journal.pone.0164507] [PMID: 27812111]
[197]
Thakur, K.; Zhu, Y-Y.; Feng, J-Y.; Zhang, J-G.; Hu, F.; Prasad, C.; Wei, Z.J. Morin as an imminent functional food ingredient: An update on its enhanced efficacy in the treatment and prevention of metabolic syndromes. Food Funct., 2020, 11(10), 8424-8443.
[http://dx.doi.org/10.1039/D0FO01444C] [PMID: 33043925]
[198]
Ferreira, J.F.; Luthria, D.L.; Sasaki, T.; Heyerick, A. Flavonoids from Artemisia annua L. as antioxi-dants and their potential synergism with artemisinin against malaria and cancer. Molecules, 2010, 15(5), 3135-3170.
[http://dx.doi.org/10.3390/molecules15053135] [PMID: 20657468]
[199]
Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J., 2017, 25(2), 149-164.
[http://dx.doi.org/10.1016/j.jsps.2016.04.025] [PMID: 28344465]
[200]
Prasad, R.; Prasad, S.B. A review on the chemistry and biological properties of Rutin, a promising nutraceutical agent. Asian J. Pharm. Pharmacol., 2019, 5, 1-20.
[http://dx.doi.org/10.31024/ajpp.2019.5.s1.1]
[201]
Deepika, M.S.; Thangam, R.; Sheena, T.S.; Sasirekha, R.; Sivasubramanian, S.; Babu, M.D.; Jega-nathan, K.; Thirumurugan, R. A novel rutin-fucoidan complex based phytotherapy for cervical can-cer through achieving enhanced bioavailability and cancer cell apoptosis. Biomed. Pharmacother., 2019, 109, 1181-1195.
[http://dx.doi.org/10.1016/j.biopha.2018.10.178] [PMID: 30551368]
[202]
Zhu, L.; Xue, L. Kaempferol suppresses proliferation and induces cell cycle arrest, apoptosis, and DNA damage in breast cancer cells. Oncol. Res., 2019, 27(6), 629-634.
[http://dx.doi.org/10.3727/096504018X15228018559434] [PMID: 29739490]
[203]
Luo, H.; Jiang, B.; Li, B.; Li, Z.; Jiang, B-H.; Chen, Y.C. Kaempferol nanoparticles achieve strong and selective inhibition of ovarian cancer cell viability. Int. J. Nanomedicine, 2012, 7, 3951-3959.
[PMID: 22866004]
[204]
Da, J; Xu, M; Wang, Y; Li, W; Lu, M; Wang, Z Kaempferol promotes apoptosis while inhibiting cell proliferation via androgen-dependent pathway and suppressing vasculogenic mimicry and invasion in prostate cancer. Anal. Cell. Pathol., 2019, 2019
[http://dx.doi.org/10.1155/2019/1907698]
[205]
Kashafi, E.; Moradzadeh, M.; Mohamadkhani, A.; Erfanian, S. Kaempferol increases apoptosis in human cervical cancer HeLa cells via PI3K/AKT and telomerase pathways. Biomed. Pharmacother., 2017, 89, 573-577.
[http://dx.doi.org/10.1016/j.biopha.2017.02.061] [PMID: 28258039]
[206]
Guo, H.; Ren, F.; Zhang, L.; Zhang, X.; Yang, R.; Xie, B.; Li, Z.; Hu, Z.; Duan, Z.; Zhang, J. Kaempferol induces apoptosis in HepG2 cells via activation of the endoplasmic reticulum stress pathway. Mol. Med. Rep., 2016, 13(3), 2791-2800.
[http://dx.doi.org/10.3892/mmr.2016.4845] [PMID: 26847723]
[207]
Riahi-Chebbi, I.; Souid, S.; Othman, H.; Haoues, M.; Karoui, H.; Morel, A.; Srairi-Abid, N.; Essafi, M.; Essafi-Benkhadir, K. The Phenolic compound Kaempferol overcomes 5-fluorouracil resistance in human resistant LS174 colon cancer cells. Sci. Rep., 2019, 9(1), 195.
[http://dx.doi.org/10.1038/s41598-018-36808-z] [PMID: 30655588]
[208]
Wang, L.; Feng, J.; Chen, X.; Guo, W.; Du, Y.; Wang, Y.; Zang, W.; Zhang, S.; Zhao, G. Myricetin enhance chemosensitivity of 5-fluorouracil on esophageal carcinoma in vitro and in vivo. Cancer Cell Int., 2014, 14(1), 71.
[http://dx.doi.org/10.1186/s12935-014-0071-2] [PMID: 25788859]
[209]
Afroze, N.; Pramodh, S.; Hussain, A.; Waleed, M.; Vakharia, K. A review on myricetin as a poten-tial therapeutic candidate for cancer prevention. Biotech., 2020, 10(5), 211.
[http://dx.doi.org/10.1007/s13205-020-02207-3] [PMID: 32351869]
[210]
Jiao, D.; Zhang, X.D. Myricetin suppresses p21-activated kinase 1 in human breast cancer MCF-7 cells through downstream signaling of the β-catenin pathway. Oncol. Rep., 2016, 36(1), 342-348.
[http://dx.doi.org/10.3892/or.2016.4777] [PMID: 27122002]
[211]
Zheng, A.W.; Chen, Y.Q.; Zhao, L.Q.; Feng, J.G. Myricetin induces apoptosis and enhances chemo-sensitivity in ovarian cancer cells. Oncol. Lett., 2017, 13(6), 4974-4978.
[http://dx.doi.org/10.3892/ol.2017.6031] [PMID: 28588737]
[212]
Ye, C.; Zhang, C.; Huang, H.; Yang, B.; Xiao, G.; Kong, D.; Tian, Q.; Song, Q.; Song, Y.; Tan, H.; Wang, Y.; Zhou, T.; Zi, X.; Sun, Y. The natural compound myricetin effectively represses the malig-nant progression of prostate cancer by inhibiting PIM1 and disrupting the PIM1/CXCR4 interaction. Cell. Physiol. Biochem., 2018, 48(3), 1230-1244.
[http://dx.doi.org/10.1159/000492009] [PMID: 30045021]
[213]
Conley-LaComb, M.K.; Saliganan, A.; Kandagatla, P.; Chen, Y.Q.; Cher, M.L.; Chinni, S.R. PTEN loss mediated Akt activation promotes prostate tumor growth and metastasis via CXCL12/CXCR4 signaling. Mol. Cancer, 2013, 12(1), 85.
[http://dx.doi.org/10.1186/1476-4598-12-85] [PMID: 23902739]
[214]
Ma, L.; Cao, X.; Wang, H.; Lu, K.; Wang, Y.; Tu, C.; Dai, Y.; Meng, Y.; Li, Y.; Yu, P.; Man, S.; Diao, A. Discovery of myricetin as a potent inhibitor of human flap endonuclease 1, which potential-ly can be used as sensitizing agent against ht-29 human colon cancer cells. J. Agric. Food Chem., 2019, 67(6), 1656-1665.
[http://dx.doi.org/10.1021/acs.jafc.8b05447] [PMID: 30694659]
[215]
Sun, W.; Tao, Y.; Yu, D.; Zhao, T.; Wu, L.; Yu, W. Myricetin exerts potent anticancer effects on human skin tumor cells. Trop. J. Pharm. Res., 2018, 17(6), 1067-1072.
[http://dx.doi.org/10.4314/tjpr.v17i6.13]
[216]
Ha, T.K.; Jung, I.; Kim, M.E.; Bae, S.K.; Lee, J.S. Anti-cancer activity of myricetin against human papillary thyroid cancer cells involves mitochondrial dysfunction-mediated apoptosis. Biomed. Pharmacother., 2017, 91, 378-384.
[http://dx.doi.org/10.1016/j.biopha.2017.04.100] [PMID: 28463801]
[217]
Li, J.; Qu, W.; Cheng, Y.; Sun, Y.; Jiang, Y.; Zou, T.; Wang, Z.; Xu, Y.; Zhao, H. The inhibitory ef-fect of intravesical fisetin against bladder cancer by induction of p53 and down-regulation of NF-kappa B pathways in a rat bladder carcinogenesis model. Basic Clin. Pharmacol. Toxicol., 2014, 115(4), 321-329.
[http://dx.doi.org/10.1111/bcpt.12229] [PMID: 24646039]
[218]
Lall, R.K.; Adhami, V.M.; Mukhtar, H. Dietary flavonoid fisetin for cancer prevention and treat-ment. Mol. Nutr. Food Res., 2016, 60(6), 1396-1405.
[http://dx.doi.org/10.1002/mnfr.201600025] [PMID: 27059089]
[219]
Lin, M-T.; Lin, C-L.; Lin, T-Y.; Cheng, C-W.; Yang, S-F.; Lin, C-L.; Wu, C.C.; Hsieh, Y.H.; Tsai, J.P. Synergistic effect of fisetin combined with sorafenib in human cervical cancer HeLa cells through activation of death receptor-5 mediated caspase-8/caspase-3 and the mitochondria-dependent apoptotic pathway. Tumour Biol., 2016, 37(5), 6987-6996.
[http://dx.doi.org/10.1007/s13277-015-4526-4] [PMID: 26662956]
[220]
Ravichandran, N.; Suresh, G.; Ramesh, B.; Manikandan, R.; Choi, Y.W.; Vijaiyan Siva, G. Fisetin modulates mitochondrial enzymes and apoptotic signals in benzo(a)pyrene-induced lung cancer. Mol. Cell. Biochem., 2014, 390(1-2), 225-234.
[http://dx.doi.org/10.1007/s11010-014-1973-y] [PMID: 24496750]
[221]
Khan, N.; Asim, M.; Afaq, F.; Abu Zaid, M.; Mukhtar, H. A novel dietary flavonoid fisetin inhibits androgen receptor signaling and tumor growth in athymic nude mice. Cancer Res., 2008, 68(20), 8555-8563.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0240] [PMID: 18922931]
[222]
Khan, M.I.; Adhami, V.M.; Lall, R.K.; Sechi, M.; Joshi, D.C.; Haidar, O.M.; Syed, D.N.; Siddiqui, I.A.; Chiu, S.Y.; Mukhtar, H. YB-1 expression promotes epithelial-to-mesenchymal transition in prostate cancer that is inhibited by a small molecule fisetin. Oncotarget, 2014, 5(9), 2462-2474.
[http://dx.doi.org/10.18632/oncotarget.1790] [PMID: 24770864]
[223]
Liu, Y.; Gong, W.; Yang, Z.Y.; Zhou, X.S.; Gong, C.; Zhang, T.R.; Wei, X.; Ma, D.; Ye, F.; Gao, Q.L. Quercetin induces protective autophagy and apoptosis through ER stress via the p-STAT3/Bcl-2 axis in ovarian cancer. Apoptosis, 2017, 22(4), 544-557.
[http://dx.doi.org/10.1007/s10495-016-1334-2] [PMID: 28188387]
[224]
Choi, J-A.; Kim, J-Y.; Lee, J-Y.; Kang, C-M.; Kwon, H-J.; Yoo, Y-D.; Kim, T.W.; Lee, Y.S.; Lee, S.J. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int. J. Oncol., 2001, 19(4), 837-844.
[http://dx.doi.org/10.3892/ijo.19.4.837] [PMID: 11562764]
[225]
Ezzati, M.; Yousefi, B.; Velaei, K.; Safa, A. A review on anti-cancer properties of Quercetin in breast cancer. Life Sci., 2020, 248, 117463.
[http://dx.doi.org/10.1016/j.lfs.2020.117463] [PMID: 32097663]
[226]
Jung, Y-H.; Heo, J.; Lee, Y.J.; Kwon, T.K.; Kim, Y-H. Quercetin enhances TRAIL-induced apopto-sis in prostate cancer cells via increased protein stability of death receptor 5. Life Sci., 2010, 86(9-10), 351-357.
[http://dx.doi.org/10.1016/j.lfs.2010.01.008] [PMID: 20096292]
[227]
Kim, Y-H.; Lee, D-H.; Jeong, J-H.; Guo, Z.S.; Lee, Y.J. Quercetin augments TRAIL-induced apop-totic death: Involvement of the ERK signal transduction pathway. Biochem. Pharmacol., 2008, 75(10), 1946-1958.
[http://dx.doi.org/10.1016/j.bcp.2008.02.016] [PMID: 18377872]
[228]
Lee, D-H.; Szczepanski, M.; Lee, Y.J. Role of Bax in quercetin-induced apoptosis in human prostate cancer cells. Biochem. Pharmacol., 2008, 75(12), 2345-2355.
[http://dx.doi.org/10.1016/j.bcp.2008.03.013] [PMID: 18455702]
[229]
Ma, Z.; Hung Nguyen, T.; Hoa Huynh, T.; Tien Do, P.; Huynh, H. Reduction of rat prostate weight by combined quercetin-finasteride treatment is associated with cell cycle deregulation. J. Endocrinol., 2004, 181(3), 493-507.
[http://dx.doi.org/10.1677/joe.0.1810493] [PMID: 15171697]
[230]
Yang, F.; Song, L.; Wang, H.; Wang, J.; Xu, Z.; Xing, N. Quercetin in prostate cancer: Chemothera-peutic and chemopreventive effects, mechanisms and clinical application potential (Review). Oncol. Rep., 2015, 33(6), 2659-2668.
[http://dx.doi.org/10.3892/or.2015.3886] [PMID: 25845380]
[231]
Fantini, M.; Benvenuto, M.; Masuelli, L.; Frajese, G.V.; Tresoldi, I.; Modesti, A.; Bei, R. In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: per-spectives on cancer treatment. Int. J. Mol. Sci., 2015, 16(5), 9236-9282.
[http://dx.doi.org/10.3390/ijms16059236] [PMID: 25918934]
[232]
Su, L.; Chen, X.; Wu, J.; Lin, B.; Zhang, H.; Lan, L.; Luo, H. Galangin inhibits proliferation of hepa-tocellular carcinoma cells by inducing endoplasmic reticulum stress. Food Chem. Toxicol., 2013, 62, 810-816.
[http://dx.doi.org/10.1016/j.fct.2013.10.019] [PMID: 24161691]
[233]
Fang, D.; Xiong, Z.; Xu, J.; Yin, J.; Luo, R. Chemopreventive mechanisms of galangin against hepa-tocellular carcinoma: A review. Biomed. Pharmacother., 2019, 109, 2054-2061.
[http://dx.doi.org/10.1016/j.biopha.2018.09.154] [PMID: 30551461]
[234]
Zhang, H-T.; Luo, H.; Wu, J.; Lan, L-B.; Fan, D-H.; Zhu, K-D.; Chen, X.Y.; Wen, M.; Liu, H.M. Galangin induces apoptosis of hepatocellular carcinoma cells via the mitochondrial pathway. World J. Gastroenterol., 2010, 16(27), 3377-3384.
[http://dx.doi.org/10.3748/wjg.v16.i27.3377] [PMID: 20632439]
[235]
Ren, K.; Zhang, W.; Wu, G.; Ren, J.; Lu, H.; Li, Z.; Han, X. Synergistic anti-cancer effects of galangin and berberine through apoptosis induction and proliferation inhibition in oesophageal carci-noma cells. Biomed. Pharmacother., 2016, 84, 1748-1759.
[http://dx.doi.org/10.1016/j.biopha.2016.10.111] [PMID: 27876206]
[236]
Ha, T.K.; Kim, M.E.; Yoon, J.H.; Bae, S.J.; Yeom, J.; Lee, J.S. Galangin induces human colon can-cer cell death via the mitochondrial dysfunction and caspase-dependent pathway. Exp. Biol. Med. (Maywood), 2013, 238(9), 1047-1054.
[http://dx.doi.org/10.1177/1535370213497882] [PMID: 23925650]
[237]
Huang, H.; Chen, A.Y.; Ye, X.; Guan, R.; Rankin, G.O.; Chen, Y.C. Galangin, a flavonoid from lesser galangal, induced apoptosis via p53-dependent pathway in ovarian cancer cells. Molecules, 2020, 25(7), 1579.
[http://dx.doi.org/10.3390/molecules25071579] [PMID: 32235536]
[238]
Al-Shammari, A.M.; Al-Saadi, H.; Al-Shammari, S.M.; Jabir, M.S. Galangin enhances gold nanopar-ticles as anti-tumor agents against ovarian cancer cells. In: AIP Conf. Proc; , 2020; p. 2213.
[http://dx.doi.org/10.1063/5.0000162]
[239]
Zhang, W.; Tang, B.; Huang, Q.; Hua, Z. Galangin inhibits tumor growth and metastasis of B16F10 melanoma. J. Cell. Biochem., 2013, 114(1), 152-161.
[http://dx.doi.org/10.1002/jcb.24312] [PMID: 22887049]
[240]
Zhang, W.; Lan, Y.; Huang, Q.; Hua, Z. Galangin induces B16F10 melanoma cell apoptosis via mi-tochondrial pathway and sustained activation of p38 MAPK. Cytotechnology, 2013, 65(3), 447-455.
[http://dx.doi.org/10.1007/s10616-012-9499-1] [PMID: 23001390]
[241]
Lee, K.S.; Nam, G.S.; Baek, J.; Kim, S.; Nam, K.S. Inhibition of TPA-induced metastatic potential by morin hydrate in MCF-7 human breast cancer cells via the Akt/GSK-3β/c-Fos signaling pathway. Int. J. Oncol., 2020, 56(2), 630-640.
[http://dx.doi.org/10.3892/ijo.2020.4954] [PMID: 31939617]
[242]
Liskova, A.; Koklesova, L.; Samec, M.; Smejkal, K.; Samuel, S.M.; Varghese, E.; Abotaleb, M.; Biringer, K.; Kudela, E.; Danko, J.; Shakibaei, M.; Kwon, T.K.; Büsselberg, D.; Kubatka, P. Flavo-noids in cancer metastasis. Cancers (Basel), 2020, 12(6), 1498.
[http://dx.doi.org/10.3390/cancers12061498] [PMID: 32521759]
[243]
Jin, H.; Lee, W.S.; Eun, S.Y.; Jung, J.H.; Park, H-S.; Kim, G.; Choi, Y.H.; Ryu, C.H.; Jung, J.M.; Hong, S.C.; Shin, S.C.; Kim, H.J. Morin, a flavonoid from Moraceae, suppresses growth and inva-sion of the highly metastatic breast cancer cell line MDA-MB-231 partly through suppression of the Akt pathway. Int. J. Oncol., 2014, 45(4), 1629-1637.
[http://dx.doi.org/10.3892/ijo.2014.2535] [PMID: 24993541]
[244]
Li, B.; Jin, X.; Meng, H.; Hu, B.; Zhang, T.; Yu, J.; Chen, S.; Guo, X.; Wang, W.; Jiang, W.; Wang, J. Morin promotes prostate cancer cells chemosensitivity to paclitaxel through miR-155/GATA3 axis. Oncotarget, 2017, 8(29), 47849-47860.
[http://dx.doi.org/10.18632/oncotarget.18133] [PMID: 28599307]
[245]
Yao, D.; Cui, H.; Zhou, S.; Guo, L. Morin inhibited lung cancer cells viability, growth, and migra-tion by suppressing miR-135b and inducing its target CCNG2. Tumour Biol., 2017, 39(10), 1010428317712443.
[http://dx.doi.org/10.1177/1010428317712443] [PMID: 28975847]
[246]
Sithara, T.; Arun, K.B.; Syama, H.P.; Reshmitha, T.R.; Nisha, P. Morin inhibits proliferation of SW480 colorectal cancer cells by inducing apoptosis mediated by reactive oxygen species formation and uncoupling of warburg effect. Front. Pharmacol., 2017, 8, 640.
[http://dx.doi.org/10.3389/fphar.2017.00640] [PMID: 28955240]
[247]
Sharma, S.H.; Kumar, J.S.; Chellappan, D.R.; Nagarajan, S. Molecular chemoprevention by morin - A plant flavonoid that targets nuclear factor kappa B in experimental colon cancer. Biomed. Pharmacother., 2018, 100, 367-373.
[http://dx.doi.org/10.1016/j.biopha.2018.02.035] [PMID: 29453046]
[248]
Jiang, W.; Wang, Y.; Sun, W.; Zhang, M. Morin suppresses astrocyte activation and regulates cyto-kine release in bone cancer pain rat models. Phytother. Res., 2017, 31(9), 1298-1304.
[http://dx.doi.org/10.1002/ptr.5849] [PMID: 28618070]
[249]
Shen, J-K.; Du, H.P.; Yang, M.; Wang, Y-G.; Jin, J. Casticin induces leukemic cell death through apoptosis and mitotic catastrophe. Ann. Hematol., 2009, 88(8), 743-752.
[http://dx.doi.org/10.1007/s00277-008-0677-3] [PMID: 19139893]
[250]
Gong, Q.; Cao, X.; Cao, J.; Yang, X.; Zeng, W. Casticin suppresses the carcinogenesis of small cell lung cancer H446 cells through activation of AMPK/FoxO3a signaling. Oncol. Rep., 2018, 40(3), 1401-1410.
[http://dx.doi.org/10.3892/or.2018.6547] [PMID: 30015975]
[251]
Ramchandani, S.; Naz, I.; Lee, J.H.; Khan, M.R.; Ahn, K.S. An overview of the potential antineo-plastic effects of casticin. Molecules, 2020, 25(6), 1287.
[http://dx.doi.org/10.3390/molecules25061287] [PMID: 32178324]
[252]
He, G.; Cao, X.; He, M.; Sheng, X.; Wu, Y.; Ai, X. Casticin inhibits self-renewal of liver cancer stem cells from the MHCC97 cell line. Oncol. Lett., 2014, 7(6), 2023-2028.
[http://dx.doi.org/10.3892/ol.2014.1972] [PMID: 24932283]
[253]
Yang, J.; Yang, Y.; Tian, L.; Sheng, X-F.; Liu, F.; Cao, J-G. Casticin-induced apoptosis involves death receptor 5 upregulation in hepatocellular carcinoma cells. World J. Gastroenterol., 2011, 17(38), 4298-4307.
[http://dx.doi.org/10.3748/wjg.v17.i38.4298] [PMID: 22090786]
[254]
Shanmugam, M.K.; Ahn, K.S.; Hsu, A.; Woo, C.C.; Yuan, Y.; Tan, K.H.B.; Chinnathambi, A.; Alahmadi, T.A.; Alharbi, S.A.; Koh, A.P.F.; Arfuso, F.; Huang, R.Y.; Lim, L.H.K.; Sethi, G.; Ku-mar, A.P. Thymoquinone inhibits bone metastasis of breast cancer cells through abrogation of the cxcr4 signaling axis. Front. Pharmacol., 2018, 9, 1294.
[http://dx.doi.org/10.3389/fphar.2018.01294] [PMID: 30564115]
[255]
Chen, D.; Cao, J.; Tian, L.; Liu, F.; Sheng, X. Induction of apoptosis by casticin in cervical cancer cells through reactive oxygen species-mediated mitochondrial signaling pathways. Oncol. Rep., 2011, 26(5), 1287-1294.
[PMID: 21725610]
[256]
Zeng, F.; Tian, L.; Liu, F.; Cao, J.; Quan, M.; Sheng, X. Induction of apoptosis by casticin in cervical cancer cells: reactive oxygen species-dependent sustained activation of Jun N-terminal kinase. Acta Biochim. Biophys. Sin. (Shanghai), 2012, 44(5), 442-449.
[http://dx.doi.org/10.1093/abbs/gms013] [PMID: 22427461]
[257]
Zhang, J.; Cui, Y.; Sun, S.; Cao, J.; Fang, X. Casticin inhibits the epithelial-mesenchymal transition in ovarian carcinoma via the hedgehog signaling pathway. Oncol. Lett., 2018, 15(4), 4495-4502.
[http://dx.doi.org/10.3892/ol.2018.7880] [PMID: 29541219]
[258]
Meng, F-M.; Yang, J-B.; Yang, C-H.; Jiang, Y.; Zhou, Y-F.; Yu, B.; Yang, H. Vitexicarpin induces apoptosis in human prostate carcinoma PC-3 cells through G2/M phase arrest. Asian Pac. J. Cancer Prev., 2012, 13(12), 6369-6374.
[http://dx.doi.org/10.7314/APJCP.2012.13.12.6369] [PMID: 23464460]
[259]
Nafees, S.; Mehdi, S.H.; Zafaryab, M.; Zeya, B.; Sarwar, T.; Rizvi, M.A. Synergistic interaction of rutin and silibinin on human colon cancer cell line. Arch. Med. Res., 2018, 49(4), 226-234.
[http://dx.doi.org/10.1016/j.arcmed.2018.09.008] [PMID: 30314650]
[260]
Ben Sghaier, M.; Pagano, A.; Mousslim, M.; Ammari, Y.; Kovacic, H.; Luis, J. Rutin inhibits prolif-eration, attenuates superoxide production and decreases adhesion and migration of human cancerous cells. Biomed. Pharmacother., 2016, 84, 1972-1978.
[http://dx.doi.org/10.1016/j.biopha.2016.11.001] [PMID: 27829548]
[261]
Satari, A.; Amini, S.A.; Raeisi, E.; Lemoigne, Y.; Heidarian, E. Synergetic impact of combined 5-fluorouracil and rutin on apoptosis in PC3 cancer cells through the modulation of P53 gene expres-sion. Adv. Pharm. Bull., 2019, 9(3), 462-469.
[http://dx.doi.org/10.15171/apb.2019.055] [PMID: 31592435]
[262]
Hamidullah, K.R.; Kumar, R.; Saini, K.S.; Kumar, A.; Kumar, S.; Ramakrishna, E.; Maurya, R.; Konwar, R.; Chattopadhyay, N. Quercetin-6-C-β-D-glucopyranoside, natural analog of quercetin exhibits anti-prostate cancer activity by inhibiting Akt-mTOR pathway via aryl hydrocarbon recep-tor. Biochimie, 2015, 119, 68-79.
[http://dx.doi.org/10.1016/j.biochi.2015.10.012] [PMID: 26476001]
[263]
Wang, E.X.; Zou, B.Y.; Shi, L.; Du, L.Y.; Zhu, Y.Y.; Jiang, Y.M.; Ma, X.D.; Kang, X.H.; Wang, C.Y.; Zhen, Y.H.; Sun, L.D. 7-O-geranylquercetin-induced autophagy contributes to apoptosis via ROS generation in human non-small cell lung cancer cells. Life Sci., 2017, 180, 102-113.
[http://dx.doi.org/10.1016/j.lfs.2017.05.008] [PMID: 28495516]
[264]
Zhu, Y.; Jiang, Y.; Shi, L.; Du, L.; Xu, X.; Wang, E.; Sun, Y.; Guo, X.; Zou, B.; Wang, H.; Wang, C.; Sun, L.; Zhen, Y. 7-O-Geranylquercetin induces apoptosis in gastric cancer cells via ROS-MAPK mediated mitochondrial signaling pathway activation. Biomed. Pharmacother., 2017, 87, 527-538.
[http://dx.doi.org/10.1016/j.biopha.2016.12.095] [PMID: 28076833]
[265]
Sudan, S.; Rupasinghe, H.P. Quercetin-3-O-glucoside induces human DNA topoisomerase II inhibi-tion, cell cycle arrest and apoptosis in hepatocellular carcinoma cells. Anticancer Res., 2014, 34(4), 1691-1699.
[PMID: 24692698]
[266]
Lee, J.; Lee, J.; Kim, S.J.; Kim, J.H. Quercetin-3-O-glucoside suppresses pancreatic cancer cell mi-gration induced by tumor-deteriorated growth factors in vitro. Oncol. Rep., 2016, 35(4), 2473-2479.
[http://dx.doi.org/10.3892/or.2016.4598] [PMID: 26820381]
[267]
Liao, H.; Bao, X.; Zhu, J.; Qu, J.; Sun, Y.; Ma, X.; Wang, E.; Guo, X.; Kang, Q.; Zhen, Y. O-Alkylated derivatives of quercetin induce apoptosis of MCF-7 cells via a caspase-independent mito-chondrial pathway. Chem. Biol. Interact., 2015, 242, 91-98.
[http://dx.doi.org/10.1016/j.cbi.2015.09.022] [PMID: 26415619]
[268]
Adan, A.; Baran, Y. The pleiotropic effects of fisetin and hesperetin on human acute promyelocytic leukemia cells are mediated through apoptosis, cell cycle arrest, and alterations in signaling networks. Tumour Biol., 2015, 36(11), 8973-8984.
[http://dx.doi.org/10.1007/s13277-015-3597-6] [PMID: 26081618]
[269]
Lewin, G.; Maciuk, A.; Thoret, S.; Aubert, G.; Dubois, J.; Cresteil, T. Semisynthesis of natural fla-vones inhibiting tubulin polymerization, from hesperidin. J. Nat. Prod., 2010, 73(4), 702-706.
[http://dx.doi.org/10.1021/np100065v] [PMID: 20356063]
[270]
Bino, A.; Vicentini, C.B.; Vertuani, S.; Lampronti, I.; Gambari, R.; Durini, E. Novel lipidized deriv-atives of the bioflavonoid hesperidin: Dermatological, cosmetic and chemopreventive applications. Cosmetics, 2018, 5(4), 72.
[http://dx.doi.org/10.3390/cosmetics5040072]
[271]
Felgines, C.; Texier, O.; Morand, C.; Manach, C.; Scalbert, A.; Régerat, F.; Rémésy, C. Bioavailabil-ity of the flavanone naringenin and its glycosides in rats. Am. J. Physiol. Gastrointest. Liver Physiol., 2000, 279(6), G1148-G1154.
[http://dx.doi.org/10.1152/ajpgi.2000.279.6.G1148] [PMID: 11093936]
[272]
Arafah, A.; Rehman, M.U.; Mir, T.M.; Wali, A.F.; Ali, R.; Qamar, W.; Khan, R.; Ahmad, A.; Aga, S.S.; Alqahtani, S.; Almatroudi, N.M. Multi-therapeutic potential of naringenin (4′ 5, 7-trihydroxyflavonone): experimental evidence and mechanisms. Plants, 2020, 9(12), 1784.
[http://dx.doi.org/10.3390/plants9121784] [PMID: 33339267]
[273]
Patel, K.; Singh, G.K.; Patel, D.K. A review on pharmacological and analytical aspects of naringen-in. Chin. J. Integr. Med., 2018, 24(7), 551-560.
[http://dx.doi.org/10.1007/s11655-014-1960-x] [PMID: 25501296]
[274]
El-Ashmawy, N.E.; Khedr, N.F.; El-Bahrawy, H.A.; Abo Mansour, H.E. Metformin augments dox-orubicin cytotoxicity in mammary carcinoma through activation of adenosine monophosphate protein kinase pathway. Tumour Biol., 2017, 39(5), 1010428317692235.
[http://dx.doi.org/10.1177/1010428317692235] [PMID: 28459206]
[275]
Ye, L.; Chan, F.L.; Chen, S.; Leung, L.K. The citrus flavonone hesperetin inhibits growth of aroma-tase-expressing MCF-7 tumor in ovariectomized athymic mice. J. Nutr. Biochem., 2012, 23(10), 1230-1237.
[http://dx.doi.org/10.1016/j.jnutbio.2011.07.003] [PMID: 22209285]
[276]
Nandakumar, N.; Jayaprakash, R.; Rengarajan, T.; Ramesh, V.; Balasubramanian, M.P. Hesperidin, a natural citrus flavonoglycoside, normalizes lipid peroxidation and membrane bound marker enzymes in 7, 12-dimethylbenz (a) anthracene induced experimental breast cancer rats. Biomed. Prev. Nutr., 2011, 1(4), 255-262.
[http://dx.doi.org/10.1016/j.bionut.2011.06.004]
[277]
Ferreira de Oliveira, J.M.P.; Santos, C.; Fernandes, E. Therapeutic potential of hesperidin and its aglycone hesperetin: Cell cycle regulation and apoptosis induction in cancer models. Phytomedicine, 2020, 73, 152887.
[http://dx.doi.org/10.1016/j.phymed.2019.152887] [PMID: 30975541]
[278]
Donia, T.I.K.; Gerges, M.N.; Mohamed, T.M. Amelioration effect of Egyptian sweet orange hesper-idin on Ehrlich ascites carcinoma (EAC) bearing mice. Chem. Biol. Interact., 2018, 285, 76-84.
[http://dx.doi.org/10.1016/j.cbi.2018.02.029] [PMID: 29481770]
[279]
Mohammed, F.Z.; Gurigis, A.A.; Roshdy, T.M.; Gamal, A. Effects of Capparis spinosa L on cell proliferation, apoptosis and epigenetic events in swiss albino mice transplanted with ehrlich ascites carcinoma. Res. J. Pharm. Biol. Chem. Sci., 2018, 9(3), 1280-1292.
[280]
Zhang, X.H.; Zhang, N.N.; Meng, X.B.; Zhang, Y.; Qian, Y.; Xie, Y.J. Hesperetin inhibits the proliferation of cerebrally implanted C6 glioma and involves suppression of HIF-1a/VEGF pathway in rats. Biomed. Res., 2017, 28(3)
[281]
Du, G.Y.; He, S.W.; Zhang, L.; Sun, C.X.; Mi, L.D.; Sun, Z.G. Hesperidin exhibits in vitro and in vivo antitumor effects in human osteosarcoma MG-63 cells and xenograft mice models via inhibition of cell migration and invasion, cell cycle arrest and induction of mitochondrial-mediated apoptosis. Oncol. Lett., 2018, 16(5), 6299-6306.
[http://dx.doi.org/10.3892/ol.2018.9439] [PMID: 30405765]
[282]
Chen, Y.Y.; Chang, Y.M.; Wang, K.Y.; Chen, P.N.; Hseu, Y.C.; Chen, K.M.; Yeh, K.T.; Chen, C.J.; Hsu, L.S. Naringenin inhibited migration and invasion of glioblastoma cells through multiple mecha-nisms. Environ. Toxicol., 2019, 34(3), 233-239.
[http://dx.doi.org/10.1002/tox.22677] [PMID: 30431227]
[283]
Han, K-Y.; Chen, P-N.; Hong, M-C.; Hseu, Y-C.; Chen, K-M.; Hsu, L-S.; Chen, W.J. Naringenin attenuated prostate cancer invasion via reversal of epithelial-to-mesenchymal transition and inhibited uPA activity. Anticancer Res., 2018, 38(12), 6753-6758.
[http://dx.doi.org/10.21873/anticanres.13045] [PMID: 30504386]
[284]
Krishnakumar, N.; Sulfikkarali, N. RajendraPrasad N, Karthikeyan S. Enhanced anticancer activity of naringenin-loaded nanoparticles in human cervical (HeLa) cancer cells. Biomed. Prev. Nutr., 2011, 1(4), 223-231.
[http://dx.doi.org/10.1016/j.bionut.2011.09.003]
[285]
Sun, M-Y.; Ye, Y.; Xiao, L.; Rahman, K.; Xia, W.; Zhang, H. Daidzein: A review of pharmacologi-cal effects. Afr. J. Tradit. Complement. Altern. Med., 2016, 13(3), 117-132.
[http://dx.doi.org/10.4314/ajtcam.v13i3.15]
[286]
Hsu, H-H.; Chen, M-C.; Day, C.H.; Lin, Y-M.; Li, S-Y. Tu, C-C Thymoquinone suppresses migration of LoVo human colon cancer cells by reducing prostaglandin E2 induced COX-2 activation. World J. Gastroenterol., 2017, 23(7), 1171.
[http://dx.doi.org/10.3748/wjg.v23.i7.1171]
[287]
Arjunan, S.; Thangaiyan, R.; Balaraman, D. Biological activity of biochanin A: A review. Asian J. Pharm. Pharmacol., 2018, 4(1), 1-5.
[http://dx.doi.org/10.31024/ajpp.2018.4.1.1]
[288]
Yu, C.; Zhang, P.; Lou, L.; Wang, Y. Perspectives regarding the role of biochanin A in Humans. Front. Pharmacol., 2019, 10(793), 793.
[http://dx.doi.org/10.3389/fphar.2019.00793] [PMID: 31354500]
[289]
Ruiz-Larrea, M.B.; Mohan, A.R.; Paganga, G.; Miller, N.J.; Bolwell, G.P.; Rice-Evans, C.A. Antiox-idant activity of phytoestrogenic isoflavones. Free Radic. Res., 1997, 26(1), 63-70.
[http://dx.doi.org/10.3109/10715769709097785] [PMID: 9018473]
[290]
Harini, R.; Ezhumalai, M.; Pugalendi, K.V. Antihyperglycemic effect of biochanin A, a soy isofla-vone, on streptozotocin-diabetic rats. Eur. J. Pharmacol., 2012, 676(1-3), 89-94.
[http://dx.doi.org/10.1016/j.ejphar.2011.11.051] [PMID: 22178203]
[291]
Oza, M.J.; Kulkarni, Y.A. Biochanin A improves insulin sensitivity and controls hyperglycemia in type 2 diabetes. Biomed. Pharmacother., 2018, 107, 1119-1127.
[http://dx.doi.org/10.1016/j.biopha.2018.08.073] [PMID: 30257324]
[292]
Tan, J.W.; Tham, C.L.; Israf, D.A.; Lee, S.H.; Kim, M.K. Neuroprotective effects of biochanin A against glutamate-induced cytotoxicity in PC12 cells via apoptosis inhibition. Neurochem. Res., 2013, 38(3), 512-518.
[http://dx.doi.org/10.1007/s11064-012-0943-6] [PMID: 23224778]
[293]
Guo, M.; Lu, H.; Qin, J.; Qu, S.; Wang, W.; Guo, Y.; Liao, W.; Song, M.; Chen, J.; Wang, Y. Bio-chanin a provides neuroprotection against cerebral ischemia/reperfusion injury by nrf2-mediated in-hibition of oxidative stress and inflammation signaling pathway in rats. Med. Sci. Monit., 2019, 25, 8975-8983.
[http://dx.doi.org/10.12659/MSM.918665] [PMID: 31767824]
[294]
Flesar, J.; Sklenickova, O.; Vlkova, E.; Malik, J.; Kokoska, L. Selective antimicrobial activity of bio-chanin A. Planta Med., 2009, 75(09), PJ89.
[http://dx.doi.org/10.1055/s-0029-1234894]
[295]
Li, Y.; Yu, H.; Han, F.; Wang, M.; Luo, Y.; Guo, X.; Biochanin, A.; Induces, S. Biochanin A induc-es s phase arrest and apoptosis in lung cancer cells. BioMed Res. Int., 2018, 2018, 3545376.
[http://dx.doi.org/10.1155/2018/3545376] [PMID: 30402472]
[296]
Jain, A.; Lai, J.C.; Bhushan, A. Biochanin A inhibits endothelial cell functions and proangiogenic pathways: implications in glioma therapy. Anticancer Drugs, 2015, 26(3), 323-330.
[http://dx.doi.org/10.1097/CAD.0000000000000189] [PMID: 25501542]
[297]
Ganai, A.A.; Farooqi, H. Bioactivity of genistein: A review of in vitro and in vivo studies. Biomed. Pharmacother., 2015, 76, 30-38.
[http://dx.doi.org/10.1016/j.biopha.2015.10.026] [PMID: 26653547]
[298]
Rahman Mazumder, M.A.; Hongsprabhas, P. Genistein as antioxidant and antibrowning agents in in vivo and in vitro: A review. Biomed. Pharmacother., 2016, 82, 379-392.
[http://dx.doi.org/10.1016/j.biopha.2016.05.023] [PMID: 27470376]
[299]
Verdrengh, M.; Jonsson, I.M.; Holmdahl, R.; Tarkowski, A. Genistein as an anti-inflammatory agent. Inflammation research. J. Euro. Histamine Res. Soc., 2003, 52(8), 341-346.
[300]
Liu, L.X.; Chen, W.F.; Xie, J.X.; Wong, M.S. Neuroprotective effects of genistein on dopaminergic neurons in the mice model of Parkinson’s disease. Neurosci. Res., 2008, 60(2), 156-161.
[http://dx.doi.org/10.1016/j.neures.2007.10.005] [PMID: 18054104]
[301]
Ali, F. Rahul; Naz, F.; Jyoti, S.; Hasan Siddique, Y. Protective effect of Genistein against N-nitrosodiethylamine (NDEA)-induced hepatotoxicity in Swiss albino rats. J. Pharm. Anal., 2015, 5(1), 51-57.
[http://dx.doi.org/10.1016/j.jpha.2014.07.003] [PMID: 29403915]
[302]
Deodato, B.; Altavilla, D.; Squadrito, G.; Campo, G.M.; Arlotta, M.; Minutoli, L.; Saitta, A.; Cucinotta, D.; Calapai, G.; Caputi, A.P.; Miano, M.; Squadrito, F. Cardioprotection by the phytoes-trogen genistein in experimental myocardial ischaemia-reperfusion injury. Br. J. Pharmacol., 1999, 128(8), 1683-1690.
[http://dx.doi.org/10.1038/sj.bjp.0702973] [PMID: 10588923]
[303]
Tuli, H.S.; Tuorkey, M.J.; Thakral, F.; Sak, K.; Kumar, M.; Sharma, A.K.; Sharma, U.; Jain, A.; Ag-garwal, V.; Bishayee, A. Molecular mechanisms of action of genistein in cancer: Recent advances. Front. Pharmacol., 2019, 10, 1336.
[http://dx.doi.org/10.3389/fphar.2019.01336] [PMID: 31866857]
[304]
Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; Nabavi, S.M. Genistein and cancer: current status, challenges, and future directions. Adv. Nutr., 2015, 6(4), 408-419.
[http://dx.doi.org/10.3945/an.114.008052] [PMID: 26178025]
[305]
Kaczmarczyk-Sedlak, I.; Wojnar, W.; Zych, M. Ozimina-Kamińska, E.; Taranowicz, J.; Siwek, A. Effect of formononetin on mechanical properties and chemical composition of bones in rats with ovariectomy-induced osteoporosis. Evid. Based Complement. Alternat. Med., 2013, 2013, 457052.
[http://dx.doi.org/10.1155/2013/457052] [PMID: 23762138]
[306]
Jin, F.; Wan, C.; Li, W.; Yao, L.; Zhao, H.; Zou, Y.; Peng, D.; Huang, W. Formononetin protects against acetaminophen-induced hepatotoxicity through enhanced NRF2 activity. PLoS One, 2017, 12(2), e0170900.
[http://dx.doi.org/10.1371/journal.pone.0170900] [PMID: 28234915]
[307]
Zhang, S.; Tang, X.; Tian, J.; Li, C.; Zhang, G.; Jiang, W.; Zhang, Z. Cardioprotective effect of sul-phonated formononetin on acute myocardial infarction in rats. Basic Clin. Pharmacol. Toxicol., 2011, 108(6), 390-395.
[http://dx.doi.org/10.1111/j.1742-7843.2011.00676.x] [PMID: 21232020]
[308]
Fei, H.X.; Zhang, Y.B.; Liu, T.; Zhang, X.J.; Wu, S.L. Neuroprotective effect of formononetin in ameliorating learning and memory impairment in mouse model of Alzheimer’s disease. Biosci. Biotechnol. Biochem., 2018, 82(1), 57-64.
[http://dx.doi.org/10.1080/09168451.2017.1399788] [PMID: 29191087]
[309]
Yi, L.; Cui, J.; Wang, W.; Tang, W.; Teng, F.; Zhu, X.; Qin, J.; Wuniqiemu, T.; Sun, J.; Wei, Y.; Dong, J. Formononetin attenuates airway inflammation and oxidative stress in murine allergic asth-ma. Front. Pharmacol., 2020, 11, 533841.
[http://dx.doi.org/10.3389/fphar.2020.533841] [PMID: 33013383]
[310]
Jin, S.; Zhang, Q.Y.; Kang, X.M.; Wang, J.X.; Zhao, W.H. Daidzein induces MCF-7 breast cancer cell apoptosis via the mitochondrial pathway. Ann. Oncol., 2010, 21(2), 263-268.
[http://dx.doi.org/10.1093/annonc/mdp499] [PMID: 19889614]
[311]
Hua, F.; Li, C.H.; Chen, X.G.; Liu, X.P. Daidzein exerts anticancer activity towards SKOV3 human ovarian cancer cells by inducing apoptosis and cell cycle arrest, and inhibiting the Raf/MEK/ERK cascade. Int. J. Mol. Med., 2018, 41(6), 3485-3492.
[http://dx.doi.org/10.3892/ijmm.2018.3531] [PMID: 29512690]
[312]
Chan, K.K.L.; Siu, M.K.Y.; Jiang, Y.X.; Wang, J.J.; Leung, T.H.Y.; Ngan, H.Y.S. Estrogen receptor modulators genistein, daidzein and ERB-041 inhibit cell migration, invasion, proliferation and sphere formation via modulation of FAK and PI3K/AKT signaling in ovarian cancer. Cancer Cell Int., 2018, 18, 65.
[http://dx.doi.org/10.1186/s12935-018-0559-2] [PMID: 29743815]
[313]
Guo, S.; Wang, Y.; Li, Y.; Li, Y.; Feng, C.; Li, Z. Daidzein-rich isoflavones aglycone inhibits lung cancer growth through inhibition of NF-κB signaling pathway. Immunol. Lett., 2020, 222, 67-72.
[http://dx.doi.org/10.1016/j.imlet.2020.03.004] [PMID: 32197974]
[314]
He, Y.; Wu, X.; Cao, Y.; Hou, Y.; Chen, H.; Wu, L.; Lu, L.; Zhu, W.; Gu, Y. Daidzein exerts anti-tumor activity against bladder cancer cells via inhibition of FGFR3 pathway. Neoplasma, 2016, 63(4), 523-531.
[http://dx.doi.org/10.4149/neo_2016_405] [PMID: 27268915]
[315]
Guo, J.M.; Kang, G.Z.; Xiao, B.X.; Liu, D.H.; Zhang, S. Effect of daidzein on cell growth, cell cy-cle, and telomerase activity of human cervical cancer in vitro. Int. J. Gynecol. Cancer, 2004, 14(5), 882-888.
[http://dx.doi.org/10.1136/ijgc-00009577-200409000-00022] [PMID: 15361199]
[316]
Szliszka, E.; Czuba, Z.P.; Mertas, A.; Paradysz, A.; Krol, W. The dietary isoflavone biochanin-A sensitizes prostate cancer cells to TRAIL-induced apoptosis. Urol. Oncol., 2013, 31(3), 331-342.
[http://dx.doi.org/10.1016/j.urolonc.2011.01.019] [PMID: 21803611]
[317]
Xiao, P.; Zheng, B.; Sun, J.; Yang, J. Biochanin A induces anticancer effects in SK-Mel-28 human malignant melanoma cells via induction of apoptosis, inhibition of cell invasion and modulation of NF-κB and MAPK signaling pathways. Oncol. Lett., 2017, 14(5), 5989-5993.
[http://dx.doi.org/10.3892/ol.2017.6945] [PMID: 29113236]
[318]
Xiao, Y.; Gong, Q.; Wang, W.; Liu, F.; Kong, Q.; Pan, F.; Zhang, X.; Yu, C.; Hu, S.; Fan, F.; Li, S.; Liu, Y. The combination of Biochanin A and SB590885 potentiates the inhibition of tumour pro-gression in hepatocellular carcinoma. Cancer Cell Int., 2020, 20, 371.
[http://dx.doi.org/10.1186/s12935-020-01463-w] [PMID: 32774165]
[319]
Zhang, J.; Su, H.; Li, Q.; Li, J.; Zhao, Q. Genistein decreases A549 cell viability via inhibition of the PI3K/AKT/HIF-1α/VEGF and NF-κB/COX-2 signaling pathways. Mol. Med. Rep., 2017, 15(4), 2296-2302.
[http://dx.doi.org/10.3892/mmr.2017.6260] [PMID: 28259980]
[320]
Lian, F.; Li, Y.; Bhuiyan, M.; Sarkar, F.H. p53-independent apoptosis induced by genistein in lung cancer cells. Nutr. Cancer, 1999, 33(2), 125-131.
[http://dx.doi.org/10.1207/S15327914NC330202] [PMID: 10368806]
[321]
Shafiee, G.; Saidijam, M.; Tavilani, H.; Ghasemkhani, N.; Khodadadi, I. Genistein induces apoptosis and inhibits proliferation of HT29 colon cancer cells. Int. J. Mol. Cell. Med., 2016, 5(3), 178-191.
[PMID: 27942504]
[322]
Luo, Y.; Wang, S.X.; Zhou, Z.Q.; Wang, Z.; Zhang, Y.G.; Zhang, Y.; Zhao, P. Apoptotic effect of genistein on human colon cancer cells via inhibiting the nuclear factor-kappa B (NF-κB) pathway. Tumour Biol., 2014, 35(11), 11483-11488.
[http://dx.doi.org/10.1007/s13277-014-2487-7] [PMID: 25128065]
[323]
Xie, J.; Wang, J.; Zhu, B. Genistein inhibits the proliferation of human multiple myeloma cells through suppression of nuclear factor-κB and upregulation of microRNA-29b. Mol. Med. Rep., 2016, 13(2), 1627-1632.
[http://dx.doi.org/10.3892/mmr.2015.4740] [PMID: 26718793]
[324]
Li, Z.; Li, J.; Mo, B.; Hu, C.; Liu, H.; Qi, H.; Wang, X.; Xu, J. Genistein induces G2/M cell cycle arrest via stable activation of ERK1/2 pathway in MDA-MB-231 breast cancer cells. Cell Biol. Toxicol., 2008, 24(5), 401-409.
[http://dx.doi.org/10.1007/s10565-008-9054-1] [PMID: 18224451]
[325]
Ye, Y.; Hou, R.; Chen, J.; Mo, L.; Zhang, J.; Huang, Y. Formononetin-induced apoptosis of human prostate cancer cells through ERK1/2 mitogen-activated protein kinase inactivation. Horm. Metab. Res., 2012, 44(4), 263-267.
[326]
Li, T.; Zhao, X.; Mo, Z.; Huang, W.; Yan, H.; Ling, Z. Formononetin promotes cell cycle arrest via downregulation of Akt/Cyclin D1/CDK4 in human prostate cancer cells. Cell. Physiol. Biochem., 2014, 34(4), 1351-1358.
[327]
Jin, Y.M.; Xu, T.M.; Zhao, Y.H.; Wang, Y.C.; Cui, M.H. In vitro and in vivo anti-cancer activity of formononetin on human cervical cancer cell line HeLa. Tumour Biol., 2014, 35(3), 2279-2284.
[http://dx.doi.org/10.1007/s13277-013-1302-1] [PMID: 24272199]
[328]
Zhang, Y.; Chen, C.; Zhang, J. Effects and significance of formononetin on expression levels of HIF-1α and VEGF in mouse cervical cancer tissue. Oncol. Lett., 2019, 18(3), 2248-2253.
[http://dx.doi.org/10.3892/ol.2019.10567] [PMID: 31452725]
[329]
Wu, Y.; Zhang, X.; Li, Z.; Yan, H.; Qin, J.; Li, T. Formononetin inhibits human bladder cancer cell proliferation and invasiveness via regulation of miR-21 and PTEN. Food Funct., 2017, 8(3), 1061-1066.
[http://dx.doi.org/10.1039/C6FO01535B] [PMID: 28139790]
[330]
Park, S.; Bazer, F.W.; Lim, W.; Song, G. The O-methylated isoflavone, formononetin, inhibits hu-man ovarian cancer cell proliferation by sub G0/G1 cell phase arrest through PI3K/AKT and ERK1/2 inactivation. J. Cell. Biochem., 2018, 119(9), 7377-7387.
[http://dx.doi.org/10.1002/jcb.27041] [PMID: 29761845]
[331]
Zhou, R.; Xu, L.; Ye, M.; Liao, M.; Du, H.; Chen, H. Formononetin inhibits migration and invasion of MDA-MB-231 and 4T1 breast cancer cells by suppressing MMP-2 and MMP-9 through PI3K/AKT signaling pathways. Horm. Metab. Res., 2014, 46(11), 753-760.
[http://dx.doi.org/10.1055/s-0034-1376977] [PMID: 24977660]
[332]
Hu, W.; Xiao, Z. Formononetin induces apoptosis of human osteosarcoma cell line U2OS by regulat-ing the expression of Bcl-2, Bax and MiR-375 in vitro and in vivo. Cell. Physiol. Biochem., 2015, 37(3), 933-939.
[333]
Nagle, D.G.; Ferreira, D.; Zhou, Y.D. Epigallocatechin-3-gallate (EGCG): chemical and biomedical perspectives. Phytochemistry, 2006, 67(17), 1849-1855.
[http://dx.doi.org/10.1016/j.phytochem.2006.06.020] [PMID: 16876833]
[334]
Khalatbary, A.R.; Ahmadvand, H. Anti-inflammatory effect of the epigallocatechin gallate follow-ing spinal cord trauma in rat. Iran. Biomed. J., 2011, 15(1-2), 31-37.
[PMID: 21725497]
[335]
Forester, S.C.; Lambert, J.D. The role of antioxidant versus pro-oxidant effects of green tea poly-phenols in cancer prevention. Mol. Nutr. Food Res., 2011, 55(6), 844-854.
[http://dx.doi.org/10.1002/mnfr.201000641] [PMID: 21538850]
[336]
Darweish, M.M.; Abbas, A.; Ebrahim, M.A.; Al-Gayyar, M.M. Chemopreventive and hepatoprotec-tive effects of Epigallocatechin-gallate against hepatocellular carcinoma: role of heparan sulfate pro-teoglycans pathway. J. Pharm. Pharmacol., 2014, 66(7), 1032-1045.
[http://dx.doi.org/10.1111/jphp.12229] [PMID: 24611903]
[337]
Zhong, W.; Huan, X.D.; Cao, Q.; Yang, J. Cardioprotective effect of epigallocatechin-3-gallate against myocardial infarction in hypercholesterolemic rats. Exp. Ther. Med., 2015, 9(2), 405-410.
[http://dx.doi.org/10.3892/etm.2014.2135] [PMID: 25574206]
[338]
Kian, K.; Khalatbary, A.R.; Ahmadvand, H.; Karimpour Malekshah, A.; Shams, Z. Neuroprotective effects of (-)-epigallocatechin-3-gallate (EGCG) against peripheral nerve transection-induced apop-tosis. Nutr. Neurosci., 2019, 22(8), 578-586.
[http://dx.doi.org/10.1080/1028415X.2017.1419542] [PMID: 29292676]
[339]
Li, T.; Liu, J.; Zhang, X.; Ji, G. Antidiabetic activity of lipophilic (-)-epigallocatechin-3-gallate deriva-tive under its role of alpha-glucosidase inhibition. Biomed. Pharmacother., 2007, 61(1), 91-96.
[340]
Yang, C-L.; Lin, Y-S.; Liu, K-F.; Peng, W-H.; Hsu, C-M. Hepatoprotective mechanisms of taxifolin on carbon tetrachloride-induced acute liver injury in mice. Nutrients, 2019, 11(11), 2655.
[http://dx.doi.org/10.3390/nu11112655] [PMID: 31689986]
[341]
Sun, X.; Chen, R.C.; Yang, Z.H.; Sun, G.B.; Wang, M.; Ma, X.J.; Yang, L.J.; Sun, X.B. Taxifolin prevents diabetic cardiomyopathy in vivo and in vitro by inhibition of oxidative stress and cell apop-tosis. Food Chem. Toxicol., 2014, 63, 221-232.
[http://dx.doi.org/10.1016/j.fct.2013.11.013] [PMID: 24269735]
[342]
Rehman, K.; Chohan, T.A.; Waheed, I.; Gilani, Z.; Akash, M.S.H. Taxifolin prevents postprandial hyperglycemia by regulating the activity of α-amylase: Evidence from an in vivo and in silico studies. J. Cell. Biochem., 2019, 120(1), 425-438.
[http://dx.doi.org/10.1002/jcb.27398] [PMID: 30191607]
[343]
Inoue, T.; Saito, S.; Tanaka, M.; Yamakage, H.; Kusakabe, T.; Shimatsu, A.; Ihara, M.; Satoh-Asahara, N. Pleiotropic neuroprotective effects of taxifolin in cerebral amyloid angiopathy. Proc. Natl. Acad. Sci. USA, 2019, 116(20), 10031-10038.
[http://dx.doi.org/10.1073/pnas.1901659116] [PMID: 31036637]
[344]
Kuspradini, H.; Mitsunaga, T.; Ohashi, H. Antimicrobial activity against Streptococcus sobrinus and glucosyltransferase inhibitory activity of taxifolin and some flavanonol rhamnosides from kempas (Koompassia malaccensis) extracts. J. Wood Sci., 2009, 55, 308-313.
[http://dx.doi.org/10.1007/s10086-009-1026-4]
[345]
Sunil, C.; Xu, B. An insight into the health-promoting effects of taxifolin (dihydroquercetin). Phytochemistry, 2019, 166, 112066.
[http://dx.doi.org/10.1016/j.phytochem.2019.112066] [PMID: 31325613]
[346]
Braicu, C.; Gherman, C.D.; Irimie, A.; Berindan-Neagoe, I. Epigallocatechin-3-Gallate (EGCG) in-hibits cell proliferation and migratory behaviour of triple negative breast cancer cells. J. Nanosci. Nanotechnol., 2013, 13(1), 632-637.
[http://dx.doi.org/10.1166/jnn.2013.6882] [PMID: 23646788]
[347]
Qin, J.; Fu, M.; Wang, J.; Huang, F.; Liu, H.; Huangfu, M.; Yu, D.; Liu, H.; Li, X.; Guan, X.; Chen, X. PTEN/AKT/mTOR signaling mediates anticancer effects of epigallocatechin-3-gallate in ovarian cancer. Oncol. Rep., 2020, 43(6), 1885-1896.
[http://dx.doi.org/10.3892/or.2020.7571] [PMID: 32236585]
[348]
Qiao, Y.; Cao, J.; Xie, L.; Shi, X. Cell growth inhibition and gene expression regulation by (-)-epigallocatechin-3-gallate in human cervical cancer cells. Arch. Pharm. Res., 2009, 32(9), 1309-1315.
[http://dx.doi.org/10.1007/s12272-009-1917-3] [PMID: 19784588]
[349]
Luo, K.W.; Chen, W. Lung, W.Y.; Wei, X.Y.; Cheng, B.H.; Cai, Z.M.; Huang, W.R. EGCG in-hibited bladder cancer SW780 cell proliferation and migration both in vitro and in vivo via down-regulation of NF-κB and MMP-9. J. Nutr. Biochem., 2017, 41, 56-64.
[http://dx.doi.org/10.1016/j.jnutbio.2016.12.004] [PMID: 28040581]
[350]
Onoda, C.; Kuribayashi, K.; Nirasawa, S.; Tsuji, N.; Tanaka, M.; Kobayashi, D.; Watanabe, N. (-)-Epigallocatechin-3-gallate induces apoptosis in gastric cancer cell lines by down-regulating survivin expression. Int. J. Oncol., 2011, 38(5), 1403-1408.
[PMID: 21344159]
[351]
Wang, R.; Zhu, X.; Wang, Q.; Li, X.; Wang, E.; Zhao, Q.; Wang, Q.; Cao, H. The anti-tumor effect of taxifolin on lung cancer via suppressing stemness and epithelial-mesenchymal transition in vitro and oncogenesis in nude mice. Ann. Transl. Med., 2020, 8(9), 590.
[http://dx.doi.org/10.21037/atm-20-3329] [PMID: 32566617]
[352]
Li, J.; Hu, L.; Zhou, T.; Gong, X.; Jiang, R.; Li, H.; Kuang, G.; Wan, J.; Li, H. Taxifolin inhibits breast cancer cells proliferation, migration and invasion by promoting mesenchymal to epithelial tran-sition via β-catenin signaling. Life Sci., 2019, 232, 116617.
[http://dx.doi.org/10.1016/j.lfs.2019.116617] [PMID: 31260685]
[353]
Razak, S.; Afsar, T.; Ullah, A.; Almajwal, A.; Alkholief, M.; Alshamsan, A.; Jahan, S. Taxifolin, a natural flavonoid interacts with cell cycle regulators causes cell cycle arrest and causes tumor regres-sion by activating Wnt/β -catenin signaling pathway. BMC Cancer, 2018, 18(1), 1043.
[http://dx.doi.org/10.1186/s12885-018-4959-4] [PMID: 30367624]
[354]
Zhang, Z.R.; Al Zaharna, M.; Wong, M.M.; Chiu, S.K.; Cheung, H.Y. Taxifolin enhances andro-grapholide-induced mitotic arrest and apoptosis in human prostate cancer cells via spindle assembly checkpoint activation. PLoS One, 2013, 8(1), e54577.
[http://dx.doi.org/10.1371/journal.pone.0054577] [PMID: 23382917]
[355]
Shi, Y.Q.; Fukai, T.; Sakagami, H.; Chang, W.J.; Yang, P.Q.; Wang, F.P.; Nomura, T. Cytotoxic fla-vonoids with isoprenoid groups from Morus mongolica. J. Nat. Prod., 2001, 64(2), 181-188.
[http://dx.doi.org/10.1021/np000317c] [PMID: 11429996]
[356]
Fukai, T.; Sakagami, H.; Toguchi, M.; Takayama, F.; Iwakura, I.; Atsumi, T.; Ueha, T.; Nakashima, H.; Nomura, T. Cytotoxic activity of low molecular weight polyphenols against human oral tumor cell lines. Anticancer Res., 2000, 20(4), 2525-2536.
[PMID: 10953322]
[357]
Sakagami, H.; Jiang, Y.; Kusama, K.; Atsumi, T.; Ueha, T.; Toguchi, M.; Iwakura, I.; Satoh, K.; Fu-kai, T.; Nomura, T. Induction of apoptosis by flavones, flavonols (3-hydroxyflavones) and isopre-noid-substituted flavonoids in human oral tumor cell lines. Anticancer Res., 2000, 20(1A), 271-277.
[PMID: 10769666]
[358]
Elattar, T.M.; Virji, A.S. The inhibitory effect of curcumin, genistein, quercetin and cisplatin on the growth of oral cancer cells in vitro. Anticancer Res., 2000, 20(3A), 1733-1738.
[PMID: 10928101]
[359]
Han, D.; Tachibana, H.; Yamada, K. Inhibition of environmental estrogen-induced proliferation of human breast carcinoma MCF-7 cells by flavonoids. In Vitro Cell. Dev. Biol. Anim., 2001, 37(5), 275-282.
[PMID: 11513082]
[360]
Pouget, C.; Lauthier, F.; Simon, A.; Fagnere, C.; Basly, J.P.; Delage, C.; Chulia, A.J. Flavonoids: structural requirements for antiproliferative activity on breast cancer cells. Bioorg. Med. Chem. Lett., 2001, 11(24), 3095-3097.
[http://dx.doi.org/10.1016/S0960-894X(01)00617-5] [PMID: 11720850]
[361]
Knowles, L.M.; Zigrossi, D.A.; Tauber, R.A.; Hightower, C.; Milner, J.A. Flavonoids suppress an-drogen-independent human prostate tumor proliferation. Nutr. Cancer, 2000, 38(1), 116-122.
[http://dx.doi.org/10.1207/S15327914NC381_16] [PMID: 11341036]
[362]
Bhatia, N.; Agarwal, R. Detrimental effect of cancer preventive phytochemicals silymarin, genistein and epigallocatechin 3-gallate on epigenetic events in human prostate carcinoma DU145 cells. Prostate, 2001, 46(2), 98-107.
[http://dx.doi.org/10.1002/1097-0045(20010201)46:2<98:AID-PROS1013>3.0.CO;2-K] [PMID: 11170137]
[363]
Agarwal, R. Cell signaling and regulators of cell cycle as molecular targets for prostate cancer pre-vention by dietary agents. Biochem. Pharmacol., 2000, 60(8), 1051-1059.
[http://dx.doi.org/10.1016/S0006-2952(00)00385-3] [PMID: 11007941]
[364]
Damianaki, A.; Bakogeorgou, E.; Kampa, M.; Notas, G.; Hatzoglou, A.; Panagiotou, S.; Gemetzi, C.; Kouroumalis, E.; Martin, P.M.; Castanas, E. Potent inhibitory action of red wine polyphenols on human breast cancer cells. J. Cell. Biochem., 2000, 78(3), 429-441.
[http://dx.doi.org/10.1002/1097-4644(20000901)78:3<429:AID-JCB8>3.0.CO;2-M] [PMID: 10861841]
[365]
Ye, C.L.; Qian, F.; Wei, D.Z.; Lu, Y.H.; Liu, J.W. Induction of apoptosis in K562 human leukemia cells by 2′4′-dihydroxy-6′-methoxy-3′5′-dimethylchalcone. Leuk. Res., 2005, 29(8), 887-892.
[http://dx.doi.org/10.1016/j.leukres.2005.01.006] [PMID: 15978939]
[366]
Ren, W.; Qiao, Z.; Wang, H.; Zhu, L.; Zhang, L. Flavonoids: promising anticancer agents. Med. Res. Rev., 2003, 23(4), 519-534.
[http://dx.doi.org/10.1002/med.10033] [PMID: 12710022]
[367]
Lotha, R.O.; Sivasubramanian, A.R. Flavonoids nutraceuticals in prevention and treatment of can-cer: A review. Asian J. Pharm. Clin. Res., 2018, 11, 42-47.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i1.23410]
[368]
Kamei, H.; Hashimoto, Y.; Koide, T.; Kojima, T.; Hasegawa, M. Anti-tumor effect of methanol ex-tracts from red and white wines. Cancer Biother. Radiopharm., 1998, 13(6), 447-452.
[http://dx.doi.org/10.1089/cbr.1998.13.447] [PMID: 10851437]
[369]
Kuo, S.M.; Morehouse, H.F., Jr; Lin, C.P. Effect of antiproliferative flavonoids on ascorbic acid ac-cumulation in human colon adenocarcinoma cells. Cancer Lett., 1997, 116(2), 131-137.
[http://dx.doi.org/10.1016/S0304-3835(97)00183-3] [PMID: 9215855]
[370]
Kuo, S.M. Antiproliferative potency of structurally distinct dietary flavonoids on human colon can-cer cells. Cancer Lett., 1996, 110(1-2), 41-48.
[http://dx.doi.org/10.1016/S0304-3835(96)04458-8] [PMID: 9018079]
[371]
Iwashita, K.; Kobori, M.; Yamaki, K.; Tsushida, T. Flavonoids inhibit cell growth and induce apop-tosis in B16 melanoma 4A5 cells. Biosci. Biotechnol. Biochem., 2000, 64(9), 1813-1820.
[http://dx.doi.org/10.1271/bbb.64.1813] [PMID: 11055382]
[372]
Sabzevari, O.; Galati, G.; Moridani, M.Y.; Siraki, A.; O’Brien, P.J. Molecular cytotoxic mechanisms of anticancer hydroxychalcones. Chem. Biol. Interact., 2004, 148(1-2), 57-67.
[http://dx.doi.org/10.1016/j.cbi.2004.04.004] [PMID: 15223357]
[373]
Fotopoulou, C.; Vergote, I.; Mainwaring, P.; Bidzinski, M.; Vermorken, J.B.; Ghamande, S.A.; Har-nett, P.; Del Prete, S.A.; Green, J.A.; Spaczynski, M.; Blagden, S.; Gore, M.; Ledermann, J.; Kaye, S.; Gabra, H. Weekly AUC2 carboplatin in acquired platinum-resistant ovarian cancer with or with-out oral phenoxodiol, a sensitizer of platinum cytotoxicity: the phase III OVATURE multicenter randomized study. Ann. Oncol., 2014, 25(1), 160-165.
[http://dx.doi.org/10.1093/annonc/mdt515] [PMID: 24318743]
[374]
Bible, K.C.; Peethambaram, P.P.; Oberg, A.L.; Maples, W.; Groteluschen, D.L.; Boente, M.; Burton, J.K.; Gomez Dahl, L.C.; Tibodeau, J.D.; Isham, C.R.; Maguire, J.L.; Shridhar, V.; Kukla, A.K.; Voll, K.J.; Mauer, M.J.; Colevas, A.D.; Wright, J.; Doyle, L.A.; Erlichman, C. A phase 2 trial of flavopiri-dol (Alvocidib) and cisplatin in platin-resistant ovarian and primary peritoneal carcinoma: MC0261. Gynecol. Oncol., 2012, 127(1), 55-62.
[http://dx.doi.org/10.1016/j.ygyno.2012.05.030] [PMID: 22664059]
[375]
Kelly, M.G.; Mor, G.; Husband, A.; O’Malley, D.M.; Baker, L.; Azodi, M.; Schwartz, P.E.; Ruther-ford, T.J. Phase II evaluation of phenoxodiol in combination with cisplatin or paclitaxel in women with platinum/taxane-refractory/resistant epithelial ovarian, fallopian tube, or primary peritoneal can-cers. Int. J. Gynecol. Cancer, 2011, 21(4), 633-639.
[http://dx.doi.org/10.1097/IGC.0b013e3182126f05] [PMID: 21412168]
[376]
El-Rayes, B.F.; Philip, P.A.; Sarkar, F.H.; Shields, A.F.; Ferris, A.M.; Hess, K.; Kaseb, A.O.; Javle, M.M.; Varadhachary, G.R.; Wolff, R.A.; Abbruzzese, J.L. A phase II study of isoflavones, erlotinib, and gemcitabine in advanced pancreatic cancer. Invest. New Drugs, 2011, 29(4), 694-699.
[http://dx.doi.org/10.1007/s10637-010-9386-6] [PMID: 20107864]
[377]
Carvajal, R.D.; Tse, A.; Shah, M.A.; Lefkowitz, R.A.; Gonen, M.; Gilman-Rosen, L.; Kortmansky, J.; Kelsen, D.P.; Schwartz, G.K.; O’Reilly, E.M. A phase II study of flavopiridol (Alvocidib) in combination with docetaxel in refractory, metastatic pancreatic cancer. Pancreatology, 2009, 9(4), 404-409.
[http://dx.doi.org/10.1159/000187135] [PMID: 19451750]
[378]
Vaishampayan, U.; Hussain, M.; Banerjee, M.; Seren, S.; Sarkar, F.H.; Fontana, J.; Forman, J.D.; Cher, M.L.; Powell, I.; Pontes, J.E.; Kucuk, O. Lycopene and soy isoflavones in the treatment of prostate cancer. Nutr. Cancer, 2007, 59(1), 1-7.
[http://dx.doi.org/10.1080/01635580701413934] [PMID: 17927495]
[379]
Grendys, E.C., Jr; Blessing, J.A.; Burger, R.; Hoffman, J. A phase II evaluation of flavopiridol as second-line chemotherapy of endometrial carcinoma: A Gynecologic Oncology Group study. Gynecol. Oncol., 2005, 98(2), 249-253.
[http://dx.doi.org/10.1016/j.ygyno.2005.05.017] [PMID: 15978659]
[380]
Van Veldhuizen, P.J.; Faulkner, J.R.; Lara, P.N., Jr; Gumerlock, P.H.; Goodwin, J.W.; Dakhil, S.R.; Gross, H.M.; Flanigan, R.C.; Crawford, E.D. A phase II study of flavopiridol in patients with ad-vanced renal cell carcinoma: results of Southwest Oncology Group Trial 0109. Cancer Chemother. Pharmacol., 2005, 56(1), 39-45.
[http://dx.doi.org/10.1007/s00280-004-0969-9] [PMID: 15791454]
[381]
Burdette-Radoux, S.; Tozer, R.G.; Lohmann, R.C.; Quirt, I.; Ernst, D.S.; Walsh, W.; Wainman, N.; Colevas, A.D.; Eisenhauer, E.A. Phase II trial of flavopiridol, a cyclin dependent kinase inhibitor, in untreated metastatic malignant melanoma. Invest. New Drugs, 2004, 22(3), 315-322.
[http://dx.doi.org/10.1023/B:DRUG.0000026258.02846.1c] [PMID: 15122079]
[382]
Aklilu, M.; Kindler, H.L.; Donehower, R.C.; Mani, S.; Vokes, E.E. Phase II study of flavopiridol in patients with advanced colorectal cancer. Ann. Oncol., 2003, 14(8), 1270-1273.
[http://dx.doi.org/10.1093/annonc/mdg343] [PMID: 12881391]
[383]
Thatcher, N.; Dazzi, H.; Mellor, M.; Ghosh, A.; Carrington, B.; Johnson, R.J.; Loriaux, E.M.; Craig, R.P. Recombinant interleukin-2 (rIL-2) with flavone acetic acid (FAA) in advanced malignant mela-noma: A phase II study. Br. J. Cancer, 1990, 61(4), 618-621.
[http://dx.doi.org/10.1038/bjc.1990.137] [PMID: 2331447]
[384]
Kaye, S.B.; Clavel, M.; Dodion, P.; Monfardini, S.; ten Bokkel-Huinink, W.; Wagener, D.T.; Gundersen, S.; Stoter, G.; Smith, J.; Renard, J.; van Glabbeke, M. Phase II trials with flavone acetic acid (NCS. 347512, LM975) in patients with advanced carcinoma of the breast, colon, head and neck and melanoma. Invest. New Drugs, 1990, 8(1)(Suppl. 1), S95-S99.
[http://dx.doi.org/10.1007/BF00171993] [PMID: 2380021]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy