Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Homomultimer Strategy for Improvement of Radiolabeled Peptides and Antibody Fragments in Tumor Targeting

Author(s): Fatemeh Ebrahimi and Seyed Jalal Hosseinimehr*

Volume 29, Issue 29, 2022

Published on: 17 June, 2022

Page: [4923 - 4957] Pages: 35

DOI: 10.2174/0929867329666220420131836

Price: $65

Abstract

A homomultimeric radioligand is composed of multiple identical ligands connected to the linker and radionuclide to detect a variety of overexpressed receptors on cancer cells. Multimer strategy holds great potential for introducing new radiotracers based on peptide and monoclonal antibody (mAb) derivatives in molecular imaging and therapy. It offers a reliable procedure for the preparation of biological-based targeting with diverse affinities and pharmacokinetics. In this context, we provide a useful summary and interpretation of the main results by a comprehensive look at multimeric radiopharmaceuticals in nuclear oncology. Therefore, explanations for the strategy mechanisms and the main variables affecting the biodistribution results will be explained. The discussion is followed by highlights of recent work in the targeting of various types of receptors. The consequences are expressed based on comparing some parameters between monomer and multimer counterparts in each relevant section.

Keywords: Radiolabeled peptide, tumor targeting, homomultimer, PET, SPECT, RGD.

[1]
Bernsen, M.R.; Kooiman, K.; Segbers, M.; van Leeuwen, F.W.; de Jong, M. Biomarkers in preclinical cancer imaging. Eur. J. Nucl. Med. Mol. Imaging, 2015, 42(4), 579-596.
[http://dx.doi.org/10.1007/s00259-014-2980-7] [PMID: 25673052]
[2]
Sugiura, G.; Kühn, H.; Sauter, M.; Haberkorn, U.; Mier, W. Radiolabeling strategies for tumor-targeting proteinaceous drugs. Molecules, 2014, 19(2), 2135-2165.
[http://dx.doi.org/10.3390/molecules19022135] [PMID: 24552984]
[3]
Handy, D.E.; Castro, R.; Loscalzo, J. Epigenetic modifications: Basic mechanisms and role in cardiovascular disease. Circulation, 2011, 123(19), 2145-2156.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.956839] [PMID: 21576679]
[4]
Vaklavas, C.; Blume, S.W.; Grizzle, W.E. Translational dysregulation in cancer: Molecular insights and potential clinical applications in biomarker development. Front. Oncol., 2017, 7, 158.
[http://dx.doi.org/10.3389/fonc.2017.00158] [PMID: 28798901]
[5]
Oermann, E.K.; Wu, J.; Guan, K.L.; Xiong, Y. Alterations of metabolic genes and metabolites in cancer. Semin. Cell Dev. Biol., 2012, 23(4), 370-380.
[http://dx.doi.org/10.1016/j.semcdb.2012.01.013] [PMID: 22306135]
[6]
Lange, S.S.; Takata, K.; Wood, R.D. DNA polymerases and cancer. Nat. Rev. Cancer, 2011, 11(2), 96-110.
[http://dx.doi.org/10.1038/nrc2998] [PMID: 21258395]
[7]
Li, M.; Wang, Y.; Li, M.; Wu, X.; Setrerrahmane, S.; Xu, H. Integrins as attractive targets for cancer therapeutics. Acta Pharm. Sin. B, 2021, 11(9), 2726-2737.
[http://dx.doi.org/10.1016/j.apsb.2021.01.004] [PMID: 34589393]
[8]
Roy, J.; Putt, K.S.; Coppola, D.; Leon, M.E.; Khalil, F.K.; Centeno, B.A.; Clark, N.; Stark, V.E.; Morse, D.L.; Low, P.S. Assessment of cholecystokinin 2 receptor (CCK2R) in neoplastic tissue. Oncotarget, 2016, 7(12), 14605-14615.
[http://dx.doi.org/10.18632/oncotarget.7522] [PMID: 26910279]
[9]
Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol., 2018, 12(1), 3-20.
[http://dx.doi.org/10.1002/1878-0261.12155] [PMID: 29124875]
[10]
Iqbal, N.; Iqbal, N. Human Epidermal Growth Factor Receptor 2 (HER2) in cancers: Overexpression and therapeutic implications. Mol. Biol. Int., 2014, 2014, 852748.
[http://dx.doi.org/10.1155/2014/852748] [PMID: 25276427]
[11]
Hoppenz, P.; Els-Heindl, S.; Beck-Sickinger, A.G. Peptide-drug conjugates and their targets in advanced cancer therapies. Front Chem., 2020, 8, 571.
[http://dx.doi.org/10.3389/fchem.2020.00571] [PMID: 32733853]
[12]
Kunos, C.A.; Howells, R.; Chauhan, A.; Myint, Z.W.; Bernard, M.E.; El Khouli, R.; Capala, J. Radiopharmaceutical validation for clinical use. Front. Oncol., 2021, 11, 630827.
[http://dx.doi.org/10.3389/fonc.2021.630827] [PMID: 33747951]
[13]
Bolcaen, J.; Kleynhans, J.; Nair, S.; Verhoeven, J.; Goethals, I.; Sathekge, M.; Vandevoorde, C.; Ebenhan, T. A perspective on the radiopharmaceutical requirements for imaging and therapy of glioblastoma. Theranostics, 2021, 11(16), 7911-7947.
[http://dx.doi.org/10.7150/thno.56639] [PMID: 34335972]
[14]
Lau, J.; Rousseau, E.; Kwon, D.; Lin, K.S.; Bénard, F.; Chen, X. Insight into the development of PET radiopharmaceuticals for oncology. Cancers (Basel), 2020, 12(5), E1312.
[http://dx.doi.org/10.3390/cancers12051312] [PMID: 32455729]
[15]
Vukomanovic, V.; Matovic, M.; Djukic, A.; Ignjatovic, V.; Vuleta, K.; Djukic, S.; Simic Vukomanovic, I. The role of tumor-seeking radiopharmaceuticals in the diagnosis and management of adrenal tumors. Acta Endocrinol. (Bucur.), 2020, 16(3), 316-323.
[http://dx.doi.org/10.4183/aeb.2020.316] [PMID: 33363653]
[16]
Mankoff, D.A.; Edmonds, C.E.; Farwell, M.D.; Pryma, D.A. Development of companion diagnostics. Semin. Nucl. Med., 2016, 46(1), 47-56.
[http://dx.doi.org/10.1053/j.semnuclmed.2015.09.002] [PMID: 26687857]
[17]
Garousi, J.; Lindbo, S.; Borin, J.; von Witting, E.; Vorobyeva, A.; Oroujeni, M.; Mitran, B.; Orlova, A.; Buijs, J.; Tolmachev, V.; Hober, S. Comparative evaluation of dimeric and monomeric forms of ADAPT scaffold protein for targeting of HER2-expressing tumours. Eur. J. Pharm. Biopharm., 2019, 134, 37-48.
[http://dx.doi.org/10.1016/j.ejpb.2018.11.004] [PMID: 30408518]
[18]
Borea, P.A.; Varani, K.; Gessi, S.; Gilli, P.; Dalpiaz, A. Receptor binding thermodynamics as a tool for linking drug efficacy and affinity. Farmaco, 1998, 53(4), 249-254.
[http://dx.doi.org/10.1016/S0014-827X(98)00017-2] [PMID: 9658581]
[19]
Erlendsson, S.; Teilum, K. Binding revisited-avidity in cellular function and signaling. Front. Mol. Biosci., 2021, 7, 615565.
[http://dx.doi.org/10.3389/fmolb.2020.615565] [PMID: 33521057]
[20]
Deyev, S.M.; Lebedenko, E.N. Multivalency: The hallmark of antibodies used for optimization of tumor targeting by design. BioEssays, 2008, 30(9), 904-918.
[http://dx.doi.org/10.1002/bies.20805] [PMID: 18693269]
[21]
Jarvis, M.R.; Voss, E.W., Jr Consequences of avidity in lymphocyte receptor-multivalent antigen binding in affinity maturation. Mol. Immunol., 1982, 19(8), 1063-1069.
[http://dx.doi.org/10.1016/0161-5890(82)90315-7] [PMID: 7132969]
[22]
Osaki, T.; Fujisawa, S.; Kitaguchi, M.; Kitamura, M.; Nakanishi, T. Development of a bispecific antibody tetramerized through hetero-associating peptides. FEBS J., 2015, 282(22), 4389-4401.
[http://dx.doi.org/10.1111/febs.13505] [PMID: 26337767]
[23]
Liolios, C.; Sachpekidis, C.; Kolocouris, A.; Dimitrakopoulou-Strauss, A.; Bouziotis, P. PET diagnostic molecules utilizing multimeric cyclic RGD peptide analogs for imaging integrin αvβ3 receptors. Molecules, 2021, 26(6), 1792.
[http://dx.doi.org/10.3390/molecules26061792] [PMID: 33810198]
[24]
Goel, A.; Baranowska-Kortylewicz, J.; Hinrichs, S.H.; Wisecarver, J.; Pavlinkova, G.; Augustine, S.; Colcher, D.; Booth, B.J.; Batra, S.K. 99mTc-labeled divalent and tetravalent CC49 single-chain Fv’s: Novel imaging agents for rapidin vivo localization of human colon carcinoma. J. Nucl. Med., 2001, 42(10), 1519-1527.
[PMID: 11585867]
[25]
Carneiro, K.M.; Aldaye, F.A.; Sleiman, H.F. Long-range assembly of DNA into nanofibers and highly ordered networks using a block copolymer approach. J. Am. Chem. Soc., 2010, 132(2), 679-685.
[http://dx.doi.org/10.1021/ja907735m] [PMID: 20025210]
[26]
Brinkmann, U.; Kontermann, R.E. The making of bispecific antibodies. MAbs, 2017, 9(2), 182-212.
[http://dx.doi.org/10.1080/19420862.2016.1268307] [PMID: 28071970]
[27]
Peterson, L.X.; Togawa, Y.; Esquivel-Rodriguez, J.; Terashi, G.; Christoffer, C.; Roy, A.; Shin, W.H.; Kihara, D. Modeling the assembly order of multimeric heteroprotein complexes. PLOS Comput. Biol., 2018, 14(1), e1005937.
[http://dx.doi.org/10.1371/journal.pcbi.1005937] [PMID: 29329283]
[28]
Alvarez-Sieiro, P.; Sikkema, H.R.; Poolman, B. Heterodimer formation of the homodimeric ABC transporter OpuA. Int. J. Mol. Sci., 2021, 22(11), 5912.
[http://dx.doi.org/10.3390/ijms22115912] [PMID: 34072847]
[29]
Jin, Z.H.; Furukawa, T.; Waki, A.; Akaji, K.; Coll, J.L.; Saga, T.; Fujibayashi, Y. Effect of multimerization of a linear Arg-Gly-Asp peptide on integrin binding affinity and specificity. Biol. Pharm. Bull., 2010, 33(3), 370-378.
[http://dx.doi.org/10.1248/bpb.33.370] [PMID: 20190395]
[30]
Kiessling, L.L.; Gestwicki, J.E.; Strong, L.E. Synthetic multivalent ligands as probes of signal transduction. Angew. Chem. Int. Ed., 2006, 45(15), 2348-2368.
[http://dx.doi.org/10.1002/anie.200502794] [PMID: 16557636]
[31]
Fournier, P.; Dumulon-Perreault, V.; Ait-Mohand, S.; Langlois, R.; Bénard, F.; Lecomte, R.; Guérin, B. Comparative study of 64Cu/NOTA-[D-Tyr6,βAla11,Thi13,Nle14]BBN(6-14) monomer and dimers for prostate cancer PET imaging. EJNMMI Res., 2012, 2(1), 8.
[http://dx.doi.org/10.1186/2191-219X-2-8] [PMID: 22333272]
[32]
Wu, H.; Chen, H.; Sun, Y.; Wan, Y.; Wang, F.; Jia, B.; Su, X. Imaging integrin α(v)β(3) positive glioma with a novel RGD dimer probe and the impact of antiangiogenic agent (Endostar) on its tumor uptake. Cancer Lett., 2013, 335(1), 75-80.
[http://dx.doi.org/10.1016/j.canlet.2013.01.053] [PMID: 23403076]
[33]
Wängler, C.; Maschauer, S.; Prante, O.; Schäfer, M.; Schirrmacher, R.; Bartenstein, P.; Eisenhut, M.; Wängler, B. Multimerization of cRGD peptides by click chemistry: Synthetic strategies, chemical limitations, and influence on biological properties. ChemBioChem, 2010, 11(15), 2168-2181.
[http://dx.doi.org/10.1002/cbic.201000386] [PMID: 20827791]
[34]
Wolfenden, M.L.; Cloninger, M.J. Carbohydrate-functionalized dendrimers to investigate the predictable tunability of multivalent interactions. Bioconjug. Chem., 2006, 17(4), 958-966.
[http://dx.doi.org/10.1021/bc060107x] [PMID: 16848403]
[35]
Wang, L.; Shi, J.; Kim, Y.S.; Zhai, S.; Jia, B.; Zhao, H.; Liu, Z.; Wang, F.; Chen, X.; Liu, S. Improving tumor-targeting capability and pharmacokinetics of (99m)Tc-labeled cyclic RGD dimers with PEG(4) linkers. Mol. Pharm., 2009, 6(1), 231-245.
[http://dx.doi.org/10.1021/mp800150r] [PMID: 19067525]
[36]
Le Saux, G.; Magenau, A.; Gunaratnam, K.; Kilian, K.A.; Böcking, T.; Gooding, J.J.; Gaus, K. Spacing of integrin ligands influences signal transduction in endothelial cells. Biophys. J., 2011, 101(4), 764-773.
[http://dx.doi.org/10.1016/j.bpj.2011.06.064] [PMID: 21843466]
[37]
Dijkgraaf, I.; Kruijtzer, J.A.; Liu, S.; Soede, A.C.; Oyen, W.J.; Corstens, F.H.; Liskamp, R.M.; Boerman, O.C. Improved targeting of the alpha(v)beta (3) integrin by multimerisation of RGD peptides. Eur. J. Nucl. Med. Mol. Imaging, 2007, 34(2), 267-273.
[http://dx.doi.org/10.1007/s00259-006-0180-9] [PMID: 16909226]
[38]
Chakraborty, S.; Shi, J.; Kim, Y.S.; Zhou, Y.; Jia, B.; Wang, F.; Liu, S. Evaluation of 111In-labeled cyclic RGD peptides: Tetrameric not tetravalent. Bioconjug. Chem., 2010, 21(5), 969-978.
[http://dx.doi.org/10.1021/bc900555q] [PMID: 20387808]
[39]
Dijkgraaf, I.; Yim, C.B.; Franssen, G.M.; Schuit, R.C.; Luurtsema, G.; Liu, S.; Oyen, W.J.; Boerman, O.C. PET imaging of αvβ3 integrin expression in tumours with 68Ga-labelled mono-, di- and tetrameric RGD peptides. Eur. J. Nucl. Med. Mol. Imaging, 2011, 38(1), 128-137.
[http://dx.doi.org/10.1007/s00259-010-1615-x] [PMID: 20857099]
[40]
Liu, S. Radiolabeled cyclic RGD peptide bioconjugates as radiotracers targeting multiple integrins. Bioconjug. Chem., 2015, 26(8), 1413-1438.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00327] [PMID: 26193072]
[41]
Liu, Z.; Liu, S.; Wang, F.; Liu, S.; Chen, X. Noninvasive imaging of tumor integrin expression using (18)F-labeled RGD dimer peptide with PEG (4) linkers. Eur. J. Nucl. Med. Mol. Imaging, 2009, 36(8), 1296-1307.
[http://dx.doi.org/10.1007/s00259-009-1112-2] [PMID: 19296102]
[42]
Chen, X.; Park, R.; Shahinian, A.H.; Tohme, M.; Khankaldyyan, V.; Bozorgzadeh, M.H.; Bading, J.R.; Moats, R.; Laug, W.E.; Conti, P.S. 18F-labeled RGD peptide: Initial evaluation for imaging brain tumor angiogenesis. Nucl. Med. Biol., 2004, 31(2), 179-189.
[http://dx.doi.org/10.1016/j.nucmedbio.2003.10.002] [PMID: 15013483]
[43]
Ho, Y.; Li, Z.L.; Shih, Y.J.; Chen, Y.R.; Wang, K.; Whang-Peng, J.; Lin, H.Y.; Davis, P.J. Integrin αvβ3 in the mediating effects of dihydrotestosterone and resveratrol on breast cancer cell proliferation. Int. J. Mol. Sci., 2020, 21(8), E2906.
[http://dx.doi.org/10.3390/ijms21082906] [PMID: 32326308]
[44]
Plow, E.F.; Meller, J.; Byzova, T.V. Integrin function in vascular biology: A view from 2013. Curr. Opin. Hematol., 2014, 21(3), 241-247.
[http://dx.doi.org/10.1097/MOH.0000000000000042] [PMID: 24626045]
[45]
Fani, M.; Psimadas, D.; Zikos, C.; Xanthopoulos, S.; Loudos, G.K.; Bouziotis, P.; Varvarigou, A.D. Comparative evaluation of linear and cyclic 99mTc-RGD peptides for targeting of integrins in tumor angiogenesis. Anticancer Res., 2006, 26(1A), 431-434.
[PMID: 16475729]
[46]
Verrier, S.; Pallu, S.; Bareille, R.; Jonczyk, A.; Meyer, J.; Dard, M.; Amédée, J. Function of linear and cyclic RGD-containing peptides in osteoprogenitor cells adhesion process. Biomaterials, 2002, 23(2), 585-596.
[http://dx.doi.org/10.1016/S0142-9612(01)00145-4] [PMID: 11761179]
[47]
Bellis, S.L. Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials, 2011, 32(18), 4205-4210.
[http://dx.doi.org/10.1016/j.biomaterials.2011.02.029] [PMID: 21515168]
[48]
Chen, X. Multimodality imaging of tumor integrin alphavbeta3 expression. Mini Rev. Med. Chem., 2006, 6(2), 227-234.
[http://dx.doi.org/10.2174/138955706775475975] [PMID: 16472190]
[49]
Zhou, Y.; Kim, Y.S.; Lu, X.; Liu, S. Evaluation of 99mTc-labeled cyclic RGD dimers: Impact of cyclic RGD peptides and 99mTc chelates on biological properties. Bioconjug. Chem., 2012, 23(3), 586-595.
[http://dx.doi.org/10.1021/bc200631g] [PMID: 22369387]
[50]
Shan, L. Molecular imaging and contrast agent database (MICAD); National Center for Biotechnology Information (US): Bethesda(MD), 2004. Available from: www.micad.nih.gov
[51]
Hernandez, R.; Czerwinski, A.; Chakravarty, R.; Graves, S.A.; Yang, Y.; England, C.G.; Nickles, R.J.; Valenzuela, F.; Cai, W. Evaluation of two novel 64Cu-labeled RGD peptide radiotracers for enhanced PET imaging of tumor integrin αvβ3. Eur. J. Nucl. Med. Mol. Imaging, 2015, 42(12), 1859-1868.
[http://dx.doi.org/10.1007/s00259-015-3085-7] [PMID: 26016906]
[52]
Vedaraman, S.; Bernhagen, D.; Haraszti, T.; Licht, C.; Castro Nava, A.; Omidinia Anarkoli, A.; Timmerman, P.; De Laporte, L. Bicyclic RGD peptides enhance nerve growth in synthetic PEG-based Anisogels. Biomater. Sci., 2021, 9(12), 4329-4342.
[http://dx.doi.org/10.1039/D0BM02051F] [PMID: 33724266]
[53]
Joo, S.H. Cyclic peptides as therapeutic agents and biochemical tools. Biomol. Ther. (Seoul), 2012, 20(1), 19-26.
[http://dx.doi.org/10.4062/biomolther.2012.20.1.019] [PMID: 24116270]
[54]
Kapp, T.G.; Rechenmacher, F.; Neubauer, S.; Maltsev, O.V.; Cavalcanti-Adam, E.A.; Zarka, R.; Reuning, U.; Notni, J.; Wester, H.J.; Mas-Moruno, C.; Spatz, J.; Geiger, B.; Kessler, H. A comprehensive evaluation of the activity and selectivity profile of ligands for RGD-binding integrins. Sci. Rep., 2017, 7(1), 39805.
[http://dx.doi.org/10.1038/srep39805] [PMID: 28074920]
[55]
Lee, J.W.; Lee, Y.J.; Shin, U.C.; Kim, S.W.; Kim, B.I.; Lee, K.C.; Kim, J.Y.; Park, J.A. Improved pharmacokinetics following pegylation and dimerization of a c(RGD-ACH-K) conjugate used for tumor positron emission tomography imaging. Cancer Biother. Radiopharm., 2016, 31(8), 295-301.
[http://dx.doi.org/10.1089/cbr.2016.2036] [PMID: 27754748]
[56]
Guo, J.; Lang, L.; Hu, S.; Guo, N.; Zhu, L.; Sun, Z.; Ma, Y.; Kiesewetter, D.O.; Niu, G.; Xie, Q.; Chen, X. Comparison of three dimeric 18F-AlF-NOTA-RGD tracers. Mol. Imaging Biol., 2014, 16(2), 274-283.
[http://dx.doi.org/10.1007/s11307-013-0668-1] [PMID: 23982795]
[57]
Ma, H.; Hao, P.; Zhang, L.; Ma, C.; Yan, P.; Wang, R.F.; Zhang, C.L. A new cyclic RGD peptide dimer for integrin αvβ3 imaging. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(4), 613-619.
[PMID: 26957261]
[58]
Ruoslahti, E.; Pierschbacher, M.D. New perspectives in cell adhesion: RGD and integrins. Science, 1987, 238(4826), 491-497.
[http://dx.doi.org/10.1126/science.2821619] [PMID: 2821619]
[59]
Li, Z.B.; Cai, W.; Cao, Q.; Chen, K.; Wu, Z.; He, L.; Chen, X. (64)Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor alpha(v)beta(3) integrin expression. J. Nucl. Med., 2007, 48(7), 1162-1171.
[http://dx.doi.org/10.2967/jnumed.107.039859] [PMID: 17574975]
[60]
Liu, S. Radiolabeled cyclic RGD peptides as integrin alpha(v)beta(3)-targeted radiotracers: Maximizing binding affinity via bivalency. Bioconjug. Chem., 2009, 20(12), 2199-2213.
[http://dx.doi.org/10.1021/bc900167c] [PMID: 19719118]
[61]
Liu, S.; Cheung, E.; Ziegler, M.C.; Rajopadhye, M.; Edwards, D.S. (90)Y and (177)Lu labeling of a DOTA-conjugated vitronectin receptor antagonist useful for tumor therapy. Bioconjug. Chem., 2001, 12(4), 559-568.
[http://dx.doi.org/10.1021/bc000146n] [PMID: 11459461]
[62]
Liu, S.; Liu, Z.; Chen, K.; Yan, Y.; Watzlowik, P.; Wester, H.J.; Chin, F.T.; Chen, X. 18F-labeled galacto and PEGylated RGD dimers for PET imaging of αvβ3 integrin expression. Mol. Imaging Biol., 2010, 12(5), 530-538.
[http://dx.doi.org/10.1007/s11307-009-0284-2] [PMID: 19949981]
[63]
Wu, Y.; Zhang, X.; Xiong, Z.; Cheng, Z.; Fisher, D.R.; Liu, S.; Gambhir, S.S.; Chen, X. microPET imaging of glioma integrin alphavbeta3 expression using (64)Cu-labeled tetrameric RGD peptide. J. Nucl. Med., 2005, 46(10), 1707-1718.
[PMID: 16204722]
[64]
Li, Z.B.; Chen, K.; Chen, X. (68)Ga-labeled multimeric RGD peptides for microPET imaging of integrin alpha(v)beta (3) expression. Eur. J. Nucl. Med. Mol. Imaging, 2008, 35(6), 1100-1108.
[http://dx.doi.org/10.1007/s00259-007-0692-y] [PMID: 18204838]
[65]
Janssen, M.; Oyen, W.J.; Massuger, L.F.; Frielink, C.; Dijkgraaf, I.; Edwards, D.S.; Radjopadhye, M.; Corstens, F.H.; Boerman, O.C. Comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor targeting. Cancer Biother. Radiopharm., 2002, 17(6), 641-646.
[http://dx.doi.org/10.1089/108497802320970244] [PMID: 12537667]
[66]
Chao, C.; Goluszko, E.; Lee, Y.T.; Kolokoltsov, A.A.; Davey, R.A.; Uchida, T.; Townsend, C.M., Jr; Hellmich, M.R. Constitutively active CCK2 receptor splice variant increases Src-dependent HIF-1 alpha expression and tumor growth. Oncogene, 2007, 26(7), 1013-1019.
[http://dx.doi.org/10.1038/sj.onc.1209862] [PMID: 16909104]
[67]
Jacobson, O.; Zhu, L.; Niu, G.; Weiss, I.D.; Szajek, L.P.; Ma, Y.; Sun, X.; Yan, Y.; Kiesewetter, D.O.; Liu, S.; Chen, X. MicroPET imaging of integrin αvβ3 expressing tumors using 89Zr-RGD peptides. Mol. Imaging Biol., 2011, 13(6), 1224-1233.
[http://dx.doi.org/10.1007/s11307-010-0458-y] [PMID: 21161690]
[68]
Jia, B.; Liu, Z.; Shi, J.; Yu, Z.; Yang, Z.; Zhao, H.; He, Z.; Liu, S.; Wang, F. Linker effects on biological properties of 111In-labeled DTPA conjugates of a cyclic RGDfK dimer. Bioconjug. Chem., 2008, 19(1), 201-210.
[http://dx.doi.org/10.1021/bc7002988] [PMID: 18069778]
[69]
Jamous, M.; Tamma, M.L.; Gourni, E.; Waser, B.; Reubi, J.C.; Maecke, H.R.; Mansi, R. PEG spacers of different length influence the biological profile of bombesin-based radiolabeled antagonists. Nucl. Med. Biol., 2014, 41(6), 464-470.
[http://dx.doi.org/10.1016/j.nucmedbio.2014.03.014] [PMID: 24780298]
[70]
Morais, M.; Ma, M.T. Site-specific chelator-antibody conjugation for PET and SPECT imaging with radiometals. Drug Discov. Today. Technol., 2018, 30, 91-104.
[http://dx.doi.org/10.1016/j.ddtec.2018.10.002] [PMID: 30553525]
[71]
Liu, S.; Edwards, D.S. 99mTc-labeled small peptides as diagnostic radiopharmaceuticals. Chem. Rev., 1999, 99(9), 2235-2268.
[http://dx.doi.org/10.1021/cr980436l] [PMID: 11749481]
[72]
Liese, S.; Netz, R.R. Influence of length and flexibility of spacers on the binding affinity of divalent ligands. Beilstein J. Org. Chem., 2015, 11, 804-816.
[http://dx.doi.org/10.3762/bjoc.11.90] [PMID: 26124882]
[73]
Liu, S.; He, Z.; Hsieh, W.Y.; Kim, Y.S.; Jiang, Y. Impact of PKM linkers on biodistribution characteristics of the 99mTc-labeled cyclic RGDfK dimer. Bioconjug. Chem., 2006, 17(6), 1499-1507.
[http://dx.doi.org/10.1021/bc060235l] [PMID: 17105229]
[74]
Chen, X.; Sievers, E.; Hou, Y.; Park, R.; Tohme, M.; Bart, R.; Bremner, R.; Bading, J.R.; Conti, P.S. Integrin alpha v beta 3-targeted imaging of lung cancer. Neoplasia, 2005, 7(3), 271-279.
[http://dx.doi.org/10.1593/neo.04538] [PMID: 15799827]
[75]
Dijkgraaf, I.; Liu, S.; Kruijtzer, J.A.; Soede, A.C.; Oyen, W.J.; Liskamp, R.M.; Corstens, F.H.; Boerman, O.C. Effects of linker variation on the in vitro andin vivo characteristics of an 111In-labeled RGD peptide. Nucl. Med. Biol., 2007, 34(1), 29-35.
[http://dx.doi.org/10.1016/j.nucmedbio.2006.10.006] [PMID: 17210459]
[76]
Farzipour, S.; Hosseinimehr, S.J. Correlation between in vitro andin vivo Data of Radiolabeled Peptide for Tumor Targeting. Mini Rev. Med. Chem., 2019, 19(12), 950-960.
[http://dx.doi.org/10.2174/1389557519666190304120011] [PMID: 30834830]
[77]
Liu, Z.; Liu, S.; Niu, G.; Wang, F.; Liu, S.; Chen, X. Optical imaging of integrin alphavbeta3 expression with near-infrared fluorescent RGD dimer with tetra(ethylene glycol) linkers. Mol. Imaging, 2010, 9(1), 21-29.
[http://dx.doi.org/10.2310/7290.2009.00032] [PMID: 20128995]
[78]
Zhao, Z.Q.; Ji, S.; Li, X.Y.; Fang, W.; Liu, S. 68Ga-labeled dimeric and trimeric cyclic RGD peptides as potential PET radiotracers for imaging gliomas. Appl. Radiat. Isot., 2019, 148, 168-177.
[http://dx.doi.org/10.1016/j.apradiso.2019.03.033] [PMID: 30959354]
[79]
Liu, Z.; Niu, G.; Shi, J.; Liu, S.; Wang, F.; Liu, S.; Chen, X. (68)Ga-labeled cyclic RGD dimers with Gly3 and PEG4 linkers: Promising agents for tumor integrin alphavbeta3 PET imaging. Eur. J. Nucl. Med. Mol. Imaging, 2009, 36(6), 947-957.
[http://dx.doi.org/10.1007/s00259-008-1045-1] [PMID: 19159928]
[80]
Blom, E.; Velikyan, I.; Estrada, S.; Hall, H.; Muhammad, T.; Ding, C.; Nair, M.; Långström, B. (68)Ga-Labeling of RGD peptides and biodistribution. Int. J. Clin. Exp. Med., 2012, 5(2), 165-172.
[PMID: 22567177]
[81]
Chen, X.; Tohme, M.; Park, R.; Hou, Y.; Bading, J.R.; Conti, P.S. Micro-PET imaging of alphavbeta3-integrin expression with 18F-labeled dimeric RGD peptide. Mol. Imaging, 2004, 3(2), 96-104.
[http://dx.doi.org/10.1162/1535350041464892] [PMID: 15296674]
[82]
Wu, Z.; Li, Z.B.; Cai, W.; He, L.; Chin, F.T.; Li, F.; Chen, X. 18F-labeled mini-PEG spacered RGD dimer (18F-FPRGD2): Synthesis and microPET imaging of alphavbeta3 integrin expression. Eur. J. Nucl. Med. Mol. Imaging, 2007, 34(11), 1823-1831.
[http://dx.doi.org/10.1007/s00259-007-0427-0] [PMID: 17492285]
[83]
Li, W.; Lang, L.; Niu, G.; Guo, N.; Ma, Y.; Kiesewetter, D.O.; Shen, B.; Chen, X. N-Succinimidyl 4-[(18)F]-fluoromethylbenzoate-labeled dimeric RGD peptide for imaging tumor integrin expression. Amino Acids, 2012, 43(3), 1349-1357.
[http://dx.doi.org/10.1007/s00726-011-1208-4] [PMID: 22209865]
[84]
Liu, S.; Hsieh, W.Y.; Kim, Y.S.; Mohammed, S.I. Effect of coligands on biodistribution characteristics of ternary ligand 99mTc complexes of a HYNIC-conjugated cyclic RGDfK dimer. Bioconjug. Chem., 2005, 16(6), 1580-1588.
[http://dx.doi.org/10.1021/bc0501653] [PMID: 16287258]
[85]
Vatsa, R.; Shukla, J.; Kumar, S.; Chakraboarty, S.; Dash, A.; Singh, G.; Mittal, B.R. Effect of macro-cyclic bifunctional chelators DOTA and NODAGA on Radiolabeling and in vivo biodistribution of Ga-68 cyclic RGD dimer. Cancer Biother. Radiopharm., 2019, 34(7), 427-435.
[http://dx.doi.org/10.1089/cbr.2019.2811] [PMID: 31112044]
[86]
Renner, G.; Janouskova, H.; Noulet, F.; Koenig, V.; Guerin, E.; Bär, S.; Nuesch, J.; Rechenmacher, F.; Neubauer, S.; Kessler, H.; Blandin, A.F.; Choulier, L.; Etienne-Selloum, N.; Lehmann, M.; Lelong-Rebel, I.; Martin, S.; Dontenwill, M. Integrin α5β1 and p53 convergent pathways in the control of anti-apoptotic proteins PEA-15 and survivin in high-grade glioma. Cell Death Differ., 2016, 23(4), 640-653.
[http://dx.doi.org/10.1038/cdd.2015.131] [PMID: 26470725]
[87]
Schaffner, F.; Ray, A.M.; Dontenwill, M. Integrin α5β1, the fibronectin receptor, as a pertinent therapeutic target in solid tumors. Cancers (Basel), 2013, 5(1), 27-47.
[http://dx.doi.org/10.3390/cancers5010027] [PMID: 24216697]
[88]
Gao, H.; Luo, C.; Yang, G.; Du, S.; Li, X.; Zhao, H.; Shi, J.; Wang, F. Improvedin vivo Targeting Capability and Pharmacokinetics of 99mtc-labeled isoGDR by dimerization and albumin-binding for glioma imaging. Bioconjug. Chem., 2019, 30(7), 2038-2048.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00323] [PMID: 31063685]
[89]
Hsu, J.L.; Hung, M.C. The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer. Cancer Metastasis Rev., 2016, 35(4), 575-588.
[http://dx.doi.org/10.1007/s10555-016-9649-6] [PMID: 27913999]
[90]
Wieduwilt, M.J.; Moasser, M.M. The epidermal growth factor receptor family: Biology driving targeted therapeutics. Cell. Mol. Life Sci., 2008, 65(10), 1566-1584.
[http://dx.doi.org/10.1007/s00018-008-7440-8] [PMID: 18259690]
[91]
Mishra, R.; Hanker, A.B.; Garrett, J.T. Genomic alterations of ERBB receptors in cancer: Clinical implications. Oncotarget, 2017, 8(69), 114371-114392.
[http://dx.doi.org/10.18632/oncotarget.22825] [PMID: 29371993]
[92]
Nagaraja, V.; Eslick, G.D. HER2 expression in gastric and oesophageal cancer: A meta-analytic review. J. Gastrointest. Oncol., 2015, 6(2), 143-154.
[PMID: 25830034]
[93]
Ishikawa, T.; Ichikawa, Y.; Shimizu, D.; Sasaki, T.; Tanabe, M.; Chishima, T.; Takabe, K.; Endo, I. The role of HER-2 in breast cancer. J. Surg. Sci., 2014, 2(1), 4-9.
[PMID: 25679012]
[94]
Baum, R.P.; Prasad, V.; Müller, D.; Schuchardt, C.; Orlova, A.; Wennborg, A.; Tolmachev, V.; Feldwisch, J. Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In- or 68Ga-labeled affibody molecules. J. Nucl. Med., 2010, 51(6), 892-897.
[http://dx.doi.org/10.2967/jnumed.109.073239] [PMID: 20484419]
[95]
Giordano, S.H.; Temin, S.; Davidson, N.E. Systemic therapy for patients with advanced human epidermal growth factor receptor 2-positive breast cancer: Asco clinical practice guideline update summary. J. Oncol. Pract., 2018, 14(8), 501-504.
[http://dx.doi.org/10.1200/JOP.18.00290] [PMID: 29989839]
[96]
Wong, N.A.C.S.; Amary, F.; Butler, R.; Byers, R.; Gonzalez, D.; Haynes, H.R.; Ilyas, M.; Salto-Tellez, M.; Taniere, P. HER2 testing of gastro-oesophageal adenocarcinoma: A commentary and guidance document from the Association of Clinical Pathologists Molecular Pathology and Diagnostics Committee. J. Clin. Pathol., 2018, 71(5), 388-394.
[http://dx.doi.org/10.1136/jclinpath-2017-204943] [PMID: 29439009]
[97]
Nilvebrant, J.; Hober, S. The albumin-binding domain as a scaffold for protein engineering. Comput. Struct. Biotechnol. J., 2013, 6(7), e201303009.
[http://dx.doi.org/10.5936/csbj.201303009] [PMID: 24688717]
[98]
Nilvebrant, J.; Åstrand, M.; Georgieva-Kotseva, M.; Björnmalm, M.; Löfblom, J.; Hober, S. Engineering of bispecific affinity proteins with high affinity for ERBB2 and adaptable binding to albumin. PLoS One, 2014, 9(8), e103094.
[http://dx.doi.org/10.1371/journal.pone.0103094] [PMID: 25089830]
[99]
Garousi, J.; Lindbo, S.; Nilvebrant, J.; Åstrand, M.; Buijs, J.; Sandström, M.; Honarvar, H.; Orlova, A.; Tolmachev, V.; Hober, S. ADAPT, a Novel scaffold protein-based probe for radionuclide imaging of molecular targets that are expressed in disseminated cancers. Cancer Res., 2015, 75(20), 4364-4371.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3497] [PMID: 26297736]
[100]
Garousi, J.; Lindbo, S.; Honarvar, H.; Velletta, J.; Mitran, B.; Altai, M.; Orlova, A.; Tolmachev, V.; Hober, S. Influence of the N-terminal composition on targeting properties of radiometal-labeled anti-HER2 scaffold protein ADAPT6. Bioconjug. Chem., 2016, 27(11), 2678-2688.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00465] [PMID: 27740752]
[101]
Garousi, J.; Lindbo, S.; Mitran, B.; Buijs, J.; Vorobyeva, A.; Orlova, A.; Tolmachev, V.; Hober, S. Comparative evaluation of tumor targeting using the anti-HER2 ADAPT scaffold protein labeled at the C-terminus with indium-111 or technetium-99m. Sci. Rep., 2017, 7(1), 14780.
[http://dx.doi.org/10.1038/s41598-017-15366-w] [PMID: 29116215]
[102]
Ferreira, C.A.; Fuscaldi, L.L.; Townsend, D.M.; Rubello, D.; Barros, A.L.B. Radiolabeled bombesin derivatives for preclinical oncological imaging. Biomed. Pharmacother., 2017, 87, 58-72.
[http://dx.doi.org/10.1016/j.biopha.2016.12.083] [PMID: 28040598]
[103]
Abd-Elgaliel, W.R.; Gallazzi, F.; Garrison, J.C.; Rold, T.L.; Sieckman, G.L.; Figueroa, S.D.; Hoffman, T.J.; Lever, S.Z. Design, synthesis, and biological evaluation of an antagonist-bombesin analogue as targeting vector. Bioconjug. Chem., 2008, 19(10), 2040-2048.
[http://dx.doi.org/10.1021/bc800290c] [PMID: 18808168]
[104]
Cheng, S.; Lang, L.; Wang, Z.; Jacobson, O.; Yung, B.; Zhu, G.; Gu, D.; Ma, Y.; Zhu, X.; Niu, G.; Chen, X. Positron emission tomography imaging of prostate cancer with Ga-68-labeled gastrin-releasing peptide receptor agonist BBN7-14 and antagonist RM26. Bioconjug. Chem., 2018, 29(2), 410-419.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00726] [PMID: 29254329]
[105]
Moody, T.W.; Lee, L.; Ramos-Alvarez, I.; Iordanskaia, T.; Mantey, S.A.; Jensen, R.T. Bombesin receptor family activation and CNS/neural tumors: Review of evidence supporting possible role for novel targeted therapy. Front. Endocrinol. (Lausanne), 2021, 12, 728088.
[http://dx.doi.org/10.3389/fendo.2021.728088] [PMID: 34539578]
[106]
Jensen, R.T.; Battey, J.F.; Spindel, E.R.; Benya, R.V. International union of pharmacology. LXVIII. Mammalian bombesin receptors: Nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol. Rev., 2008, 60(1), 1-42.
[http://dx.doi.org/10.1124/pr.107.07108] [PMID: 18055507]
[107]
Li, M.; Liang, P.; Liu, D.; Yuan, F.; Chen, G.C.; Zhang, L.; Liu, Y.; Liu, H. Bombesin receptor subtype-3 in human diseases. Arch. Med. Res., 2019, 50(7), 463-467.
[http://dx.doi.org/10.1016/j.arcmed.2019.11.004] [PMID: 31911345]
[108]
Liolios, C.; Buchmuller, B.; Bauder-Wüst, U.; Schäfer, M.; Leotta, K.; Haberkorn, U.; Eder, M.; Kopka, K. Monomeric and Dimeric 68Ga-Labeled Bombesin Analogues for Positron Emission Tomography (PET) Imaging of Tumors Expressing Gastrin-Releasing Peptide Receptors (GRPrs). J. Med. Chem., 2018, 61(5), 2062-2074.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01856] [PMID: 29432691]
[109]
Yu, Z.; Carlucci, G.; Ananias, H.J.; Dierckx, R.A.; Liu, S.; Helfrich, W.; Wang, F.; de Jong, I.J.; Elsinga, P.H. Evaluation of a technetium-99m labeled bombesin homodimer for GRPR imaging in prostate cancer. Amino Acids, 2013, 44(2), 543-553.
[http://dx.doi.org/10.1007/s00726-012-1369-9] [PMID: 22833158]
[110]
Roosenburg, S.; Laverman, P.; van Delft, F.L.; Boerman, O.C. Radiolabeled CCK/gastrin peptides for imaging and therapy of CCK2 receptor-expressing tumors. Amino Acids, 2011, 41(5), 1049-1058.
[http://dx.doi.org/10.1007/s00726-010-0501-y] [PMID: 20198494]
[111]
Reubi, J.C.; Waser, B. Concomitant expression of several peptide receptors in neuroendocrine tumours: Molecular basis forin vivo multireceptor tumour targeting. Eur. J. Nucl. Med. Mol. Imaging, 2003, 30(5), 781-793.
[http://dx.doi.org/10.1007/s00259-003-1184-3] [PMID: 12707737]
[112]
Sosabowski, J.K.; Matzow, T.; Foster, J.M.; Finucane, C.; Ellison, D.; Watson, S.A.; Mather, S.J. Targeting of CCK-2 receptor-expressing tumors using a radiolabeled divalent gastrin peptide. J. Nucl. Med., 2009, 50(12), 2082-2089.
[http://dx.doi.org/10.2967/jnumed.109.064808] [PMID: 19910426]
[113]
Tilan, J.; Kitlinska, J.; Neuropeptide, Y. Neuropeptide Y (NPY) in tumor growth and progression: Lessons learned from pediatric oncology. Neuropeptides, 2016, 55, 55-66.
[http://dx.doi.org/10.1016/j.npep.2015.10.005] [PMID: 26549645]
[114]
Li, J.; Tian, Y.; Wu, A. Neuropeptide Y receptors: A promising target for cancer imaging and therapy. Regen. Biomater., 2015, 2(3), 215-219.
[http://dx.doi.org/10.1093/rb/rbv013] [PMID: 26816643]
[115]
Körner, M.; Reubi, J.C. NPY receptors in human cancer: A review of current knowledge. Peptides, 2007, 28(2), 419-425.
[http://dx.doi.org/10.1016/j.peptides.2006.08.037] [PMID: 17223228]
[116]
Memminger, M.; Keller, M.; Lopuch, M.; Pop, N.; Bernhardt, G.; von Angerer, E.; Buschauer, A. The neuropeptide y y(1) receptor: A diagnostic marker? Expression in mcf-7 breast cancer cells is down-regulated by antiestrogens in vitro and in xenografts. PLoS One, 2012, 7(12), e51032.
[http://dx.doi.org/10.1371/journal.pone.0051032] [PMID: 23236424]
[117]
Khan, I.U.; Zwanziger, D.; Böhme, I.; Javed, M.; Naseer, H.; Hyder, S.W.; Beck-Sickinger, A.G. Breast-cancer diagnosis by neuropeptide Y analogues: From synthesis to clinical application. Angew. Chem. Int. Ed. Engl., 2010, 49(6), 1155-1158.
[http://dx.doi.org/10.1002/anie.200905008] [PMID: 20104470]
[118]
Chatenet, D.; Cescato, R.; Waser, B.; Erchegyi, J.; Rivier, J.E.; Reubi, J.C. Novel dimeric DOTA-coupled peptidic Y1-receptor antagonists for targeting of neuropeptide Y receptor-expressing cancers. EJNMMI Res., 2011, 1(1), 21.
[http://dx.doi.org/10.1186/2191-219X-1-21] [PMID: 22214201]
[119]
Sun, X.; Li, Y.; Liu, T.; Li, Z.; Zhang, X.; Chen, X. Peptide-based imaging agents for cancer detection. Adv. Drug Deliv. Rev., 2017, 110-111, 38-51.
[http://dx.doi.org/10.1016/j.addr.2016.06.007] [PMID: 27327937]
[120]
Yin, J.; Hui, X.; Yao, L.; Li, M.; Hu, H.; Zhang, J.; Xin, B.; He, M.; Wang, J.; Nie, Y.; Wu, K. Evaluation of Tc-99 m Labeled Dimeric GX1 Peptides for Imaging of Colorectal Cancer Vasculature. Mol. Imaging Biol., 2015, 17(5), 661-670.
[http://dx.doi.org/10.1007/s11307-015-0838-4] [PMID: 25847184]
[121]
Kalli, K.R.; Oberg, A.L.; Keeney, G.L.; Christianson, T.J.; Low, P.S.; Knutson, K.L.; Hartmann, L.C. Folate receptor alpha as a tumor target in epithelial ovarian cancer. Gynecol. Oncol., 2008, 108(3), 619-626.
[http://dx.doi.org/10.1016/j.ygyno.2007.11.020] [PMID: 18222534]
[122]
Senol, S.; Ceyran, A.B.; Aydin, A.; Zemheri, E.; Ozkanli, S.; Kösemetin, D.; Sehitoglu, I.; Akalin, I. Folate receptor α expression and significance in endometrioid endometrium carcinoma and endometrial hyperplasia. Int. J. Clin. Exp. Pathol., 2015, 8(5), 5633-5641.
[PMID: 26191275]
[123]
O’Shannessy, D.J.; Somers, E.B.; Maltzman, J.; Smale, R.; Fu, Y.S. Folate receptor alpha (FRA) expression in breast cancer: Identification of a new molecular subtype and association with triple negative disease. Springerplus, 2012, 1(1), 22.
[http://dx.doi.org/10.1186/2193-1801-1-22] [PMID: 23961352]
[124]
Liang, X.; Luo, M.; Wei, X.W.; Ma, C.C.; Yang, Y.H.; Shao, B.; Liu, Y.T.; Liu, T.; Ren, J.; Liu, L.; He, Z.Y.; Wei, Y.Q. A folate receptor-targeted lipoplex delivering interleukin-15 gene for colon cancer immunotherapy. Oncotarget, 2016, 7(32), 52207-52217.
[http://dx.doi.org/10.18632/oncotarget.10537] [PMID: 27438147]
[125]
Kim, W.H.; Kim, C.G.; Kim, M.H.; Kim, D.W.; Park, C.R.; Park, J.Y.; Lee, Y.S.; Youn, H.; Kang, K.W.; Jeong, J.M.; Chung, J.K. Preclinical evaluation of isostructural Tc-99m- and Re-188-folate-Gly-Gly-Cys-Glu for folate receptor-positive tumor targeting. Ann. Nucl. Med., 2016, 30(5), 369-379.
[http://dx.doi.org/10.1007/s12149-016-1072-0] [PMID: 26993818]
[126]
Fisher, R.E.; Siegel, B.A.; Edell, S.L.; Oyesiku, N.M.; Morgenstern, D.E.; Messmann, R.A.; Amato, R.J. Exploratory study of 99mTc-EC20 imaging for identifying patients with folate receptor-positive solid tumors. J. Nucl. Med., 2008, 49(6), 899-906.
[http://dx.doi.org/10.2967/jnumed.107.049478] [PMID: 18483093]
[127]
Guo, Z.; You, L.; Shi, C.; Song, M.; Gao, M.; Xu, D.; Peng, C.; Zhuang, R.; Liu, T.; Su, X.; Du, J.; Zhang, X. Development of a new FR-targeting agent 99mTc-HYNFA with improved imaging contrast and comparison of multimerization and/or PEGylation strategies for radio-folate modification. Mol. Pharm., 2017, 14(11), 3780-3788.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00536] [PMID: 28969422]
[128]
Sgouros, G.; Bodei, L.; McDevitt, M.R.; Nedrow, J.R. Radiopharmaceutical therapy in cancer: Clinical advances and challenges. Nat. Rev. Drug Discov., 2020, 19(9), 589-608.
[http://dx.doi.org/10.1038/s41573-020-0073-9] [PMID: 32728208]
[129]
Sgouros, G.; Hobbs, R.F. Dosimetry for radiopharmaceutical therapy. Semin. Nucl. Med., 2014, 44(3), 172-178.
[http://dx.doi.org/10.1053/j.semnuclmed.2014.03.007] [PMID: 24832581]
[130]
Sgouros, G.; Hobbs, R.F.; Atkins, F.B.; Van Nostrand, D.; Ladenson, P.W.; Wahl, R.L. Three-dimensional radiobiological dosimetry (3D-RD) with 124I PET for 131I therapy of thyroid cancer. Eur. J. Nucl. Med. Mol. Imaging, 2011, 38 Suppl 1(Suppl 1), S41-47.
[131]
Abou Jokh Casas, E.; Pubul Núñez, V.; Anido-Herranz, U.; Del Carmen Mallón Araujo, M.; Del Carmen Pombo Pasín, M.; Garrido Pumar, M.; Cabezas Agrícola, J.M.; Cameselle-Teijeiro, J.M.; Hilal, A.; Ruibal Morell, Á. Evaluation of 177Lu-Dotatate treatment in patients with metastatic neuroendocrine tumors and prognostic factors. World J. Gastroenterol., 2020, 26(13), 1513-1524.
[http://dx.doi.org/10.3748/wjg.v26.i13.1513] [PMID: 32308351]
[132]
Hobbs, R.F.; Song, H.; Watchman, C.J.; Bolch, W.E.; Aksnes, A.K.; Ramdahl, T.; Flux, G.D.; Sgouros, G. A bone marrow toxicity model for ²²³Ra alpha-emitter radiopharmaceutical therapy. Phys. Med. Biol., 2012, 57(10), 3207-3222.
[http://dx.doi.org/10.1088/0031-9155/57/10/3207] [PMID: 22546715]
[133]
Vivier, D.; Sharma, S.K.; Zeglis, B.M. Understanding thein vivo fate of radioimmunoconjugates for nuclear imaging. J. Labelled Comp. Radiopharm., 2018, 61(9), 672-692.
[http://dx.doi.org/10.1002/jlcr.3628] [PMID: 29665104]
[134]
Nicholson, L.B. The immune system. Essays Biochem., 2016, 60(3), 275-301.
[http://dx.doi.org/10.1042/EBC20160017] [PMID: 27784777]
[135]
Simeon, R.; Chen, Z. In vitro-engineered non-antibody protein therapeutics. Protein Cell, 2018, 9(1), 3-14.
[http://dx.doi.org/10.1007/s13238-017-0386-6] [PMID: 28271446]
[136]
Nelson, A.L. Antibody fragments: Hope and hype. MAbs, 2010, 2(1), 77-83.
[http://dx.doi.org/10.4161/mabs.2.1.10786] [PMID: 20093855]
[137]
Bates, A.; Power, C.A. David vs. Goliath: The structure, function, and clinical prospects of antibody fragments. Antibodies (Basel), 2019, 8(2), E28.
[http://dx.doi.org/10.3390/antib8020028] [PMID: 31544834]
[138]
Krasniqi, A.; Bialkowska, M.; Xavier, C.; Van der Jeught, K.; Muyldermans, S.; Devoogdt, N.; D’Huyvetter, M. Pharmacokinetics of radiolabeled dimeric sdAbs constructs targeting human CD20. N. Biotechnol., 2018, 45, 69-79.
[http://dx.doi.org/10.1016/j.nbt.2018.03.004] [PMID: 29574274]
[139]
Zhou, Y.; Drummond, D.C.; Zou, H.; Hayes, M.E.; Adams, G.P.; Kirpotin, D.B.; Marks, J.D. Impact of single-chain Fv antibody fragment affinity on nanoparticle targeting of epidermal growth factor receptor-expressing tumor cells. J. Mol. Biol., 2007, 371(4), 934-947.
[http://dx.doi.org/10.1016/j.jmb.2007.05.011] [PMID: 17602702]
[140]
Luo, C.; Wu, G.; Huang, X.; Ma, Y.; Zhang, Y.; Song, Q.; Xie, M.; Sun, Y.; Huang, Y.; Huang, Z.; Hou, Y.; Xu, S.; Chen, J.; Li, X. Efficacy and safety of new anti-CD20 monoclonal antibodies versus rituximab for induction therapy of CD20+ B-cell non-Hodgkin lymphomas: A systematic review and meta-analysis. Sci. Rep., 2021, 11(1), 3255.
[http://dx.doi.org/10.1038/s41598-021-82841-w] [PMID: 33547368]
[141]
Puvvada, S.D.; Guillén-Rodríguez, J.M.; Yan, J.; Inclán, L.; Heard, K.; Rivera, X.I.; Anwer, F.; Mahadevan, D.; Schatz, J.H.; Persky, D.O. Yttrium-90-Ibritumomab Tiuxetan (Zevalin®) Radioimmunotherapy after Cytoreduction with ESHAP Chemotherapy in Patients with Relapsed Follicular Non-Hodgkin Lymphoma: Final Results of a Phase II Study. Oncology, 2018, 94(5), 274-280.
[http://dx.doi.org/10.1159/000486788] [PMID: 29471300]
[142]
Ryman, J.T.; Meibohm, B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst. Pharmacol., 2017, 6(9), 576-588.
[http://dx.doi.org/10.1002/psp4.12224] [PMID: 28653357]
[143]
Frejd, F.Y.; Kim, K.T. Affibody molecules as engineered protein drugs. Exp. Mol. Med., 2017, 49(3), e306.
[http://dx.doi.org/10.1038/emm.2017.35] [PMID: 28336959]
[144]
Wahlberg, E.; Lendel, C.; Helgstrand, M.; Allard, P.; Dincbas-Renqvist, V.; Hedqvist, A.; Berglund, H.; Nygren, P.A.; Härd, T. An affibody in complex with a target protein: Structure and coupled folding. Proc. Natl. Acad. Sci. USA, 2003, 100(6), 3185-3190.
[http://dx.doi.org/10.1073/pnas.0436086100] [PMID: 12594333]
[145]
Case, B.A.; Kruziki, M.A.; Stern, L.A.; Hackel, B.J. Evaluation of affibody charge modification identified by synthetic consensus design in molecular PET imaging of epidermal growth factor receptor. Mol. Syst. Des. Eng., 2018, 3(1), 171-182.
[http://dx.doi.org/10.1039/C7ME00095B] [PMID: 31467687]
[146]
Zhu, J.; Kamara, S.; Cen, D.; Tang, W.; Gu, M.; Ci, X.; Chen, J.; Wang, L.; Zhu, S.; Jiang, P.; Chen, S.; Xue, X.; Zhang, L. Generation of novel affibody molecules targeting the EBV LMP2A N-terminal domain with inhibiting effects on the proliferation of nasopharyngeal carcinoma cells. Cell Death Dis., 2020, 11(4), 213.
[http://dx.doi.org/10.1038/s41419-020-2410-7] [PMID: 32238802]
[147]
Wikman, M.; Steffen, A.C.; Gunneriusson, E.; Tolmachev, V.; Adams, G.P.; Carlsson, J.; Ståhl, S. Selection and characterization of HER2/neu-binding affibody ligands. Protein Eng. Des. Sel., 2004, 17(5), 455-462.
[http://dx.doi.org/10.1093/protein/gzh053] [PMID: 15208403]
[148]
Steffen, A.C.; Wikman, M.; Tolmachev, V.; Adams, G.P.; Nilsson, F.Y.; Ståhl, S.; Carlsson, J. In vitro characterization of a bivalent anti-HER-2 affibody with potential for radionuclide-based diagnostics. Cancer Biother. Radiopharm., 2005, 20(3), 239-248.
[http://dx.doi.org/10.1089/cbr.2005.20.239] [PMID: 15989469]
[149]
Connor, A.E.; Baumgartner, R.N.; Baumgartner, K.B.; Pinkston, C.M.; John, E.M.; Torres-Mejía, G.; Hines, L.M.; Giuliano, A.R.; Wolff, R.K.; Slattery, M.L. Epidermal growth factor receptor (EGFR) polymorphisms and breast cancer among Hispanic and non-Hispanic white women: The Breast Cancer Health Disparities Study. Int. J. Mol. Epidemiol. Genet., 2013, 4(4), 235-249.
[PMID: 24319539]
[150]
Naik, D.S.; Sharma, S.; Ray, A.; Hedau, S. Epidermal growth factor receptor expression in urinary bladder cancer. Indian J. Urol., 2011, 27(2), 208-214.
[http://dx.doi.org/10.4103/0970-1591.82839] [PMID: 21814311]
[151]
Bethune, G.; Bethune, D.; Ridgway, N.; Xu, Z. Epidermal growth factor receptor (EGFR) in lung cancer: An overview and update. J. Thorac. Dis., 2010, 2(1), 48-51.
[PMID: 22263017]
[152]
Tolmachev, V.; Friedman, M.; Sandström, M.; Eriksson, T.L.; Rosik, D.; Hodik, M.; Ståhl, S.; Frejd, F.Y.; Orlova, A. Affibody molecules for epidermal growth factor receptor targetingin vivo: Aspects of dimerization and labeling chemistry. J. Nucl. Med., 2009, 50(2), 274-283.
[http://dx.doi.org/10.2967/jnumed.108.055525] [PMID: 19164241]
[153]
Langbein, T.; Weber, W.A.; Eiber, M. Future of theranostics: An outlook on precision oncology in nuclear medicine. J. Nucl. Med., 2019, 60(Suppl. 2), 13S-19S.
[http://dx.doi.org/10.2967/jnumed.118.220566] [PMID: 31481583]
[154]
Jokar, N.; Assadi, M.; Yordanova, A.; Ahmadzadehfar, H. Bench-to-bedside theranostics in nuclear medicine. Curr. Pharm. Des., 2020, 26(31), 3804-3811.
[http://dx.doi.org/10.2174/1381612826666200218104313] [PMID: 32067609]
[155]
Xing, Y.; Zhao, J.; Conti, P.S.; Chen, K. Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics, 2014, 4(3), 290-306.
[http://dx.doi.org/10.7150/thno.7341] [PMID: 24505237]
[156]
Chakravarty, R.; Chakraborty, S. A review of advances in the last decade on targeted cancer therapy using 177Lu: Focusing on 177Lu produced by the direct neutron activation route. Am. J. Nucl. Med. Mol. Imaging, 2021, 11(6), 443-475.
[PMID: 35003885]
[157]
Bouziotis, P.; Psimadas, D.; Tsotakos, T.; Stamopoulos, D.; Tsoukalas, C. Radiolabeled iron oxide nanoparticles as dual-modality SPECT/MRI and PET/MRI agents. Curr. Top. Med. Chem., 2012, 12(23), 2694-2702.
[http://dx.doi.org/10.2174/1568026611212230007] [PMID: 23339765]
[158]
Gomes Marin, J.F.; Nunes, R.F.; Coutinho, A.M.; Zaniboni, E.C.; Costa, L.B.; Barbosa, F.G.; Queiroz, M.A.; Cerri, G.G.; Buchpiguel, C.A. Theranostics in nuclear medicine: Emerging and Re-emerging integrated imaging and therapies in the era of precision oncology. Radiographics, 2020, 40(6), 1715-1740.
[http://dx.doi.org/10.1148/rg.2020200021] [PMID: 33001789]
[159]
Tornesello, A.L.; Tagliamonte, M.; Tornesello, M.L.; Buonaguro, F.M.; Buonaguro, L. Nanoparticles to improve the efficacy of peptide-based cancer vaccines. Cancers (Basel), 2020, 12(4), E1049.
[http://dx.doi.org/10.3390/cancers12041049] [PMID: 32340356]
[160]
Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-based medicines: A review of fda-approved materials and clinical trials to date. Pharm. Res., 2016, 33(10), 2373-2387.
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]
[161]
Hoshyar, N.; Gray, S.; Han, H.; Bao, G. The effect of nanoparticle size onin vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond.), 2016, 11(6), 673-692.
[http://dx.doi.org/10.2217/nnm.16.5] [PMID: 27003448]
[162]
Arora, G.; Shukla, J.; Ghosh, S.; Maulik, S.K.; Malhotra, A.; Bandopadhyaya, G. PLGA nanoparticles for peptide receptor radionuclide therapy of neuroendocrine tumors: A novel approach towards reduction of renal radiation dose. PLoS One, 2012, 7(3), e34019.
[http://dx.doi.org/10.1371/journal.pone.0034019] [PMID: 22442740]
[163]
Arora, G.; Dubey, P.; Shukla, J.; Ghosh, S.; Bandopadhyaya, G. Evaluation of cytotoxic and tumor targeting capability of (177)Lu-DOTATATE-nanoparticles: A trailblazing strategy in peptide receptor radionuclide therapy. Ann. Nucl. Med., 2016, 30(5), 334-345.
[http://dx.doi.org/10.1007/s12149-016-1067-x] [PMID: 26897009]
[164]
Zhang, L.; Su, H.; Wang, H.; Li, Q.; Li, X.; Zhou, C.; Xu, J.; Chai, Y.; Liang, X.; Xiong, L.; Zhang, C. Tumor chemo-radiotherapy with rod-shaped and spherical gold nano probes: Shape and active targeting both matter. Theranostics, 2019, 9(7), 1893-1908.
[http://dx.doi.org/10.7150/thno.30523] [PMID: 31037146]
[165]
Piras, M.; Testa, A.; Fleming, I.N.; Dall’Angelo, S.; Andriu, A.; Menta, S.; Mori, M.; Brown, G.D.; Forster, D.; Williams, K.J.; Zanda, M. High-affinity “Click” RGD peptidomimetics as radiolabeled probes for imaging αv β3 integrin. ChemMedChem, 2017, 12(14), 1142-1151.
[http://dx.doi.org/10.1002/cmdc.201700328] [PMID: 28608961]
[166]
Silva, F.; D’Onofrio, A.; Mendes, C.; Pinto, C.; Marques, A.; Campello, M.P.C.; Oliveira, M.C.; Raposinho, P.; Belchior, A.; Di Maria, S.; Marques, F.; Cruz, C.; Carvalho, J.; Paulo, A. Radiolabeled gold nanoseeds decorated with substance P peptides: Synthesis, characterization and in vitro evaluation in glioblastoma cellular models. Int. J. Mol. Sci., 2022, 23(2), 617.
[http://dx.doi.org/10.3390/ijms23020617] [PMID: 35054798]
[167]
Lankoff, A.; Czerwińska, M.; Walczak, R.; Karczmarczyk, U.; Tomczyk, K.; Brzóska, K.; Fracasso, G.; Garnuszek, P.; Mikołajczak, R.; Kruszewski, M. Design and evaluation of 223Ra-labeled and anti-PSMA targeted NaA nanozeolites for prostate cancer therapy-part II. toxicity, pharmacokinetics and biodistribution. Int. J. Mol. Sci., 2021, 22(11), 5702.
[http://dx.doi.org/10.3390/ijms22115702] [PMID: 34071854]
[168]
Golmohamadpour, A.; Bahramian, B.; Khoobi, M.; Pourhajibagher, M.; Barikani, H.R.; Bahador, A. Antimicrobial photodynamic therapy assessment of three indocyanine green-loaded metal-organic frameworks against Enterococcus faecalis. Photodiagn. Photodyn. Ther., 2018, 23, 331-338.
[http://dx.doi.org/10.1016/j.pdpdt.2018.08.004] [PMID: 30077652]
[169]
Saberi, S.; Khoobi, M.; Alaeddini, M.; Etemad-Moghadam, S.; Jamshidloo, R.; Mohammadpour, H.; Shahabi, S. The effect of photodynamic therapy on head and neck squamous cell carcinoma cell lines using spirulina platensis with different laser energy densities. Photodiagn. Photodyn. Ther., 2021, 37, 102688.
[http://dx.doi.org/10.1016/j.pdpdt.2021.102688] [PMID: 34910993]
[170]
Ávila-Sánchez, M.A.; Aranda-Lara, L.; Morales-Ávila, E.; Plata-Becerril, A.; Jiménez-Mancilla, N.P.; Ocampo-García, B.E.; Estrada, J.A.; Santos-Cuevas, C.L.; Torres-García, E.; Camacho-López, M.A.; Isaac-Olivé, K. Targeted photodynamic therapy using reconstituted high-density lipoproteins as rhodamine transporters. Photodiagn. Photodyn. Ther., 2021, 2020, 102630.
[171]
Wu, J.; Wang, S.; Zhang, X.; Teng, Z.; Wang, J.; Yung, B.C.; Niu, G.; Zhu, H.; Lu, G.; Chen, X. 18F-Alfatide II PET/CT for Identification of Breast Cancer: A Preliminary Clinical Study. J. Nucl. Med., 2018, 59(12), 1809-1816.
[http://dx.doi.org/10.2967/jnumed.118.208637] [PMID: 29700127]
[172]
Zheng, K.; Liang, N.; Zhang, J.; Lang, L.; Zhang, W.; Li, S.; Zhao, J.; Niu, G.; Li, F.; Zhu, Z.; Chen, X. 68Ga-NOTA-PRGD2 PET/CT for integrin imaging in patients with lung cancer. J. Nucl. Med., 2015, 56(12), 1823-1827.
[http://dx.doi.org/10.2967/jnumed.115.160648] [PMID: 26429958]
[173]
Chin, F.T.; Shen, B.; Liu, S.; Berganos, R.A.; Chang, E.; Mittra, E.; Chen, X.; Gambhir, S.S. First experience with clinical-grade ([18F]FPP(RGD2): An automated multi-step radiosynthesis for clinical PET studies. Mol. Imaging Biol., 2012, 14(1), 88-95.
[http://dx.doi.org/10.1007/s11307-011-0477-3] [PMID: 21400112]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy