Generic placeholder image

Recent Advances in Drug Delivery and Formulation

Editor-in-Chief

ISSN (Print): 2667-3878
ISSN (Online): 2667-3886

Review Article

Recent Patents on Nasal Vaccines Containing Nanoadjuvants

Author(s): Francesco Candela, Eride Quarta, Francesca Buttini, Adolfo Ancona, Ruggero Bettini and Fabio Sonvico*

Volume 16, Issue 2, 2022

Published on: 13 July, 2022

Page: [103 - 121] Pages: 19

DOI: 10.2174/2667387816666220420124648

open access plus

Abstract

Vaccines are one of the greatest medical achievements of modern medicine. The nasal mucosa represents an effective route of vaccination for both mucosal immunity and peripheral, being at the same time an inductive and effector site of immunity. In this paper, the innovative and patented compositions and manufacturing procedures of nanomaterials have been studied using the peerreviewed research literature. Nanomaterials have several properties that make them unique as adjuvant for vaccines. Nanoadjuvants through the influence of antigen availability over time affect the immune response. Namely, the amount of antigen reaching the immune system or its release over prolonged periods of time can be effectively increased by nanoadjuvants. Mucosal vaccines are an interesting alternative for immunization of diseases in which pathogens access the body through these epithelia. Nanometric adjuvants are not only a viable approach to improve the efficacy of nasal vaccines but in most of the cases they represent the core of the intellectual property related to the innovative vaccine.

Keywords: Nanoadjuvants, nanoemulsion, nanoparticles, nanotechnology, nasal vaccine, cellular immunity.

Next »
Graphical Abstract

[1]
Jabbal-Gill I. Nasal vaccine innovation. J Drug Target 2010; 18(10): 771-86.
[http://dx.doi.org/10.3109/1061186X.2010.523790] [PMID: 21047271]
[2]
Wong PT, Wang SH, Ciotti S, et al. Formulation and characterization of nanoemulsion intranasal adjuvants: Effects of surfactant composition on mucoadhesion and immunogenicity. Mol Pharm 2014; 11(2): 531-44.
[http://dx.doi.org/10.1021/mp4005029] [PMID: 24320221]
[3]
Woodrow KA, Bennett KM, Lo DD. Mucosal vaccine design and delivery. Annu Rev Biomed Eng 2012; 14(1): 17-46.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150054] [PMID: 22524387]
[4]
Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat Med 2013; 19(12): 1597-608.
[http://dx.doi.org/10.1038/nm.3409] [PMID: 24309663]
[5]
Chadwick S, Kriegel C, Amiji M. Nanotechnology solutions for mucosal immunization. Adv Drug Deliv Rev 2010; 62(4-5): 394-407.
[http://dx.doi.org/10.1016/j.addr.2009.11.012] [PMID: 19931581]
[6]
Lobaina Mato Y. Nasal route for vaccine and drug delivery: Features and current opportunities. Int J Pharm 2019; 572: 118813.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118813] [PMID: 31678521]
[7]
Alshweiat A, Ambrus R, Csoka I. Intranasal nanoparticulate systems as alternative route of drug delivery. Curr Med Chem 2019; 26(35): 6459-92.
[http://dx.doi.org/10.2174/0929867326666190827151741] [PMID: 31453778]
[8]
Bernocchi B, Carpentier R, Betbeder D. Nasal nanovaccines. Int J Pharm 2017; 530(1-2): 128-38.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.012] [PMID: 28698066]
[9]
Anatomical GS, Drug HFAI, Delivery V. Curr Drug Deliv 2012; 9(6): 566-82.
[http://dx.doi.org/10.2174/156720112803529828] [PMID: 22788696]
[10]
Dahl R, Mygind N. Anatomy, physiology and function of the nasal cavities in health and disease. Adv Drug Deliv Rev 1998; 29(1-2): 3-12.
[http://dx.doi.org/10.1016/S0169-409X(97)00058-6] [PMID: 10837577]
[11]
Lopatin AS, Azizov IS, Kozlov RS. Microbiome of the nasal cavity and the paranasal sinuses in health and disease (literature review). Part I. Rossiiskaya Rinologiya 2021; 29(1): 23.
[http://dx.doi.org/10.17116/rosrino20212901123]
[12]
Chen K, Cerutti A. Vaccination strategies to promote mucosal antibody responses. Immunity 2010; 33(4): 479-91.
[http://dx.doi.org/10.1016/j.immuni.2010.09.013] [PMID: 21029959]
[13]
Davis SS. Nasal vaccines. Adv Drug Deliv Rev 2001; 51(1-3): 21-42.
[http://dx.doi.org/10.1016/S0169-409X(01)00162-4] [PMID: 11516777]
[14]
Kagnoff MF, Eckmann L. Epithelial cells as sensors for microbial infection. J Clin Invest 1997; 100(1): 6-10.
[http://dx.doi.org/10.1172/JCI119522] [PMID: 9202050]
[15]
Izadpanah A, Dwinell MB, Eckmann L, Varki NM, Kagnoff MF. Regulated MIP-3α/CCL20 production by human intestinal epithelium: Mechanism for modulating mucosal immunity. Am J Physiol Gastrointest Liver Physiol 2001; 280(4): G710-9.
[http://dx.doi.org/10.1152/ajpgi.2001.280.4.G710] [PMID: 11254498]
[16]
van Egmond M, Damen CA, van Spriel AB, Vidarsson G, van Garderen E, van de Winkel JGJ. IgA and the IgA Fc receptor. Trends Immunol 2001; 22(4): 205-11.
[http://dx.doi.org/10.1016/S1471-4906(01)01873-7] [PMID: 11274926]
[17]
Mestecky J, Moldoveanu Z, Russell MW. Immunologic uniqueness of the genital tract: Challenge for vaccine development. Am J Reprod Immunol 2005; 53(5): 208-14.
[http://dx.doi.org/10.1111/j.1600-0897.2005.00267.x] [PMID: 15833098]
[18]
Hutchings AB, Helander A, Silvey KJ, et al. Secretory immunoglobulin A antibodies against the σ1 outer capsid protein of reovirus type 1 Lang prevent infection of mouse Peyer’s patches. J Virol 2004; 78(2): 947-57.
[http://dx.doi.org/10.1128/JVI.78.2.947-957.2004] [PMID: 14694126]
[19]
Sheng X, Qian X, Tang X, Xing J, Zhan W. Polymeric immunoglobulin receptor mediates immune excretion of mucosal IgM-antigen complexes across intestinal epithelium in flounder (Paralichthys olivaceus). Front Immunol 2018; 9: 1562.
[http://dx.doi.org/10.3389/fimmu.2018.01562] [PMID: 30072985]
[20]
Wells JM, Brummer RJ, Derrien M, et al. Homeostasis of the gut barrier and potential biomarkers. Am J Physiol Gastrointest Liver Physiol 2017; 312(3): G171-93.
[http://dx.doi.org/10.1152/ajpgi.00048.2015] [PMID: 27908847]
[21]
Neutra MR, Kozlowski PA. Mucosal vaccines: The promise and the challenge. Nat Rev Immunol 2006; 6(2): 148-58.
[http://dx.doi.org/10.1038/nri1777] [PMID: 16491139]
[22]
O’Hagan DT, Valiante NM. Recent advances in the discovery and delivery of vaccine adjuvants. Nat Rev Drug Discov 2003; 2(9): 727-35.
[http://dx.doi.org/10.1038/nrd1176] [PMID: 12951579]
[23]
Dowling DJ. Recent advances in the discovery and delivery of TLR7/8 agonists as vaccine adjuvants. Immunohorizons 2018; 2(6): 185-97.
[http://dx.doi.org/10.4049/immunohorizons.1700063] [PMID: 31022686]
[24]
Csaba N, Garcia-Fuentes M, Alonso MJ. Nanoparticles for nasal vaccination. Adv Drug Deliv Rev 2009; 61(2): 140-57.
[http://dx.doi.org/10.1016/j.addr.2008.09.005] [PMID: 19121350]
[25]
Sinani G, Sessevmez M, Gök MK, Özgümüş S, Alpar HO, Cevher E. Modified chitosan-based nanoadjuvants enhance immunogenicity of protein antigens after mucosal vaccination. Int J Pharm 2019; 569: 118592.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118592] [PMID: 31386881]
[26]
Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18(1): 767-811.
[http://dx.doi.org/10.1146/annurev.immunol.18.1.767] [PMID: 10837075]
[27]
Fehr T, Skrastina D, Pumpens P, Zinkernagel RM. T cell-independent type I antibody response against B cell epitopes expressed repetitively on recombinant virus particles. Proc Natl Acad Sci USA 1998; 95(16): 9477-81.
[http://dx.doi.org/10.1073/pnas.95.16.9477] [PMID: 9689105]
[28]
Matsusaki M, Larsson K, Akagi T, Lindstedt M, Akashi M, Borrebaeck CAK. Nanosphere induced gene expression in human dendritic cells. Nano Lett 2005; 5(11): 2168-73.
[http://dx.doi.org/10.1021/nl050541s] [PMID: 16277447]
[29]
Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature 2000; 406(6797): 782-7.
[http://dx.doi.org/10.1038/35021228] [PMID: 10963608]
[30]
Jagatia H, Tsolaki AG. The role of complement system and the immune response to tuberculosis infection. Medicina (Kaunas) 2021; 57(2): 84.
[http://dx.doi.org/10.3390/medicina57020084] [PMID: 33498555]
[31]
Akira S, Takeda K, Kaisho T. Toll-like receptors: Critical proteins linking innate and acquired immunity. Nat Immunol 2001; 2(8): 675-80.
[http://dx.doi.org/10.1038/90609] [PMID: 11477402]
[32]
Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001; 413(6857): 732-8.
[http://dx.doi.org/10.1038/35099560] [PMID: 11607032]
[33]
Fernández N, Alonso S, Valera I, et al. Mannose-containing molecular patterns are strong inducers of cyclooxygenase-2 expression and prostaglandin E2 production in human macrophages. J Immunol 2005; 174(12): 8154-62.
[http://dx.doi.org/10.4049/jimmunol.174.12.8154] [PMID: 15944324]
[34]
Jankovic D, Liu Z, Gause WC. Th1- and Th2-cell commitment during infectious disease: Asymmetry in divergent pathways. Trends Immunol 2001; 22(8): 450-7.
[http://dx.doi.org/10.1016/S1471-4906(01)01975-5] [PMID: 11473835]
[35]
Villacres-Eriksson M, Behboudi S, Morgan AJ, Trinchieri G, Morein B. Immunomodulation by Quillaja saponaria adjuvant formulations: In vivo stimulation of interleukin 12 and its effects on the antibody response. Cytokine 1997; 9(2): 73-82.
[http://dx.doi.org/10.1006/cyto.1996.0139] [PMID: 9071557]
[36]
Gagliardi MC, Sallusto F, Marinaro M, Langenkamp A, Lanzavecchia A, De Magistris MT. Cholera toxin induces maturation of human dendritic cells and licences them for Th2 priming. Eur J Immunol 2000; 30(8): 2394-403.
[http://dx.doi.org/10.1002/1521-4141(2000)30:8<2394:AID-IMMU2394>3.0.CO;2-Y] [PMID: 10940931]
[37]
Zacharias ZR, Ross KA, Hornick EE, et al. Polyanhydride nanovaccine induces robust pulmonary B and T cell immunity and confers protection against homologous and heterologous influenza A virus infections. Front Immunol 2018; 9: 1953.
[http://dx.doi.org/10.3389/fimmu.2018.01953] [PMID: 30233573]
[38]
Liang MT, Davies NM, Blanchfield JT, Toth I. Particulate systems as adjuvants and carriers for peptide and protein antigens. Curr Drug Deliv 2006; 3(4): 379-88.
[http://dx.doi.org/10.2174/156720106778559029] [PMID: 17076640]
[39]
Hart BA, Elferink DG, Drijfhout JW, et al. Liposome-mediated peptide loading of MHC-DR molecules in vivo. FEBS Lett 1997; 409(1): 91-5.
[http://dx.doi.org/10.1016/S0014-5793(97)00493-6] [PMID: 9199510]
[40]
Thérien H-M, Shahum E, Fortin A. Liposome adjuvanticity: Influence of dose and protein:lipid ratio on the humoral response to encapsulated and surface-linked antigen. Cell Immunol 1991; 136(2): 402-13.
[http://dx.doi.org/10.1016/0008-8749(91)90362-F] [PMID: 1873824]
[41]
Rosada RS, de la Torre LG, Frantz FG, et al. Protection against tuberculosis by a single intranasal administration of DNA-hsp65 vaccine complexed with cationic liposomes. BMC Immunol 2008; 9(1): 38-8.
[http://dx.doi.org/10.1186/1471-2172-9-38] [PMID: 18647414]
[42]
de Haan A, Tomee JFC, Huchshorn JP, Wilschut J. Liposomes as an immunoadjuvant system for stimulation of mucosal and systemic antibody responses against inactivated measles virus administered intranasally to mice. Vaccine 1995; 13(14): 1320-4.
[http://dx.doi.org/10.1016/0264-410X(95)00037-2] [PMID: 8585287]
[43]
Aramaki Y, Tomizawa H, Hara T, Yachi K, Kikuchi H, Tsuchiya S. Stability of liposomes in vitro and their uptake by rat Peyer’s patches following oral administration. Pharm Res 1993; 10(8): 1228-31.
[http://dx.doi.org/10.1023/A:1018936806278] [PMID: 8415412]
[44]
Pearse MJ, Drane D. ISCOMATRIX adjuvant for antigen delivery. Adv Drug Deliv Rev 2005; 57(3): 465-74.
[http://dx.doi.org/10.1016/j.addr.2004.09.006] [PMID: 15560952]
[45]
Balan S, Saxena M, Bhardwaj N. Dendritic cell subsets and locations. Int Rev Cell Mol Biol 2019; 348: 1-68.
[http://dx.doi.org/10.1016/bs.ircmb.2019.07.004] [PMID: 31810551]
[46]
Morein B, Lövgren K, Höglund S. Sund quist B. The ISCOM: An immunostimulating complex. Immunol Today 1987; 8(11): 333-8.
[http://dx.doi.org/10.1016/0167-5699(87)90008-9] [PMID: 25291058]
[47]
Bomford R, Stapleton M, Winsor S, et al. Adjuvanticity and ISCOM formation by structurally diverse saponins. Vaccine 1992; 10(9): 572-7.
[http://dx.doi.org/10.1016/0264-410X(92)90435-M] [PMID: 1502835]
[48]
Behboudi S, Morein B, Rönnberg B. Isolation and quantification of Quillaja saponaria Molina saponins and lipids in iscom-matrix and iscoms. Vaccine 1995; 13(17): 1690-6.
[http://dx.doi.org/10.1016/0264-410X(95)00107-C] [PMID: 8719521]
[49]
McBurney WT, Lendemans DG, Myschik J, Hennessy T, Rades T, Hook S. In vivo activity of cationic immune stimulating complexes (PLUSCOMs). Vaccine 2008; 26(35): 4549-56.
[http://dx.doi.org/10.1016/j.vaccine.2008.06.024] [PMID: 18585421]
[50]
Polakos NK, Drane D, Cox J, et al. Characterization of hepatitis C virus core-specific immune responses primed in rhesus macaques by a nonclassical ISCOM vaccine. J Immunol 2001; 166(5): 3589-98.
[http://dx.doi.org/10.4049/jimmunol.166.5.3589] [PMID: 11207320]
[51]
Crouch CF, Daly J, Henley W, Hannant D, Wilkins J, Francis MJ. The use of a systemic prime/mucosal boost strategy with an equine influenza ISCOM vaccine to induce protective immunity in horses. Vet Immunol Immunopathol 2005; 108(3-4): 345-55.
[http://dx.doi.org/10.1016/j.vetimm.2005.06.009] [PMID: 16098611]
[52]
Le TTT, Drane D, Malliaros J, et al. Cytotoxic T cell polyepitope vaccines delivered by ISCOMs. Vaccine 2001; 19(32): 4669-75.
[http://dx.doi.org/10.1016/S0264-410X(01)00243-2] [PMID: 11535315]
[53]
Andersen CS, Dietrich J, Agger EM, Lycke NY, Lövgren K, Andersen P. The combined CTA1-DD/ISCOMs vector is an effective intranasal adjuvant for boosting prior Mycobacterium bovis BCG immunity to Mycobacterium tuberculosis. Infect Immun 2007; 75(1): 408-16.
[http://dx.doi.org/10.1128/IAI.01290-06] [PMID: 17074845]
[54]
Alcon V, Baca-Estrada M, Vega-Lopez M, et al. Mucosal delivery of bacterial antigens and CpG oligonucleotides formulated in biphasic lipid vesicles in pigs. AAPS J 2005; 7(3): E566-71.
[http://dx.doi.org/10.1208/aapsj070357] [PMID: 16353934]
[55]
Bråve A, Hallengärd D, Schröder U, Blomberg P, Wahren B, Hinkula J. Intranasal immunization of young mice with a multigene HIV-1 vaccine in combination with the N3 adjuvant induces mucosal and systemic immune responses. Vaccine 2008; 26(40): 5075-8.
[http://dx.doi.org/10.1016/j.vaccine.2008.03.066] [PMID: 18450334]
[56]
Copland MJ, Rades T, Davies NM, Baird MA. Lipid based particulate formulations for the delivery of antigen. Immunol Cell Biol 2005; 83(2): 97-105.
[http://dx.doi.org/10.1111/j.1440-1711.2005.01315.x] [PMID: 15748206]
[57]
Schöll I, Boltz-Nitulescu G, Jensen-Jarolim E. Review of novel particulate antigen delivery systems with special focus on treatment of type I allergy. J Control Release 2005; 104(1): 1-27.
[http://dx.doi.org/10.1016/j.jconrel.2004.12.020] [PMID: 15866331]
[58]
Daemen T, de Mare A, Bungener L, de Jonge J, Huckriede A, Wilschut J. Virosomes for antigen and DNA delivery. Adv Drug Deliv Rev 2005; 57(3): 451-63.
[http://dx.doi.org/10.1016/j.addr.2004.09.005] [PMID: 15560951]
[59]
Huckriede A, Bungener L, Stegmann T, et al. The virosome concept for influenza vaccines. Vaccine 2005; 23(Suppl. 1): S26-38.
[http://dx.doi.org/10.1016/j.vaccine.2005.04.026] [PMID: 16026906]
[60]
Cusi MG, Terrosi C, Savellini GG, Di Genova G, Zurbriggen R, Correale P. Efficient delivery of DNA to dendritic cells mediated by influenza virosomes. Vaccine 2004; 22(5-6): 735-9.
[http://dx.doi.org/10.1016/j.vaccine.2003.08.024] [PMID: 14741166]
[61]
Lowell GH, Smith LF, Seid RC, Zollinger WD. Peptides bound to proteosomes via hydrophobic feet become highly immunogenic without adjuvants. J Exp Med 1988; 167(2): 658-63.
[http://dx.doi.org/10.1084/jem.167.2.658] [PMID: 3346624]
[62]
el Guink N, Kris RM, Goodman-Snitkoff G, Small PA Jr, Mannino RJ. Intranasal immunization with proteoliposomes protects against influenza. Vaccine 1989; 7(2): 147-51.
[http://dx.doi.org/10.1016/0264-410X(89)90055-8] [PMID: 2546328]
[63]
Molok SA, Hamidon NE, Azhar AZA, Manshor H, Rejab NA, Ahmad ZA, et al. Analysis on physical and microstructural properties of ZTA-SWNT ceramic cutting tool. In: AIP Conf Proc. 2019; 2068: p. (1)020001.
[http://dx.doi.org/10.1063/1.5089300]
[64]
Chime SA, Kenechukwu FC, Attama AA. Application of nanotechnology in drug delivery. IntechOpen 2014; 2014: 47116.
[65]
Comfort C, Garrastazu G, Pozzoli M, Sonvico F. Opportunities and challenges for the nasal administration of nanoemulsions. Curr Top Med Chem 2015; 15(4): 356-68.
[http://dx.doi.org/10.2174/1568026615666150108144655] [PMID: 25579345]
[66]
Lovelyn C, Attama AA. Current state of nanoemulsions in drug delivery. J Biomater Nanobiotechnol 2011; 02(05): 626-39.
[http://dx.doi.org/10.4236/jbnb.2011.225075]
[67]
Hariharan S, Bala I, Kumar MNVR. PLGA nanoparticles in drug delivery: The state of the art. Crit Rev Ther Drug 2004; 21(5): 36.
[68]
Ueda H, Tabata Y. Polyhydroxyalkanonate derivatives in current clinical applications and trials. Adv Drug Deliv Rev 2003; 55(4): 501-18.
[http://dx.doi.org/10.1016/S0169-409X(03)00037-1] [PMID: 12706048]
[69]
Vila A, Sánchez A, Pérez C, Alonso MJ. PLA‐PEG nanospheres: New carriers for transmucosal delivery of proteins and plasmid DNA. Polym Adv Technol 2002; 13(10‐12): 851-8.
[http://dx.doi.org/10.1002/pat.280]
[70]
Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science 1994; 263(5153): 1600-3.
[http://dx.doi.org/10.1126/science.8128245] [PMID: 8128245]
[71]
Lemarchand C, Gref R, Couvreur P. Polysaccharide-decorated nanoparticles. Eur J Pharm Biopharm 2004; 58(2): 327-41.
[http://dx.doi.org/10.1016/j.ejpb.2004.02.016] [PMID: 15296959]
[72]
Smith A, Perelman M, Hinchcliffe M. Chitosan: A promising safe and immune-enhancing adjuvant for intranasal vaccines. Hum Vaccin Immunother 2014; 10(3): 797-807.
[http://dx.doi.org/10.4161/hv.27449] [PMID: 24346613]
[73]
Issa MM, Köping-Höggård M, Artursson P. Chitosan and the mucosal delivery of biotechnology drugs. Drug Discov Today Technol 2005; 2(1): 1-6.
[http://dx.doi.org/10.1016/j.ddtec.2005.05.008] [PMID: 24981748]
[74]
Sinha VR, Singla AK, Wadhawan S, et al. Chitosan microspheres as a potential carrier for drugs. Int J Pharm 2004; 274(1-2): 1-33.
[http://dx.doi.org/10.1016/j.ijpharm.2003.12.026] [PMID: 15072779]
[75]
Soane RJ, Frier M, Perkins AC, Jones NS, Davis SS, Illum L. Evaluation of the clearance characteristics of bioadhesive systems in humans. Int J Pharm 1999; 178(1): 55-65.
[http://dx.doi.org/10.1016/S0378-5173(98)00367-6] [PMID: 10205625]
[76]
Soane RJ, Hinchcliffe M, Davis SS, Illum L. Clearance characteristics of chitosan based formulations in the sheep nasal cavity. Int J Pharm 2001; 217(1-2): 183-91.
[http://dx.doi.org/10.1016/S0378-5173(01)00602-0] [PMID: 11292554]
[77]
Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 2004; 100(1): 5-28.
[http://dx.doi.org/10.1016/j.jconrel.2004.08.010] [PMID: 15491807]
[78]
Renu S, Renukaradhya GJ. Chitosan nanoparticle based mucosal vaccines delivered against infectious diseases of poultry and pigs. Front Bioeng Biotechnol 2020; 8: 558349.
[http://dx.doi.org/10.3389/fbioe.2020.558349] [PMID: 33282847]
[79]
Ferguson I, Tani H. Nasally administered vaccines. GB2460969AA, 2009.
[80]
Zhao XW, Yang P, Wang H, et al. Nasal spraying mucosa immunizing vaccine composition and preparation method thereof. Patent CN102764430-A, 2016.
[81]
Baker J, Tarek H. Nanoemulsion vaccine Patent JP2013253086 (A), 2013.
[82]
Baker JJ, Tarek H. Nanoemulsion therapeutic compositions and methods of using the same. Patent US2010092526 (A1), 2010.
[83]
Hongwu S, Liuyang Y, Weijun Z, et al. Oil-in-water type nanometer emulsion adjuvant and mrsa nanometer emulsion adjuvant vaccine and preparing method thereof. Patent CN105251002-A, 2016.
[84]
Hideji K, Mitsuhiko H, Katsuyuki O, et al. Nasal mucosal vaccine composition. Patent JP2015091795-A, 2015.
[85]
Cheol KSS Oh Yu Mi Shin, Byung. Ionic nanoparticle carriers for vaccine delivery and preparation method thereof. Patent KR20050017770-A, 2005.
[86]
Oliva JM, Coello BAD, Gonzalez VGG, Torres AP. Nasal vaccine against the development of atherosclerosis disease and fatty liver. Patent US20150328296-A1, 2015.
[87]
García-González V, Delgado-Coello B, Pérez-Torres A, Mas-Oliva J. Reality of a vaccine in the prevention and treatment of atherosclerosis. Arch Med Res 2015; 46(5): 427-37.
[http://dx.doi.org/10.1016/j.arcmed.2015.06.004] [PMID: 26100340]
[88]
de Grooth GJ, Klerkx AHEM, Stroes ESG, Stalenhoef AFH, Kastelein JJP, Kuivenhoven JA. A review of CETP and its relation to atherosclerosis. J Lipid Res 2004; 45(11): 1967-74.
[http://dx.doi.org/10.1194/jlr.R400007-JLR200] [PMID: 15342674]
[89]
Tall AR. Plasma cholesteryl ester transfer protein and high-density lipoproteins: New insights from molecular genetic studies. J Intern Med 1995; 237(1): 5-12.
[http://dx.doi.org/10.1111/j.1365-2796.1995.tb01133.x] [PMID: 7830031]
[90]
Gaofu Q, Dan M, Jie W, et al. Long-lasting specific antibodies against CETP induced by subcutaneous and mucosal administration of a 26-amino acid CETP epitope carried by heat shock protein 65 kDa in the absence of adjuvants. Vaccine 2004; 22(23-24): 3187-94.
[http://dx.doi.org/10.1016/j.vaccine.2004.01.060] [PMID: 15297073]
[91]
Davidson MH, Maki K, Umporowicz D, Wheeler A, Rittershaus C, Ryan U. The safety and immunogenicity of a CETP vaccine in healthy adults. Atherosclerosis 2003; 169(1): 113-20.
[http://dx.doi.org/10.1016/S0021-9150(03)00137-0] [PMID: 12860257]
[92]
García-González V, Gutiérrez-Quintanar N, Mendoza-Espinosa P, Brocos P, Piñeiro A, Mas-Oliva J. Key structural arrangements at the C-terminus domain of CETP suggest a potential mechanism for lipid-transfer activity. J Struct Biol 2014; 186(1): 19-27.
[http://dx.doi.org/10.1016/j.jsb.2014.02.002] [PMID: 24530617]
[93]
Bolaños-García VM, Soriano-García M, Mas-Oliva J. Stability of the C-terminal peptide of CETP mediated through an (i, i+4) array. Biochim Biophys Acta 1998; 1384(1): 7-15.
[94]
García-González V, Mas-Oliva J. Amyloidogenic properties of a D/N mutated 12 amino acid fragment of the C-terminal domain of the Cholesteryl-Ester Transfer Protein (CETP). Int J Mol Sci 2011; 12(3): 2019-35.
[http://dx.doi.org/10.3390/ijms12032019] [PMID: 21673937]
[95]
Chen SM Mukesh Kumar, Shau-Ku Huang, Kam Leong, Aruna Behera, Li-Chen, Cruz C de la. Gene expression vaccine. Patent US 2007009951, 2007.
[96]
Wenzhe Hui W. Influenza vaccines immune formulation of nose administration and preparation method thereof. Patent CN105342982-B, 2016.
[97]
Zhao K, Chen G. Method for preparing nanoparticle oil adjuvant vaccine. Patent CN102580083-A, 2012.
[98]
Ciotti S. Methods and compositions for nanoemulsion vaccine formulations. Patent US20170007689-A1, 2016.
[99]
Baker JR, Hamouda T. Nanoemulsion vaccines AU2002367976-B2, 2007.
[100]
Maiko SK Okumura Takashi, Hattori Manabu, Arita Atsuya, Ishii Reiko, Sasaki Hidenori, Miyake Miyuki, Kikuchi. Composition for mucosa. Patent JP2014129330-A, 2014.
[101]
Ali F, Tarek H, Vira B. Nanoemulsion respiratory syncytial virus (rsv) subunit vaccine. Patent US2017360919-A1, 2017.
[102]
Hacking D, Hull J. Respiratory syncytial virus-viral biology and the host response. J Infect 2002; 45(1): 18-24.
[http://dx.doi.org/10.1053/jinf.2002.1015] [PMID: 12217726]
[103]
Xu W, Xiong S, Yue Y. Mucosal adjuvant and its preparation method and use. Patent CN102688488-A, 2012.
[104]
Yang XW Chunhuan Liu, Chong Tang, Deyan Luo, Penghui, Zhao Z, Wang C, Xing L, Liu Y. . Novel vaccine adjuvant and application. Patent CN10237097-A, 2012.
[105]
Ouyang W, Chen JLY. Water-in-oil type nanoemulsion vaccine preparation. Patent CN101695567-A, 2010.
[106]
Akiyoshi K, Kiyono H, Yuki Y, Nochi T. Mucosal vaccine using cationic nanogel. Patent JP2010105968-A, 2010.
[107]
Yuki Y, Kiyono H, Akiyoshi K, Sawada S. Nasal vaccine for Streptococcus pneumoniae. Patent US9833407-B2, 2017.
[108]
Sunamotojunzo Akiyoshikazunari, Hosotaniryuzo Akio H. High-purity polysaccharide containing hydrophobic groups and process for producing the same. Patent WO2000012564-A1, 2000.
[109]
Ayame H, Morimoto N, Akiyoshi K. Self-assembled cationic nanogels for intracellular protein delivery. Bioconjug Chem 2008; 19(4): 882-90.
[http://dx.doi.org/10.1021/bc700422s] [PMID: 18336000]
[110]
Nochi T, Yuki Y, Takahashi H, et al. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat Mater 2010; 9(7): 572-8.
[http://dx.doi.org/10.1038/nmat2784] [PMID: 20562880]
[111]
Azegami T, Yuki Y, Nakahashi R, Itoh H, Kiyono H. Nanogel-based nasal vaccines for infectious and lifestyle-related diseases. Mol Immunol 2018; 98: 19-24.
[http://dx.doi.org/10.1016/j.molimm.2017.10.022] [PMID: 29096936]
[112]
Yutaka M, Yasuo K, Kayoko H, et al. Medicaments for nasal administration. Patent US5942242-A, 1999.
[113]
Fang J, Weihui C, Ying W. Vaccine composition powder preparation used for nose and preparation method thereof. Patent CN104208029-A, 2014.
[114]
Hideki H, Masami M. Mucous membrane administration-type vaccine. Patent JP2009209086A-A, 2009.
[115]
Lisbeth I, Neville CS. Vaccine compositions including chitosan for intranasal administration and use thereof. Patent US7323183-B1, 2002.
[116]
Sonvico F, Bettini R, Martelli P, Borghetti P, Ferrari L, Canelli E. Composition and manufacturing of powders containing nanoadjuvants for mucosal vaccination. Patent US20200268880-A1, 2020.
[117]
Ryoichi N, Shunji H. Methods and compositions for intranasal delivery. Patent AU2012244077-A1, 2012.

© 2025 Bentham Science Publishers | Privacy Policy