Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Review Article

Recent Patents on Plant-Derived Nanoparticles and their Potential Application Towards Various Cancer Therapeutics

Author(s): S.B. Santhosh, Santny Shanmugarama, Nimma Ramesh*, A. Mohamed Sheik Tharik and Veera Vijaya Basamshetty*

Volume 18, Issue 3, 2023

Published on: 11 August, 2022

Page: [292 - 306] Pages: 15

DOI: 10.2174/1574892817666220420122426

Price: $65

Abstract

Background: Nanotechnology plays a vital role in the field of medicine. Especially various nanoparticles such as silver, gold, platinum are involved in the treatment of different types of cancer. The effective nanoparticles were synthesized using techniques like chemical, physical, electrochemical and biological methods. In order to overcome the limitations existing in the synthesis of nanoparticles, researchers turned their attention toward the biological single step nanoparticle synthesis method by using plant and plant products.

Objective: The objective of this study is to overcome the side effects encountered in the existing anti- cancer agents like nonspecificity and fast excretion, and plant-derived nanoparticles that are ecofriendly, cost-effective and biologically active could serve as a promising alternative.

Conclusion: From the thorough literature review and recent patents, it is understood that the plantderived nanoparticles exhibited an excellent anti-proliferation anti-tumor activity towards different types of cancers without affecting the normal cells. Especially, the traditional chemotherapeutic drugs obtained from the plant source incorporated with the nanoparticles show remarkable results against anti cancer studies. The present review focused on some of the existing herbal plant derived nanoparticles, formulations and their potential application in cancer therapeutics.

Keywords: Herbal plants, nanoparticles, anticancer, treatments, patents, cytotoxicity.

[1]
Zhao CY, Cheng R, Yang Z, Tian ZM. Nanotechnology for cancer therapy based on chemotherapy. Molecules 2018; 23(4): 826.
[http://dx.doi.org/10.3390/molecules23040826] [PMID: 29617302]
[2]
De Jong WH, Borm PJ. Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine 2008; 3(2): 133-49.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[3]
Avasthi DK, Mishra YK, Kabiraj D, Lalla NP, Pivin JC. Synthesis of metal–polymer nanocomposite for optical applications. Nanotechnology 2007; 18(12): 125604.
[http://dx.doi.org/10.1088/0957-4484/18/12/125604]
[4]
Chernousova S, Epple M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew Chem Int Ed Engl 2013; 52(6): 1636-53.
[http://dx.doi.org/10.1002/anie.201205923] [PMID: 23255416]
[5]
Hilgenbrink AR, Low PS. Folate receptor-mediated drug targeting: From therapeutics to diagnostics. J Pharm Sci 2005; 94(10): 2135-46.
[http://dx.doi.org/10.1002/jps.20457] [PMID: 16136558]
[6]
Kingsley JD, Dou H, Morehead J, Rabinow B, Gendelman HE, Destache CJ. Nanotechnology: A focus on nanoparticles as a drug delivery system. J Neuroimmune Pharmacol 2006; 1(3): 340-50.
[http://dx.doi.org/10.1007/s11481-006-9032-4] [PMID: 18040810]
[7]
Omri A, Anderson M, Mugabe C, Suntres Z, Mozafari MR, Azghani A. Artificial Implants–New Developments and Associated Problems InNanomaterials and Nanosystems for Biomedical Applications Dordrecht: Springer. 2007; pp. 53-65.
[8]
Narducci D. An introduction to nanotechnologies: What’s in it for us? Vet Res Commun 2007; 31(1) (Suppl. 1): 131-7.
[http://dx.doi.org/10.1007/s11259-007-0082-8] [PMID: 17682860]
[9]
Santhosh SB, Ragavendran C, Natarajan D. Spectral and HRTEM analyses of Annona muricata leaf extract mediated silver nanoparticles and its Larvicidal efficacy against three mosquito vectors Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti. J Photochem Photobiol B 2015; 153: 184-90.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.09.018] [PMID: 26410042]
[10]
Morones JR, Elechiguerra JL, Camacho A. et al. The bactericidal effect of silver nanoparticles. Nanotechnology 2005; 16(10): 2346-53.
[http://dx.doi.org/10.1088/0957-4484/16/10/059] [PMID: 20818017]
[11]
Bang JH, Suslick KS. Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 2010; 22(10): 1039-59.
[http://dx.doi.org/10.1002/adma.200904093] [PMID: 20401929]
[12]
Mazur M. Electrochemically prepared silver nanoflakes and nanowires. Electrochem Commun 2004; 6(4): 400-3.
[http://dx.doi.org/10.1016/j.elecom.2004.02.011]
[13]
Santhosh SB, Chandrasekar MJ, Kaviarasan L. et al. Chemical composition, antibacterial, anti-oxidant and cytotoxic properties of green synthesized silver nanoparticles from annona muricata L.(Annonaceae). Res J Pharm Technol 2020; 13(1): 33-9.
[http://dx.doi.org/10.5958/0974-360X.2020.00006.2]
[14]
Mohanraj VJ, Chen Y. Nanoparticles-a review. Trop J Pharm Res 2006; 5(1): 561-73.
[15]
Tripathi RM, Saxena A, Gupta N, Kapoor H, Singh RP. High antibacterial activity of silver nanoballs against E. coli MTCC 1302, S. typhimurium MTCC 1254, B. subtilis MTCC 1133 and P. aeruginosa MTCC 2295. Dig J Nanomater Biostruct 2010; 5(2): 323-30.
[16]
Balantrapu K, Goia DV. Silver nanoparticles for printable electronics and biological applications. J Mater Res 2009; 24(9): 2828-36.
[http://dx.doi.org/10.1557/jmr.2009.0336]
[17]
Patakfalvi R, Dékány I. Preparation of silver nanoparticles in liquid crystalline systems. Colloid Polym Sci 2002; 280(5): 461-70.
[http://dx.doi.org/10.1007/s00396-001-0629-0]
[18]
Shewach DS, Kuchta RD. Introduction to cancer chemotherapeutics 2009; 2859-61.
[http://dx.doi.org/10.1021/cr900208x]
[19]
Saranath D, Khanna A. Current status of cancer burden: Global and Indian scenario. Biomed Res J 2014; 1(1): 1-5.
[http://dx.doi.org/10.4103/2349-3666.240996]
[21]
Eckhardt S. Recent progress in the development of anticancer agents. Curr Med Chem Anticancer Agents 2002; 2(3): 419-39.
[http://dx.doi.org/10.2174/1568011024606389] [PMID: 12678741]
[22]
DeVita V, Lawrence T, Rosenberg S. Cancer: Principles and Practice of Oncology. Lippincott Williams & Wilkins 2008; Vol. 1 and 2.
[23]
Lee AK. Radiation therapy combined with hormone therapy for prostate cancer. Semin Radiat Oncol 2006; 16(1): 20-8.
[http://dx.doi.org/10.1016/j.semradonc.2005.08.003] [PMID: 16378903]
[24]
Hurwitz H. Integrating the anti-VEGF-A humanized monoclonal antibody bevacizumab with chemotherapy in advanced colorectal cancer. Clin Colorectal Cancer 2004; 4 (Suppl. 2): S62-8.
[http://dx.doi.org/10.3816/CCC.2004.s.010] [PMID: 15479481]
[25]
Carrick S, Parker S, Thornton CE, Ghersi D, Simes J, Wilcken N. Single agent versus combination chemotherapy for metastatic breast cancer. Cochrane Database Syst Rev 2009; (2): CD003372.
[PMID: 19370586]
[26]
Deep G, Agarwal R. New combination therapies with cell-cycle agents. Curr Opin Investig Drugs 2008; 9(6): 591-604.
[PMID: 18516759]
[27]
Chan KS, Koh CG, Li HY. Mitosis-targeted anti-cancer therapies: Where they stand. Cell Death Dis 2012; 3(10): e411-4.
[http://dx.doi.org/10.1038/cddis.2012.148] [PMID: 23076219]
[28]
Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat Rev Cancer 2002; 2(1): 48-58.
[http://dx.doi.org/10.1038/nrc706] [PMID: 11902585]
[29]
Pérez-Tomás R. Multidrug resistance: Retrospect and prospects in anti-cancer drug treatment. Curr Med Chem 2006; 13(16): 1859-76.
[http://dx.doi.org/10.2174/092986706777585077] [PMID: 16842198]
[30]
Monsuez JJ, Charniot JC, Vignat N, Artigou JY. Cardiac sideeffects of cancer chemotherapy. Int J Cardiol 2010; 144(1): 3-15.
[http://dx.doi.org/10.1016/j.ijcard.2010.03.003] [PMID: 20399520]
[31]
Carelle N, Piotto E, Bellanger A, Germanaud J, Thuillier A, Khayat D. Changing patient perceptions of the side effects of cancer chemo-therapy. Cancer 2002; 95(1): 155-63.
[http://dx.doi.org/10.1002/cncr.10630] [PMID: 12115329]
[32]
Skeel RT, Khleif SN. Eds Handbook of cancer chemotherapy. Lippincott Williams & Wilkins 2011.
[33]
Nurgali K, Jagoe RT, Abalo R. Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Front Pharmacol 2018; 9: 245.
[http://dx.doi.org/10.3389/fphar.2018.00245] [PMID: 29623040]
[34]
Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 2006; 6(9): 688-701.
[http://dx.doi.org/10.1038/nrc1958] [PMID: 16900224]
[35]
Gordaliza M. Natural products as leads to anticancer drugs. Clin Transl Oncol 2007; 9(12): 767-76.
[http://dx.doi.org/10.1007/s12094-007-0138-9] [PMID: 18158980]
[36]
Colomer R, Sarrats A, Lupu R, Puig T. Natural polyphenols and their synthetic analogs as emerging anticancer agents. Curr Drug Targets 2017; 18(2): 147-59.
[http://dx.doi.org/10.2174/1389450117666160112113930] [PMID: 26758667]
[37]
Thota S, Rodrigues DA, Barreiro EJ. Recent advances in development of polyphenols as anticancer agents. Mini Rev Med Chem 2018; 18(15): 1265-9.
[http://dx.doi.org/10.2174/1389557518666180220122113] [PMID: 29468967]
[38]
Spatafora C, Tringali C. Natural-derived polyphenols as potential anticancer agents. Anticancer Agents Med Chem 2012; 12(8): 902-18.
[http://dx.doi.org/10.2174/187152012802649996] [PMID: 22292766]
[39]
Islam MT, Ali ES, Khan IN. et al. Anticancer perspectives on the fungal-derived polyphenolic hispolon. Anticancer Agents Med Chem 2020; 20(14): 1636-47.
[http://dx.doi.org/10.2174/1871520620666200619164947] [PMID: 32560616]
[40]
Michalak K, Wesolowska O. Polyphenols counteract tumor cell chemoresistance conferred by multidrug resistance proteins. Anticancer Agents Med Chem 2012; 12(8): 880-90.
[http://dx.doi.org/10.2174/187152012802650011] [PMID: 22583399]
[41]
Lamoral-Theys D, Pottier L, Dufrasne F. et al. Natural polyphenols that display anticancer properties through inhibition of kinase activity. Curr Med Chem 2010; 17(9): 812-25.
[http://dx.doi.org/10.2174/092986710790712183] [PMID: 20156174]
[42]
Genoux E, Nicolle E, Boumendjel A. Flavonoids as anticancer agents: Recent progress and state of the art? Curr Org Chem 2011; 15(15): 2608-15.
[http://dx.doi.org/10.2174/138527211796367363]
[43]
McGown A, Ragazzon-Smith A, Hadfield JA, Potgetier H, Ragazzon PA. Microwave-assisted synthesis of novel bis-flavone dimers as new anticancer agents. Lett Org Chem 2019; 16(1): 66-75.
[http://dx.doi.org/10.2174/1570178615666180621094529]
[44]
Sak K, Everaus H. Role of flavonoids in future anticancer therapy by eliminating the cancer stem cells. Curr Stem Cell Res Ther 2015; 10(3): 271-82.
[http://dx.doi.org/10.2174/1574888X10666141126122316] [PMID: 25429700]
[45]
Vue B, Zhang S, Chen QH. Flavonoids with therapeutic potential in prostate cancer. Anticancer Agents Med Chem 2016; 16(10): 1205-29.
[http://dx.doi.org/10.2174/1871520615666151008122622] [PMID: 26446382]
[46]
Hirpara KV, Aggarwal P, Mukherjee AJ, Joshi N, Burman AC. Quercetin and its derivatives: Synthesis, pharmacological uses with special emphasis on anti-tumor properties and prodrug with enhanced bio-availability. Anticancer Agents Med Chem 2009; 9(2): 138-61.
[http://dx.doi.org/10.2174/187152009787313855] [PMID: 19199862]
[47]
López-Lázaro M. Flavonoids as anticancer agents: Structure-activity relationship study. Curr Med Chem Anticancer Agents 2002; 2(6): 691-714.
[http://dx.doi.org/10.2174/1568011023353714] [PMID: 12678721]
[48]
Khattak S, Khan H. Anti-cancer potential of phyto-alkaloids: A prospective review. Curr Cancer Ther Rev 2016; 12(1): 66-75.
[http://dx.doi.org/10.2174/1573394712666160617081638]
[49]
Shaikh MS, Karpoormath R, Thapliyal N. et al. Current perspective of natural alkaloid carbazole and its derivatives as antitumor agents. Anticancer Agents Med Chem 2015; 15(8): 1049-65.
[http://dx.doi.org/10.2174/1871520615666150113105405] [PMID: 25584693]
[50]
Chen ZF, Liu YC, Huang KB, Liang H. Alkaloid-metal based anticancer agents. Curr Top Med Chem 2013; 13(17): 2104-15.
[http://dx.doi.org/10.2174/15680266113139990146] [PMID: 23978139]
[51]
Li X, Li JR, Chen K, Zhu HL. A functional scaffold in marine alkaloid: An anticancer moiety for human. Curr Med Chem 2013; 20(31): 3903-22.
[http://dx.doi.org/10.2174/09298673113209990186] [PMID: 23895689]
[52]
Almeida IV, Fernandes LM, Biazi BI, Vicentini VEP. Evaluation of the anticancer activities of the plant alkaloids sanguinarine and chelerythrine in human breast adenocarcinoma cells. Anticancer Agents Med Chem 2017; 17(11): 1586-92.
[http://dx.doi.org/10.2174/1871520617666170213115132] [PMID: 28270066]
[53]
Singh P, Andola H, Rawat MSM, Joshi G, Haider S. Himalayan plants as a source of anti-cancer agents: A review. Nat Prod J 2013; 3(4): 296-308.
[http://dx.doi.org/10.2174/221031550304140328114114]
[54]
Malíková J, Swaczynová J, Kolár Z, Strnad M. Anticancer and antiproliferative activity of natural brassinosteroids. Phytochemistry 2008; 69(2): 418-26.
[http://dx.doi.org/10.1016/j.phytochem.2007.07.028] [PMID: 17869317]
[55]
Oklestkova J, Rárová L, Kvasnica M, Strnad M. Brassinosteroids: Synthesis and biological activities. Phytochem Rev 2015; 14(6): 1053-72.
[http://dx.doi.org/10.1007/s11101-015-9446-9]
[56]
Gupta SC, Tyagi AK, Deshmukh-Taskar P, Hinojosa M, Prasad S, Aggarwal BB. Downregulation of tumor necrosis factor and other proin-flammatory biomarkers by polyphenols. Arch Biochem Biophys 2014; 559: 91-9.
[http://dx.doi.org/10.1016/j.abb.2014.06.006] [PMID: 24946050]
[57]
Cao J, Xia X, Chen X, Xiao J, Wang Q. Characterization of flavonoids from Dryopteris erythrosora and evaluation of their antioxidant, anticancer and acetylcholinesterase inhibition activities. Food Chem Toxicol 2013; 51: 242-50.
[http://dx.doi.org/10.1016/j.fct.2012.09.039] [PMID: 23063594]
[58]
Kumar SR, Priyatharshni S, Babu VN. et al. Quercetin conjugated superparamagnetic magnetite nanoparticles for in-vitro analysis of breast cancer cell lines for chemotherapy applications. J Colloid Interface Sci 2014; 436: 234-42.
[http://dx.doi.org/10.1016/j.jcis.2014.08.064] [PMID: 25278361]
[59]
Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 2013; 31(2): 346-56.
[http://dx.doi.org/10.1016/j.biotechadv.2013.01.003] [PMID: 23318667]
[60]
Dwivedi AD, Gopal K. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf A Physicochem Eng Asp 2010; 369(1-3): 27-33.
[http://dx.doi.org/10.1016/j.colsurfa.2010.07.020]
[61]
Jha AK, Prasad K, Kumar V, Prasad K. Biosynthesis of silver nanoparticles using Eclipta leaf. Biotechnol Prog 2009; 25(5): 1476-9.
[http://dx.doi.org/10.1002/btpr.233] [PMID: 19725113]
[62]
Malik P, Shankar R, Malik V, Sharma N, Mukherjee TK. Green chemistry based benign routes for nanoparticle synthesis. J Nanopartic 2014; 2014: 302429.
[http://dx.doi.org/10.1155/2014/302429]
[63]
Li X, Xu H, Chen ZS, Chen G. Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011; 2011: 2011
[http://dx.doi.org/10.1155/2011/270974]
[64]
Mukunthan KS, Balaji S. Cashew apple juice (Anacardium occidentale L.) speeds up the synthesis of silver nanoparticles. International Journal of Green Nanotechnology 2012; 4(2): 71-9.
[http://dx.doi.org/10.1080/19430892.2012.676900]
[65]
Prathna TC, Mathew L, Chandrasekaran N, Raichur AM, Mukherjee A. Biomimetic synthesis of nanoparticles: Science, technology & applicability. Biomimetics Learning from Nature 2010.
[66]
Bhatnagar P, Pant AB, Shukla Y, Chaudhari B, Kumar P, Gupta KC. Bromelain nanoparticles protect against 7,12-dimethylbenz a]anthracene induced skin carcinogenesis in mouse model. Eur J Pharm Biopharm 2015; 91: 35-46.
[http://dx.doi.org/10.1016/j.ejpb.2015.01.015] [PMID: 25619920]
[67]
Bhanot A, Sharma R, Noolvi MN. Natural sources as potential anticancer agents: A review Int J Phytomed 2011; 3(1): 09.
[68]
Song YH, Sun H, Zhang AH, Yan GL, Han Y, Wang XJ. Plantderived natural products as leads to anti-cancer drugs. J Med Plant Herb Ther Res 2014; 2: 6-15.
[69]
Deep A, Verma M, Marwaha RK, Sharma AK, Kumari B. Development, Characterization and Anticancer Evaluation of Silver Nanoparticles from Dalbergia sissoo Leaf Extracts. Curr Cancer Ther Rev 2020; 16(2): 145-51.
[http://dx.doi.org/10.2174/1573394715666190820150651]
[70]
Usmani A, Mishra A, Jafri A, Arshad M, Siddiqui MA. Green synthesis of silver nanocomposites of nigella sativaseeds extract for hepatocellular carcinoma. Curr Nanomater 2019; 4(3): 191-200.
[http://dx.doi.org/10.2174/2468187309666190906130115]
[71]
Ghramh HA, Ibrahim EH, Kilnay M. Majra honey abrogated the normal and cancer cells proliferation inhibition by juniperus procera extract and extract/honey generated AgNPs. Anticancer Agents Med Chem 2020; 20(8): 970-81.
[http://dx.doi.org/10.2174/1871520620666200213104224] [PMID: 32053084]
[72]
Zou J, Zhu B, Li Y. Functionalization of Silver Nanoparticles Loaded with Paclitaxel-induced A549 Cells Apoptosis Through ROS-Mediated Signaling Pathways. Curr Top Med Chem 2020; 20(2): 89-98.
[http://dx.doi.org/10.2174/1568026619666191019102219] [PMID: 31648639]
[73]
Popescu M, Velea A, Lőrinczi A. Biogenic production of nanoparticles. Dig J Nanomater Biostruct 2010; 5(4): 1035-40.
[74]
Baruwati B, Polshettiwar V, Varma RS. Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chem 2009; 11(7): 926-30.
[http://dx.doi.org/10.1039/b902184a]
[75]
Santhosh SB, Yuvarajan R, Natarajan D. Annona muricata leaf extract-mediated silver nanoparticles synthesis and its larvicidal potential against dengue, malaria and filariasis vector. Parasitol Res 2015; 114(8): 3087-96.
[http://dx.doi.org/10.1007/s00436-015-4511-2] [PMID: 26002825]
[76]
Mehmood A, Murtaza G, Bhatti TM, Kausar R. Phyto-mediated synthesis of silver nanoparticles from Melia azedarach L. leaf extract: Characterization and antibacterial activity. Arab J Chem 2017; 10: S3048-53.
[http://dx.doi.org/10.1016/j.arabjc.2013.11.046]
[77]
Rajeshkumar S. Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J Genet Eng Biotechnol 2016; 14(1): 195-202.
[http://dx.doi.org/10.1016/j.jgeb.2016.05.007] [PMID: 30647615]
[78]
Sun B, Hu N, Han L, Pi Y, Gao Y, Chen K. Anticancer activity of green synthesised gold nanoparticles from Marsdenia tenacissima inhibits A549 cell proliferation through the apoptotic pathway. Artif Cells Nanomed Biotechnol 2019; 47(1): 4012-9.
[http://dx.doi.org/10.1080/21691401.2019.1575844] [PMID: 31591910]
[79]
Geetha R, Ashokkumar T, Tamilselvan S, Govindaraju K, Sadiq M, Singaravelu G. Green synthesis of gold nanoparticles and their anticancer activity. Cancer Nanotechnol 2013; 4(4-5): 91-8.
[http://dx.doi.org/10.1007/s12645-013-0040-9] [PMID: 26069504]
[80]
Kajani AA, Bordbar AK, Esfahani SH, Razmjou A. Gold nanoparticles as potent anticancer agent: Green synthesis, characterization, and in vitro study. RSC Advances 2016; 6(68): 63973-83.
[http://dx.doi.org/10.1039/C6RA09050H]
[81]
Liu R, Pei Q, Shou T, Zhang W, Hu J, Li W. Apoptotic effect of green synthesized gold nanoparticles from Curcuma wenyujin extract against human renal cell carcinoma A498 cells. Int J Nanomedicine 2019; 14: 4091-103.
[http://dx.doi.org/10.2147/IJN.S203222] [PMID: 31239669]
[82]
Kouhkan M, Ahangar P, Babaganjeh LA, Allahyari-Devin M. Biosynthesis of copper oxide nanoparticles using Lactobacillus casei subsp. casei and its anticancer and antibacterial activities. Curr Nanosci 2020; 16(1): 101-11.
[http://dx.doi.org/10.2174/1573413715666190318155801]
[83]
Marzano C, Pellei M, Tisato F, Santini C. Copper complexes as anticancer agents. Anticancer Agents Med Chem 2009; 9(2): 185-211.
[http://dx.doi.org/10.2174/187152009787313837] [PMID: 19199864]
[84]
Palanikumar L, Ramasamy S, Balachandran C. Antibacterial and cytotoxic response of nano zinc oxide in Gram negative bacteria and colo 320 human adenocarcinoma cancer cells. Curr Nanosci 2013; 9(4): 469-78.
[http://dx.doi.org/10.2174/1573413711309040009]
[85]
Dawood DH, Abbas EMH, Farghaly TA, Ali MM, Ibrahim MF. ZnO nanoparticles catalyst in the synthesis of bioactive fused pyrimidines as anti-breast cancer agents targeting VEGFR-2. Med Chem 2019; 15(3): 277-86.
[http://dx.doi.org/10.2174/1573406414666180912113226] [PMID: 30207239]
[86]
Santhosh SB, Dutta D, Nath LK, Nanjan MJ, Chandrasekar MJ. Targeting ovarian solid tumors by pH triggered thermosensitive peptide-doxorubicin conjugate. J Drug Deliv Sci Technol 2020; 59: 101856.
[http://dx.doi.org/10.1016/j.jddst.2020.101856]
[87]
Abdel-Raouf N, Al-Enazi NM, Ibraheem IB. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab J Chem 2017; 10: S3029-39.
[http://dx.doi.org/10.1016/j.arabjc.2013.11.044]
[88]
Santhosh SB, Nanjan MJ, Chandrasekar MJ. Ovarian solid tumors: Current treatment and recent developments using stimuliresponsive polymers: A systemic review. J Drug Deliv Sci Technol 2019; 51: 621-8.
[http://dx.doi.org/10.1016/j.jddst.2019.03.018]
[89]
Duncan R. Drug-polymer conjugates: Potential for improved chemotherapy. Anticancer Drugs 1992; 3(3): 175-210.
[http://dx.doi.org/10.1097/00001813-199206000-00001] [PMID: 1525399]
[90]
Santhosh SB, Chandrasekar MJ. Isoelectric point based dual sensitive peptide-drug conjugate prodrug to target solid tumors. Int J Pept Res Ther 2020; 26(4): 1-5.
[http://dx.doi.org/10.1007/s10989-020-10022-w]
[91]
Venkatesan J, Kim SK, Shim MS. Antimicrobial, antioxidant, and anticancer activities of biosynthesized silver nanoparticles using marine algae Ecklonia cava. Nanomaterials (Basel) 2016; 6(12): 235.
[http://dx.doi.org/10.3390/nano6120235] [PMID: 28335363]
[92]
Gurunathan S, Jeong JK, Han JW, Zhang XF, Park JH, Kim JH. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale Res Lett 2015; 10(1): 35.
[http://dx.doi.org/10.1186/s11671-015-0747-0] [PMID: 25852332]
[93]
Padinjarathil H, Joseph MM, Unnikrishnan BS. et al. Galactomannan endowed biogenic silver nanoparticles exposed enhanced cancer cytotoxicity with excellent biocompatibility. Int J Biol Macromol 2018; 118(Pt A): 1174-82.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.194] [PMID: 30001604]
[94]
Mata R, Nakkala JR, Sadras SR. Biogenic silver nanoparticles from Abutilon indicum: Their antioxidant, antibacterial and cytotoxic effects in vitro. Colloids Surf B Biointerfaces 2015; 128: 276-86.
[http://dx.doi.org/10.1016/j.colsurfb.2015.01.052] [PMID: 25701118]
[95]
He Y, Du Z, Ma S. et al. Biosynthesis, antibacterial activity and anticancer effects against prostate cancer (PC-3) cells of silver nanoparticles using Dimocarpus Longan Lour. peel extract. Nanoscale Res Lett 2016; 11(1): 300.
[http://dx.doi.org/10.1186/s11671-016-1511-9] [PMID: 27316741]
[96]
Priyadharshini RI, Prasannaraj G, Geetha N, Venkatachalam P. Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines. Appl Biochem Biotechnol 2014; 174(8): 2777-90.
[http://dx.doi.org/10.1007/s12010-014-1225-3] [PMID: 25380639]
[97]
Yassin AM, El-Deeb NM, Metwaly AM, El Fawal GF, Radwan MM, Hafez EE. Induction of apoptosis in human cancer cells through extrinsic and intrinsic pathways by Balanites aegyptiaca furostanol saponins and saponin-coated silvernanoparticles. Appl Biochem Biotechnol 2017; 182(4): 1675-93.
[http://dx.doi.org/10.1007/s12010-017-2426-3] [PMID: 28236195]
[98]
Netala VR, Bethu MS, Pushpalatha B. et al. Biogenesis of silver nanoparticles using endophytic fungus Pestalotiopsis microspora and evaluation of their antioxidant and anticancer activities. Int J Nanomedicine 2016; 11: 5683-96.
[http://dx.doi.org/10.2147/IJN.S112857] [PMID: 27826190]
[99]
Maity P, Bepari M, Pradhan A, Baral R, Roy S, Maiti Choudhury S. Synthesis and characterization of biogenic metal nanoparticles and its cytotoxicity and anti-neoplasticity through the induction of oxidative stress, mitochondrial dysfunction and apoptosis. Colloids Surf B Biointerfaces 2018; 161: 111-20.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.040] [PMID: 29055863]
[100]
He Y, Du Z, Ma S. et al. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo. Int J Nanomedicine 2016; 11: 1879-87.
[http://dx.doi.org/10.2147/IJN.S103695] [PMID: 27217750]
[101]
Fageria L, Pareek V, Dilip RV. et al. Biosynthesized protein-capped silver nanoparticles induce ros-dependent proapoptotic signals and prosurvival autophagy in cancer cells. ACS Omega 2017; 2(4): 1489-504.
[http://dx.doi.org/10.1021/acsomega.7b00045] [PMID: 30023637]
[102]
Rosarin FS, Arulmozhi V, Nagarajan S, Mirunalini S. Antiproliferative effect of silver nanoparticles synthesized using amla on Hep2 cell line. Asian Pac J Trop Med 2013; 6(1): 1-10.
[http://dx.doi.org/10.1016/S1995-7645(12)60193-X] [PMID: 23317879]
[103]
Elangovan K, Elumalai D, Anupriya S, Shenbhagaraman R, Kaleena PK, Murugesan K. Phyto mediated biogenic synthesis of silver nanoparticles using leaf extract of Andrographis echioides and its bio-efficacy on anticancer and antibacterial activities. J Photochem Photobiol B 2015; 151: 118-24.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.05.015] [PMID: 26233711]
[104]
Hashemi SF, Tasharrofi N, Saber MM. Green synthesis of silver nanoparticles using Teucrium polium leaf extract and assessment of their antitumor effects against MNK45 human gastric cancer cell line. J Mol Struct 2020; 1208: 127889.
[http://dx.doi.org/10.1016/j.molstruc.2020.127889]
[105]
Gomathi AC, Rajarathinam SX, Sadiq AM, Rajeshkumar S. Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. J Drug Deliv Sci Technol 2020; 55: 101376.
[http://dx.doi.org/10.1016/j.jddst.2019.101376]
[106]
Sulaiman GM, Tawfeeq AT, Jaaffer MD. Biogenic synthesis of copper oxide nanoparticles using olea europaea leaf extract and evaluation of their toxicity activities: An in vivo and in vitro study. Biotechnol Prog 2018; 34(1): 218-30.
[http://dx.doi.org/10.1002/btpr.2568] [PMID: 28960911]
[107]
Rehana D, Mahendiran D, Kumar RS, Rahiman AK. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed Pharmacother 2017; 89: 1067-77.
[http://dx.doi.org/10.1016/j.biopha.2017.02.101] [PMID: 28292015]
[108]
Sankar R, Maheswari R, Karthik S, Shivashangari KS, Ravikumar V. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles. Mater Sci Eng C 2014; 44: 234-9.
[http://dx.doi.org/10.1016/j.msec.2014.08.030] [PMID: 25280701]
[109]
Nagajyothi PC, Muthuraman P, Sreekanth TV, Kim DH, Shim J. Green synthesis: In-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arab J Chem 2017; 10(2): 215-25.
[http://dx.doi.org/10.1016/j.arabjc.2016.01.011]
[110]
El-Kassas HY, El-Sheekh MM. Cytotoxic activity of biosynthesized gold nanoparticles with an extract of the red seaweed Corallina officinalis on the MCF-7 human breast cancer cell line. Asian Pac J Cancer Prev 2014; 15(10): 4311-7.
[http://dx.doi.org/10.7314/APJCP.2014.15.10.4311] [PMID: 24935390]
[111]
Banu H, Renuka N, Faheem SM. et al. Gold and silver nanoparticles biomimetically synthesized using date palm pollen extract-induce apoptosis and regulate p53 and Bcl-2 expression in human breast adenocarcinoma cells. Biol Trace Elem Res 2018; 186(1): 122-34.
[http://dx.doi.org/10.1007/s12011-018-1287-0] [PMID: 29552710]
[112]
Krishnaraj C, Muthukumaran P, Ramachandran R, Balakumaran MD, Kalaichelvan PT. Acalypha indica Linn: Biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotechnol Rep (Amst) 2014; 4: 42-9.
[http://dx.doi.org/10.1016/j.btre.2014.08.002] [PMID: 28626661]
[113]
Amarnath K, Mathew NL, Nellore J, Siddarth CR, Kumar J. Facile synthesis of biocompatible gold nanoparticles from Vites vinefera and its cellular internalization against HBL-100 cells. Cancer Nanotechnol 2011; 2(1-6): 121-32.
[http://dx.doi.org/10.1007/s12645-011-0022-8] [PMID: 26316896]
[114]
Ramalingam V, Revathidevi S, Shanmuganayagam T, Muthulakshmi L, Rajaram R. Biogenic gold nanoparticles induce cell cycle arrest through oxidative stress and sensitize mitochondrial membranes in A549 lung cancer cells. RSC Advances 2016; 6(25): 20598-608.
[http://dx.doi.org/10.1039/C5RA26781A]
[115]
Varun SE, Sellappa SU. Enhanced apoptosis in MCF-7 human breast cancer cells by biogenic gold nanoparticles synthesized from Argemone mexicana leaf extract. Int J Pharm Pharm Sci 2014; 6(8): 528-31.
[116]
Nagalingam M, Kalpana VN, Rajeswari V. D. Panneerselvam. Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-mediated biocompatible gold nanoparticles from Alternanthera bettzickiana. Biotechnol Rep (Amst) 2018; 19: e00268.
[http://dx.doi.org/10.1016/j.btre.2018.e00268] [PMID: 29992102]
[117]
Anand K, Gengan RM, Phulukdaree A, Chuturgoon A. Agroforestry waste Moringa oleifera petals mediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity. J Ind Eng Chem 2015; 21: 1105-11.
[http://dx.doi.org/10.1016/j.jiec.2014.05.021]
[118]
Patil MP, Bayaraa E, Subedi P, Piad LL, Tarte NH, Kim GD. Biogenic synthesis, characterization of gold nanoparticles using Lonicera japonica and their anticancer activity on HeLa cells. J Drug Deliv Sci Technol 2019; 51: 83-90.
[http://dx.doi.org/10.1016/j.jddst.2019.02.021]
[119]
Santhoshkumar T, Rahuman AA, Rajakumar G. et al. Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 2011; 108(3): 693-702.
[http://dx.doi.org/10.1007/s00436-010-2115-4] [PMID: 20978795]
[120]
Rajakumar G, Abdul Rahuman A. Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 2011; 118(3): 196-203.
[http://dx.doi.org/10.1016/j.actatropica.2011.03.003] [PMID: 21419749]
[121]
Garg S. Microwave-assisted rapid green synthesis of silver nanoparticles using Saraca indica leaf extract and their antibacterial potential. Int J Pharm Sci Res 2013; 4(9): 3615.
[122]
Kovendan K, Murugan K, Vincent S, Barnard DR. Mosquito larvicidal properties of Orthosiphon thymiflorus (Roth) Sleesen. (Family: Labiatae) against mosquito vectors, Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Asian Pac J Trop Med 2012; 5(4): 299-305.
[http://dx.doi.org/10.1016/S1995-7645(12)60043-1] [PMID: 22449522]
[123]
Santhosh SB, Natarajan D, Deepak P. et al. Metabolic enzyme inhibitory and larvicidal activity of biosynthesized and heat stabilized silver nanoparticles using Annona muricata leaf extract. Bionanoscience 2020; 10(1): 1-2.
[http://dx.doi.org/10.1007/s12668-019-00709-w]
[124]
Kowshik M, Ashtaputre S, Kharrazi S. et al. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 2002; 14(1): 95-100.
[http://dx.doi.org/10.1088/0957-4484/14/1/321]
[125]
Makarov VV, Love AJ, Sinitsyna OV. et al. “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta naturae 2014; 6(20)
[126]
Khorramizadeh MR, Esmail-Nazari Z, Zarei-Ghaane Z. et al. Umbelliprenin-coated Fe3O4 magnetite nanoparticles: Antiproliferation evaluation on human Fibrosarcoma cell line (HT-1080). Mater Sci Eng C 2010; 30(7): 1038-42.
[127]
Valodkar M, Jadeja RN, Thounaojam MC, Devkar RV, Thakore S. In vitro toxicity study of plant latex capped silver nanoparticles in human lung carcinoma cells. Mater Sci Eng C 2011; 31(8): 1723-8.
[http://dx.doi.org/10.1016/j.msec.2011.08.001]
[128]
Jacob SJ, Finub JS, Narayanan A. Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids Surf B Biointerfaces 2012; 91: 212-4.
[http://dx.doi.org/10.1016/j.colsurfb.2011.11.001] [PMID: 22119564]
[129]
Jeyaraj M, Rajesh M, Arun R. et al. An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Colloids Surf B Biointerfaces 2013; 102: 708-17.
[http://dx.doi.org/10.1016/j.colsurfb.2012.09.042] [PMID: 23117153]
[130]
Vijayakumar S, Vaseeharan B, Malaikozhundan B. et al. Therapeutic effects of gold nanoparticles synthesized using Musa paradisiaca peel extract against multiple antibiotic resistant Enterococcus faecalis biofilms and human lung cancer cells (A549). Microb Pathog 2017; 102: 173-83.
[http://dx.doi.org/10.1016/j.micpath.2016.11.029] [PMID: 27916691]
[131]
Nirmala JG, Akila S, Narendhirakannan RT, Chatterjee S. Vitis vinifera peel polyphenols stabilized gold nanoparticles induce cytotoxicity and apoptotic cell death in A431 skin cancer cell lines. Adv Powder Technol 2017; 28(4): 1170-84.
[http://dx.doi.org/10.1016/j.apt.2017.02.003]
[132]
Saber MM, Mirtajani SB, Karimzadeh K. Green synthesis of silver nanoparticles using Trapa natans extract and their anticancer activity against A431 human skin cancer cells. J Drug Deliv Sci Technol 2018; 47: 375-9.
[http://dx.doi.org/10.1016/j.jddst.2018.08.004]
[133]
Tripathi D, Modi A, Narayan G, Rai SP. Green and cost effective synthesis of silver nanoparticles from endangered medicinal plant Withania coagulans and their potential biomedical properties. Mater Sci Eng C 2019; 100: 152-64.
[http://dx.doi.org/10.1016/j.msec.2019.02.113] [PMID: 30948049]
[134]
Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, Maaza M, Ayeshamariam A, Kennedy LJ. Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells. J Photochem Photobiol B 2016; 164: 352-60.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.10.003] [PMID: 27728880]
[135]
Li T, Chen X, Liu Y. et al. pH-Sensitive mesoporous silica nanoparticles anticancer prodrugs for sustained release of ursolic acid and the enhanced anti-cancer efficacy for hepatocellular carcinoma cancer. Eur J Pharm Sci 2017; 96: 456-63.
[http://dx.doi.org/10.1016/j.ejps.2016.10.019] [PMID: 27771513]
[136]
Yu T, Tong L, Ao Y, Zhang G, Liu Y, Zhang H. Novel design of NIR-triggered plasmonic nanodots capped mesoporous silica nanoparticles loaded with natural capsaicin to inhibition of metastasis of human papillary thyroid carcinoma B-CPAP cells in thyroid cancer chemo-photothermal therapy. J Photochem Photobiol B 2019; 197: 111534.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111534] [PMID: 31279897]
[137]
Mittal AK, Kumar S, Banerjee UC. Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. J Colloid Interface Sci 2014; 431: 194-9.
[http://dx.doi.org/10.1016/j.jcis.2014.06.030] [PMID: 25000181]
[138]
Raghavan BS, Kondath S, Anantanarayanan R, Rajaram R. Kaempferol mediated synthesis of gold nanoparticles and their cytotoxic effects on MCF-7 cancer cell line. Process Biochem 2015; 50(11): 1966-76.
[http://dx.doi.org/10.1016/j.procbio.2015.08.003]
[139]
Sutradhar KB, Amin ML. Nanotechnology in cancer drug delivery and selective targeting ISRN Nanotechnol 2014.; 939378
[140]
Dadwal A, Baldi A, Kumar Narang R. Nanoparticles as carriers for drug delivery in cancer. Artif Cells Nanomed Biotechnol 2018; 46(sup2): 295-305.
[http://dx.doi.org/10.1080/21691401.2018.1457039] [PMID: 30043651]
[141]
Ahmad MZ, Akhter S, Jain GK. et al. Metallic nanoparticles: Technology overview & drug delivery applications in oncology. Expert Opin Drug Deliv 2010; 7(8): 927-42.
[http://dx.doi.org/10.1517/17425247.2010.498473] [PMID: 20645671]
[142]
Patel DJ, Mistri PA, Prajapati JJ. The Netherlands treatment of cancer by using nanoparticles as a drug delivery. Int J Drug Deliv Res 2012; 4: 14-27.
[143]
Brown SD, Nativo P, Smith JA. et al. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 2010; 132(13): 4678-84.
[http://dx.doi.org/10.1021/ja908117a] [PMID: 20225865]
[144]
Gibson JD, Khanal BP, Zubarev ER. Paclitaxel-functionalized gold nanoparticles. J Am Chem Soc 2007; 129(37): 11653-61.
[http://dx.doi.org/10.1021/ja075181k] [PMID: 17718495]
[145]
Sershen SR, Westcott SL, Halas NJ, West JL. Temperaturesensitive polymer-nanoshell composites for photothermally modulated drug delivery. J Biomed Mater Res 2000; 51(3): 293-8.
[http://dx.doi.org/10.1002/1097-4636(20000905)51:3<293:AIDJBM1>3.0.CO;2-T] [PMID: 10880069]
[146]
Abdal Dayem A, Lee SB, Cho SG. The impact of metallic nanoparticles on stem cell proliferation and differentiation. Nanomaterials (Basel) 2018; 8(10): 761.
[http://dx.doi.org/10.3390/nano8100761] [PMID: 30261637]
[147]
Awad MA, Hendi AA, Virk P, Ortashi KM, Wagealla MA. Method of preparing rosemary nanoparticles and encapsulated rosemary nanoparticles. United States patent US 9,480,656 2016.
[148]
Chen W, Zhang J, Cao Z. Nano-and micro-sized particles of 20- camptothecin or derivative thereof and pharmaceutical compositions containing same, and treatment of cancers therewith. United States patent US 9,675,609 2017.
[149]
Elder EJ, Sacchetti MJ, Tlachac RJ, Zenk JL. Nanoparticle isoflavone compositions and methods of making and using the same. United States patent US 9,724,325 2017.
[150]
Pattayil AJ, Jayaprabha KN. Curcumin coated magnetite nanoparticles for biomedical applications. United States patent US 9,468,691 2016.
[151]
Awad MA, Hendi AA, Ortashi KM, Laref A. Green synthesis of reduced graphene oxide silica nanocomposite using nigella sativa seeds extract. United States patent US 10,052,302 2018.
[152]
El RA, Al-Massarani SM, Awad MA, El-Gamal AA. Method of synthesizing of 3-oxolupenal nanoparticles. United States patent US 10,202,415 2019.
[153]
Ramalingam RJ, Al Lohedan H. Method of preparing biogenic silver nanoparticles. United States patent US 10,828,328 2020.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy