Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Research Article

Study of Multi-layered Cobalt Silicide Nanostructured Thin Films Prepared by Ion Beam Sputtering

Author(s): Karamjit Kaur and Anil Kumar*

Volume 7, Issue 3, 2022

Published on: 31 May, 2022

Page: [228 - 235] Pages: 8

DOI: 10.2174/2405461507666220417003137

Price: $65

Abstract

Aim: This work focuses on the different existing techniques for synthesis of nanomaterials, the selection of potential process for preparation of Co/Si and Co/Si/Co such that material with optimum characteristics may be obtained.

Background: The process of synthesis plays a crucial role in physical properties and associated phenomena acquired by them, and hence is a deciding factor in various potential applications of the materials.

Objective: The aim of the study was to investigate the properties of multi-layered cobalt silicide nanostructured thin films prepared by ion beam sputtering.

Method: The cobalt silicide is selected for synthesis using IBS technique owing to vast scope of its application in manufacturing microelectronic devices.

Result: The formation of nanostructured layers has been confirmed through XRD and XRR patterns.

Conclusion: The role of substrate thickness, interface quality and crystalline structure is very important in deciding properties of multilayer nano-structured thin films.

Keywords: Cobalt silicide, ion beam sputtering, thin films, XRD patterns, nano-structured thin films, multi-layered cobalt silicide nanostructured thin films.

Graphical Abstract

[1]
I. Lux Research. The Nanotechnology Report 2004. Available from: http://www.physorg.com/news842.html Accessed 10 Feb 2006.
[2]
Chou PS, Krauss W, Zhang L. Guo, Zhuang L. Sub-10 nm Imprint Lithography and Applications. J Vac Sci Technol B 1997; 15(6): 2897-904.
[http://dx.doi.org/10.1116/1.589752]
[3]
Ethirajan A, Wiedwald U, Boyen H-G, et al. A micellar approach to magnetic ultrahigh-density data‐storage media: Extending the limits of current colloidal methods. Adv Mater 2007; 19(3): 406-10.
[http://dx.doi.org/10.1002/adma.200601759]
[4]
Huh YM, Jun YW, Song HT, et al. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 2005; 127(35): 12387-91.
[http://dx.doi.org/10.1021/ja052337c] [PMID: 16131220]
[5]
Mornet S, Vasseur S, Grasseta F, Duguet E. Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 2004; 14(14): 2161-75.
[http://dx.doi.org/10.1039/b402025a]
[6]
Sun S, Weller D. Self-Assembling magnetic nanomaterials. J Magnetics Society Japan 2001; 25(8): 1434-40.
[7]
White RL. Magnetization processes in patterned media. J Magn Magn Mater 2002; 242(1): 21-6.
[http://dx.doi.org/10.1016/S0304-8853(01)01178-7]
[8]
Erbudak M, Wetli E, Hochstrasser M, Pescia D, Vvedensky DD. Surface phase transitions during martensitic transformations of single-crystal Co. Phys Rev Lett 1997; 79(10): 1893-6.
[http://dx.doi.org/10.1103/PhysRevLett.79.1893]
[9]
Dinega DP, Bawendi MG. A solution-phase chemical approach to a new crystal structure of cobalt. Angew Chem Int Ed Engl 1999; 38(12): 1788-91.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990614)38:12<1788:AID-ANIE1788>3.0.CO;2-2] [PMID: 29711201]
[10]
Toneguzzo P, Viau OAG, Guillet F, Bruneton E, Fievet-Vincent F, Fievet F. CoNi and FeCoNi fine particles prepared by the polyol process: Physico-chemical characterization and dynamic magnetic properties. J Mater Sci 2000; 35(15): 3767-84.
[http://dx.doi.org/10.1023/A:1004864927169]
[11]
Shuklaa N, Svedberga EB, Ella J, Royb A. Surfactant effects on the shapes of cobalt nanoparticles. Mater Lett 2006; 60(16): 1950-5.
[http://dx.doi.org/10.1016/j.matlet.2005.12.057]
[12]
Puntes VF, Krishnan KM, Alivisatos AP. Colloidal nanocrystal shape and size control: The case of cobalt. Science 2001; 291(5511): 2115-7.
[http://dx.doi.org/10.1126/science.1058495] [PMID: 11251109]
[13]
Rodary G, Repain V, Stamps RL, et al. Influence of grain boundaries on the magnetization reorientation transition in ultrathin films. Phys Rev B Condens Matter Mater Phys 2007; 75(18): 184415.
[http://dx.doi.org/10.1103/PhysRevB.75.184415]
[14]
Labrune M, Niedoba H. Transverse magnetic susceptibility of thin films and multilayers exhibiting perpendicular anisotropy. Eur Phys J B 2003; 31(2): 195-202.
[http://dx.doi.org/10.1140/epjb/e2003-00023-9]
[15]
Ye D, Pimanpang S, Jezewski C, et al. Low temperature chemical vapor deposition of Co thin films s from Co2(CO)8. Thin Solid Films 2005; 485(1-2): 95-100.
[http://dx.doi.org/10.1016/j.tsf.2005.03.046]
[16]
Ausanio G, Iannotti V, Lanotte L, Carbucicchio M, Rateo M. Weak stripe domains in Co/Fe multilayers. J Magn Magn Mater 2001; 226: 1740-2.
[http://dx.doi.org/10.1016/S0304-8853(00)00878-7]
[17]
Henry Y, Ounadjela K, Piraux L, Dubois S, George J-M, Duvail J-L. Magnetic anisotropy and domain patterns in electrodeposited cobalt nanowires. Eur Phys J B 2001; 20(1): 35-54.
[http://dx.doi.org/10.1007/s100510170283]
[18]
Natali M, Lebib A, Cambril E, Chen Y, Prejbeanu IL, Ounadjela K. Nanoimprint lithography of high-density cobalt dot patterns for fine tuning of dipole interactions. J Vac Sci Technol B 2001; 19(6): 2779-83.
[http://dx.doi.org/10.1116/1.1421573]
[19]
Sun X, Zhang ZS, Dresselhaus M. Theoretical modeling of thermoelectricity in Bi nanowires. Appl Phys Lett 1999; 74(26): 4005-7.
[http://dx.doi.org/10.1063/1.123242]
[20]
Zhou F, Szczech J, Pettes MT, Moore AL, Jin S, Shi L. Determination of transport properties in chromium disilicide nanowires via combined thermoelectric and structural characterizations. Nano Lett 2007; 7(6): 1649-54.
[http://dx.doi.org/10.1021/nl0706143] [PMID: 17508772]
[21]
Sharma A, Brajpuriya R, Tripathi S, Chaudhari SM. Study of annealed Co thin films deposited by ion beam sputtering. J Vac Sci Technol A 2006; 24(1): 74-7.
[http://dx.doi.org/10.1116/1.2135292]
[22]
Kumar A, Brajpuriya R, Singh P. Study of ion beam sputtered Fe/Si interfaces as a function of Si layer thickness. J Appl Phys 2018; 123(2): 025305-7.
[http://dx.doi.org/10.1063/1.5008938]
[23]
Jergel M, Cheshko I, Halahovets Y, et al. Annealing behaviour of structural and magnetic properties of evaporated Co thin films. J Phys D Appl Phys 2009; 42(13): 1-8.
[http://dx.doi.org/10.1088/0022-3727/42/13/135406]
[24]
Honda S, Ishikawa T, Takai K, Mitarai Y, Harada H. New type magnetoresistance in Co/Si systems. J Magn Magn Mater 2005; 290-291: 1063-6.
[http://dx.doi.org/10.1016/j.jmmm.2004.11.459]
[25]
Ueda K, Tabata H, Kawai T. Magnetic and electric properties of transition-metal-doped ZnO films. Appl Phys Lett 2001; 79(7): 988-90.
[http://dx.doi.org/10.1063/1.1384478]
[26]
Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci 2006; 51(4): 427-556.
[http://dx.doi.org/10.1016/j.pmatsci.2005.08.003]
[27]
Dao M, Lu L, Asaro R, Dehosson J, Ma E. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater 2007; 55(12): 4041-65.
[http://dx.doi.org/10.1016/j.actamat.2007.01.038]
[28]
Schodek D, Ferreira P, Ashby M. Nanomaterials, Nanotechnologies and Design. 1st ed. Elsevier 2009.
[29]
Zehetbauer M, Grössinger R, Krenn H, et al. Bulk nanostructured functional materials by severe plastic deformation. Adv Eng Mater 2010; 12(8): 692-700.
[http://dx.doi.org/10.1002/adem.201000119]
[30]
Pochon S, Pearson D. Ion Beam Deposition Oxford Instruments Plasma Technology, North End. Bristol: Yatton 2010.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy