Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Solvent-free MALI-MGRE Procedure for Synthesizing 1,4-thiazolidin-4- one MALI (Mercaptoacetic Acid Looking Imine) MGRE (Mechanical Grinding Reaction Equipment)

Author(s): Jonas da Silva Santos*, Joel Jones Junior* and Flavia Martins da Silva

Volume 20, Issue 2, 2023

Published on: 15 July, 2022

Page: [258 - 266] Pages: 9

DOI: 10.2174/1570179419666220414112340

Price: $65

Abstract

Background: 1,3-Thiazolidin-4-ones are heterocycles whose importance in the pharmaceutical market has already been established. Many of these synthetic derivatives, which contain a thiazolidinone nucleus, are currently used in various commercial formulations or are already in clinical trials for the treatment of disease for their anticonvulsant, antihypertensive and antidiabetic activities in addition to their activity against Streptomyces. 1,3-Thiazolidin-4-ones are produced mainly by cyclo condensation between an imine (generated in situ by the reaction of an aldehyde with an amine) and α-mercaptoacetic acid, known as the MALI (Mercaptoacetic Acid Looking Imine) reaction.

Objective: A solvent-free methodology was developed to synthesize a 1,3-thiazolidin-4-one family by the MALI reaction. An apparatus was developed to grind a solid-liquid mixture of anilines, benzaldehydes and thioglycolic acid to activate the reaction. This apparatus was named MGRE (mechanical grinding reaction equipment).

Methods: Substituted aniline 2 (4 mmol), substituted benzaldehyde 1 (4 mmol) and thioglycolic acid 3 (12 mmol) were placed in a mortar. The reagents were macerated using the MGRE at room temperature for a specified time period. At the end of the reaction, the product was poured into ice, the precipitate formed was neutralized (with 5% NaHCO3), and the solution was extracted in ethyl acetate and dried in MgSO4. The solid was recrystallized from MeOH/H2O.

Results: The developed MGRE is a modification of a rod used in a mechanical stirrer. This adaptation is inexpensive and simple in construction, and it enables reactions to occur over long periods of time that would be exhaustive for manual grinding. Fifteen (1,3) thiazolidin-4-ones were produced. The products were synthesized using the solvent-free MALI-MGRE procedure.

Conclusions: The MALI-MGRE methodology developed to produce 1,3-thiazolidin-4-ones showed a good reaction scope, has an easy work-up and is solvent-free. Consequently, MALI-MGRE is classified as a green methodology. An innovation of this study is the construction of the MGRE, which involves modifying the rod in a mechanical stirrer. The equipment is easy and inexpensive to construct and may be useful for various reactions involving grinding.

Keywords: Green chemistry, solvent free, tiazolidinones, MALI, MGRE, grinding reaction.

« Previous
Graphical Abstract

[1]
Verçoza, G.L.; Feitoza, D.D.; Alves, A.J.; Aquino, T.M.; Lima, J.G. Síntese e Avaliação da Atividade Antimicrobiana de Novas 4-Tiazolidinonas Obtidas A Partir de Formilpiridina Tiossemicarbazonas. Quim. Nova, 2009, 32(6), 1405-1410.
[http://dx.doi.org/10.1590/S0100-40422009000600008]
[2]
Brown, F.C. 4-Thiazolidinones. Chem. Rev., 1961, 61(5), 463-521.
[http://dx.doi.org/10.1021/cr60213a002]
[3]
Vána, J.; Sedlák, M.; Hanusek, J. Kinetic evidence for the coexistence of zwitterionic (T+/-), neutral (T0) and anionic (T-) intermediates during rearrangement of S-(2-oxotetrahydrofuran-3-yl)-N-(4-methoxyphenyl)isothiuronium bromide to 5-(2-hydroxyethyl)-2-(4-methoxyphenylimino)-1,3-thiazolidin-4-one. J. Org. Chem., 2010, 75(11), 3729-3736.
[http://dx.doi.org/10.1021/jo1004873] [PMID: 20429572]
[4]
Bhoi, D.; Bhoi, U.A. A complete review of thiazolidine-4-ones. J. Pharm. Res., 2011, 4(7), 2436-2440.
[5]
Singh, S.P.; Parmar, S.S.; Raman, K.; Stenberg, V.I. Chemistry and biological activity of thiazolidinones. Chem. Rev., 1981, 81(2), 175-203.
[http://dx.doi.org/10.1021/cr00042a003]
[6]
Cunico, W.; Gomes, C.R.B.; Ferreira, M.L.G.; Capri, L.R.; Soares, M.; Wardell, S.M.S.V. One-pot synthesis of 2-isopropyl-3-benzyl-1,3-thiazolidin-4-ones and 2-phenyl-3-isobutyl-1,3-thiazolidin-4-ones from valine, arenealdehydes and mercaptoacetic acid. Tetrahedron Lett., 2007, 48(35), 6217-6220.
[http://dx.doi.org/10.1016/j.tetlet.2007.06.101]
[7]
Kozlov, V.A.; Odinets, I.L.; Lyssenko, K.A.; Churusova, S.G.; Yarovenko, S.V.; Petrovskii, P.V.; Mastryukova, T.A. Regioselective synthesis, structure and behavior in solutions of novel phosphorylated thiazolidin-4-ones. Heteroatom Chem., 2005, 16(2), 159-168.
[http://dx.doi.org/10.1002/hc.20084]
[8]
Momose, Y.; Meguro, K.; Ikeda, H.; Hatanaka, C.; Oi, S.; Sohda, T. Studies on antidiabetic agents. X. Synthesis and biological activities of pioglitazone and related compounds. Chem. Pharm. Bull. (Tokyo), 1991, 39(6), 1440-1445.
[http://dx.doi.org/10.1248/cpb.39.1440] [PMID: 1934164]
[9]
Berseneva, V.S.; Tkachev, A.V.; Morzherin, Y.Y.; Dehaen, W.; Luyten, I.; Toppet, S.; Bakulev, V.A. Syntesis of novel thiazolidin-4-ones by reaction of malonthioamide derivatives with dimethyl acetylenedicarbozylate. J. Chem. Soc., Perkin Trans. 1, 1998, 1998(14), 2133-2136.
[http://dx.doi.org/10.1039/a803543a]
[10]
Nencki, M. Ueber die einwirkung der monochloressigsäure auf sulfocyansäure und ihre salze. J. Prakt. Chem., 1877, 16(1), 1-17.
[http://dx.doi.org/10.1002/prac.18770160101]
[11]
Lesyk, R.B.; Zimenkovsky, B.S. 4-Thiazolidones: Centenarian history, current status and perspectives for modern organic and medicinal chemistry. Curr. Org. Chem., 2004, 8(16), 1547-1577.
[http://dx.doi.org/10.2174/1385272043369773]
[12]
Saeed, A.; Abbas, N.; Flörke, U. Synthesis and antibacterial activity of some novel 2-aroylimino-3-aryl-thiazolidin-4-ones. J. Braz. Chem. Soc., 2007, 18(3), 559-565.
[http://dx.doi.org/10.1590/S0103-50532007000300010]
[13]
Walter, W.; Randau, G. Über die oxydationsprodukte von thiocarbonsäureamiden, VIII. oxydationsreaktionen an n-acylthioamiden. Justus Liebigs Ann. Chem., 1965, 681(1), 55-63.
[http://dx.doi.org/10.1002/jlac.19656810112]
[14]
Abo-Bakr, A.M.; Abbas-Temirek, H.H. Synthesis of new heterocyclic compounds derived from 3-p-tolyl-2-thioxo-1,3-thiazolidine-4-one and evaluation of their antibacterial activity. Int. J. Curr. Res., 2015, 7(4), 14434-14441.
[15]
Ottanà, R.; Maccari, R.; Barreca, M.L.; Bruno, G.; Rotondo, A.; Rossi, A.; Chiricosta, G.; Di Paola, R.; Sautebin, L.; Cuzzocrea, S.; Vigorita, M.G. 5-Arylidene-2-imino-4-thiazolidinones: Design and synthesis of novel anti-inflammatory agents. Bioorg. Med. Chem., 2005, 13(13), 4243-4252.
[http://dx.doi.org/10.1016/j.bmc.2005.04.058] [PMID: 15905093]
[16]
Liesen, A.P.; Aquino, T.M.; Goes, A.J.S.; Lima, J.G.; Faria, A.R.; Alves, A.J. Métodos de obtenção, reatividade e importância biológica de 4-tiazolidinonas. Quim. Nova, 2008, 31(2), 369-376.
[http://dx.doi.org/10.1590/S0100-40422008000200033]
[17]
Popiołek, Ł; Biernasiukb, A.; Malm, A. Synthesis and antimicrobial activity of new 1,3-thiazolidin-4-one derivatives obtained from carboxylic acid hydrazides. Phosphorus Sulfur Silicon Relat. Elem., 2015, 190(2), 251-260.
[http://dx.doi.org/10.1080/10426507.2014.919293]
[18]
Omar, K.; Geronikaki, A.; Zoumpoulakis, P.; Camoutsis, C.; Soković, M.; Cirić, A.; Glamočlija, J. Novel 4-thiazolidinone derivatives as potential antifungal and antibacterial drugs. Bioorg. Med. Chem., 2010, 18(1), 426-432.
[http://dx.doi.org/10.1016/j.bmc.2009.10.041] [PMID: 19914077]
[19]
War, J.A.; Srivastava, S.K.; Srivastava, S.D. Design, synthesis and dna-binding study of some novel morpholine linked thiazolidinone derivatives. spectrochim. Acta Mol. Biomol. Spectrosc, 2017, 2017(173), 270-278.
[http://dx.doi.org/10.1016/j.saa.2016.07.054]
[20]
Doran, W.J.; Shonle, H.A. Dialkyl thiazolidinones. J. Org. Chem., 1938, 3(3), 193-197.
[http://dx.doi.org/10.1021/jo01220a001]
[21]
Jones, J., Jr; da Silva, F.M.; Gomes, A.K. Organic reaction in water - Part II: Michael addition in water without phase transfer agents. Can. J. Chem., 1999, 77(5), 627-629.
[22]
Jones, J., Jr; da Silva, F.M. Reações orgânicas em meio aquoso. Quim. Nova, 2001, 24(5), 646-657.
[http://dx.doi.org/10.1590/S0100-40422001000500012]
[23]
Jones, J., Jr; da Silva, F.M.; de Lacerda, P.S.B. Desenvolvimento sustentável e química verde. Quim. Nova, 2005, 28(1), 103-110.
[http://dx.doi.org/10.1590/S0100-40422005000100019]
[24]
Jones, J., Jr; da Silva, F.M. Organic reaction in water. part 3: Diastereoselectivity in michael additions of thiophenol to nitro olefins in aqueous media. J. Braz. Chem. Soc., 2008, 12(2), 135-137.
[25]
Jones, J., Jr; da Silva, F.M.; de Carvalho, E.M.; de Almeida, Q.A.R.; Kaiser, C.R.; Coelho, R.B.; Pereira, M.L.O. Michael additions of thiocompounds to αβ-unsaturated carbonyl compounds in aqueous media: Stereoselectivity with unambiguous characterization by NMR. J. Braz. Chem. Soc., 2008, 19(5), 894-902.
[http://dx.doi.org/10.1590/S0103-50532008000500013]
[26]
Jones, J., Jr; da Silva, F.M.; Gonçalves, M.; Ferre, F.T.; Sena, J.D.; Coelho, R.B. 4-phenyl-1,4-dihydropyridines by hantzsch reaction in water. Heterocycl. Commun., 2009, 15(1), 57-60.
[27]
Jones, J., Jr; da Silva, F.M.; de Carvalho, E.M.; Muñoz, J.A.H.; dos Santos, B.D.C.F.; Soares, R.F. The synthesis of imidazoles via the radziszewski reaction in aqueous media. Heterocycl. Lett, 2011, 1(4), 365-371.
[28]
Jones, J., Jr; da Silva, F.M.; Forero, J.S.B.; de Carvalho, E.M. A new protocol for the synthesis of 2-aminothiophenes through the gewald reaction in solvent-free conditions. Heterocycl. Lett, 2011, 1(1), 61-67.
[29]
Jones, J., Jr; da Silva, F.M.; Forero, J.S.B.; de Carvalho, E.M.; dos Santos, B.D.C.F. Solventlesssynthesis of 2-aminothiophenes via the gewald reaction under ultrasonic conditions. Heterocycl. Lett, 2012, 2(1), 31-36.
[30]
Jones, J., Jr; da Silva, F.M.; Forero, J.S.B. The synthetic potential and chemical aspects of the gewald reaction: Application in the preparation of 2-aminothiophenes and related heterocycles. Curr. Org. Synth., 2013, 10(3), 347-365.
[http://dx.doi.org/10.2174/1570179411310030002]
[31]
Jones, J., Jr; da Silva, F.M.; Muñoz, J.A.H. Radziszewski reaction: An elegant, easy, simple and efficient method to synthesise imidazoles. Curr. Org. Synth., 2014, 11(6), 824-834.
[http://dx.doi.org/10.2174/1570179411666140623223611]
[32]
Jones, J., Jr; da Silva, F.M.; Forero, J.S.B.; de Carvalho, E.M.; Muñoz, J.A.H.; de Azevedo, P.N.; Behenck, L.S. A sustainable approach to bis-indole synthesis using propylene carbonate as an eco-friendly solvent. Curr. Org. Synth., 2014, 11(4), 605-611.
[http://dx.doi.org/10.2174/1570179411666140115225758]
[33]
Jones, J., Jr; da Silva, F.M.; Forero, J.S.B.; de Carvalho, E.M. Facile, efficient diastereoselective synthesis of tetrahydroquinoline scaffolds using propylene carbonate as an eco-friendly solvent. Curr. Org. Synth., 2015, 12(1), 102-107.
[http://dx.doi.org/10.2174/1570179411666140722175810]
[34]
Jones, J., Jr; da Silva, F.M.; Forero, J.S.B. The povarov reaction as a versatile strategy for the preparation of 1, 2, 3, 4-tetrahydroquinoline derivatives: An overview. Curr. Org. Synth., 2016, 13(2), 157-175.
[35]
Jones, J., Jr; da Silva, F.M.; Muñoz, J.A.H.; de Carvalho, E.M. Propylene carbonate as a solvent in the eco-friendly synthesis of highly substituted imidazoles through the radziszewski reaction. Curr. Org. Synth., 2016, 13(3), 432-439.
[http://dx.doi.org/10.2174/1570179413999151110121949]
[36]
Jones, J., Jr; da Silva, F.M.; Forero, J.S.B.; Muñoz, J.A.H. Propylene carbonate in organic synthesis: Exploring its potential as a green solvent. Curr. Org. Synth., 2016, 13(6), 834-846.
[http://dx.doi.org/10.2174/1570179413999160211094705]
[37]
Jones, J., Jr; da Silva, F.M.; Cervasio, R.J.; Forero, J.S.B.; Muñoz, J.A.H. Biginelli reaction using propylene carbonate as green solvent: An elegant methodology for the synthesis of dihydropyrimidinones and dihydropyrimidinthiones. Curr. Org. Synth., 2017, 14(5), 715-720.
[38]
Jones, J., Jr; da Silva, F.M.; Santos, J.S. 1,3-Thiazolidin-4-ones: Biological potential, history, synthetic development and green methodologies. Curr. Org. Synth., 2018, 15(8), 1109-1123.
[http://dx.doi.org/10.2174/1570179415666180919125625]
[39]
Dias Benincá, L.A.; Pereira Ligiéro, C.B.; da Silva Santos, J.; Junior, J.J.; da Silva, F.M. Eco-friendly and enantiospecific biginelli synthesis using (+)-Myrtenal as the substrate - an impeccable and unequivocal analysis of the product. Curr. Org. Synth., 2020, 17(5), 389-395.
[http://dx.doi.org/10.2174/1570179417666200506103137] [PMID: 32370718]
[40]
Jadhav, S.A.; Shioorkar, M.G.; Chavan, O.S.; Shinde, D.B.; Pardeshi, R.K. An alum catalyzed solvent free one pot multicomponent synthesis of 4-thiazolidinone derivatives. Heterocycl. Lett, 2015, 5(3), 375-382.
[41]
Jain, A.K.; Vaidya, A.; Ravichandran, V.; Kashaw, S.K.; Agrawal, R.K. Recent developments and biological activities of thiazolidinone derivatives: A review. Bioorg. Med. Chem., 2012, 20(11), 3378-3395.
[http://dx.doi.org/10.1016/j.bmc.2012.03.069] [PMID: 22546204]
[42]
Khillare, L.D.; Bhosle, M.R.; Deshmukh, A.R.; Mane, R. One-pot rapid synthesis of thiazole-substituted pyrazolyl-4-thiazolidinones mediated by diisopropylethylammonium acetate. Res. Chem. Intermed., 2015, 41(11), 8955-8964.
[http://dx.doi.org/10.1007/s11164-015-1940-6]
[43]
Ebrahimi, S. One-pot synthesis of 1,3-thiazolidin-4-one using ammonium persulfate as catalyst. J. Sulfur Chem., 2016, 37(6), 587-592.
[http://dx.doi.org/10.1080/17415993.2016.1223298]
[44]
Thakare, M.P.; Kumar, P.; Kumar, N.; Pandey, S.K. Silica gel promoted environment-friendly synthesis of 2,3-disubstituted 4-thiazolidinones. Tetrahedron Lett., 2014, 55(15), 2463-2466.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.007]
[45]
Sadeghzade, S.M.; Daneshfar, F. Ionic liquid immobilized on FeNi3 as catalysts for efficient, green, and one-pot synthesis of 1,3-thiazolidin-4-one. J. Mol. Liq., 2014, 2014(199), 440-444.
[http://dx.doi.org/10.1016/j.molliq.2014.07.039]
[46]
Sadeghzadeh, S.; Malekzadeh, M. Synthesis of 1,3-thiazolidin-4-one using ionic liquid immobilized onto Fe3O4/SiO2/Salen/Mn. J. Mol. Liq., 2015, 2015(202), 46-51.
[http://dx.doi.org/10.1016/j.molliq.2014.12.011]
[47]
Safaei-Ghomi, J.; Navvab, M.; Shahbazi-Alavi, H. CoFe2O4@SiO2/PrNH2 nanoparticles as highly efficient and magnetically recoverable catalyst for the synthesis of 1,3-thiazolidin-4-ones. J. Sulfur Chem., 2016, 37(6), 601-612.
[http://dx.doi.org/10.1080/17415993.2016.1169533]
[48]
Safaei-Ghomi, J.; Navvab, M.; Shahbazi-Alavi, H. One-pot sonochemical synthesis of 1,3-thiazolidin-4-ones using nano-CdZr4(PO4)6 as a robust heterogeneous catalyst. Ultrason. Sonochem., 2016, 31(31), 102-106.
[http://dx.doi.org/10.1016/j.ultsonch.2015.12.008] [PMID: 26964928]
[49]
Azgomi, N.; Mokhtary, M. Nano-Fe3O4@SiO2 supported ionic liquid as an eficiente catalyst for the synthesis of 1,3-thiazolidin-4-ones under solvent-free conditions. J. Mol. Catal. Chem., 2015, 2015(398), 58-64.
[http://dx.doi.org/10.1016/j.molcata.2014.11.018]
[50]
Harale, R.R.; Shitre, P.V.; Sathe, B.R.; Shingare, M.S. Pd nanoparticles: An efficient catalyst for the solvent-free synthesis of 2,3-disubstituted-4-thiazolidinones. Res. Chem. Intermed., 2016, 42(8), 6695-6703.
[http://dx.doi.org/10.1007/s11164-016-2490-2]
[51]
Mamaghani, M.; Pourranjbar, M.; Nia, R.H. Facile and regioselective synthesis of thiazolidin-4-one derivatives catalyzed by basic ionic liquid [Bmim]OH under ultrasonic irradiation. J. Sulfur Chem., 2014, 35(1), 1-6.
[http://dx.doi.org/10.1080/17415993.2013.800061]
[52]
Lingampalle, D.; Jawale, D.; Waghmare, R.; Mane, R. Ionic liquid-mediated, one-pot synthesis for 4-thiazolidinones. Synth. Commun., 2010, 40(16), 2397-2401.
[http://dx.doi.org/10.1080/00397910903245174]
[53]
Subhedar, D.D.; Shaikh, M.; Khan, F.A.K.; Sangshetti, J.N.; Khedkar, V.M.; Shingate, B.B. Facile synthesis of new N-Sulfonamidyl-4-thiazolidinone derivatives and their biological evaluation. New J. Chem., 2016, 40(4), 3047-3058.
[http://dx.doi.org/10.1039/C6NJ00021E]
[54]
Arya, K.; Rawat, D.S.; Dandia, A.; Sasai, H. Brønsted acidic ionic liquids: Green, efficient and reusable catalyst sinthesis of fluorinated spiro [indole-thiazinones/thiazolidinones] as antishistamic agents. J. Fluor. Chem., 2012, 2012, 117-122.
[http://dx.doi.org/10.1016/j.jfluchem.2012.03.003]
[55]
Mahmoodi, N.O.; Zeydi, M.M.; Biazar, E.; Kazeminejad, Z. Synthesis of novel thiazolidine-4-one derivatives and the anticancer activity. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192(3), 344-350.
[http://dx.doi.org/10.1080/10426507.2016.1239197]
[56]
Gomes, M.B. Glitazonas e síndrome metabólica: Mecanismos de ação, fisiopatologia e indicações terapêuticas. Arg. Bras. Endrocrinol Metab, 2006, 50(2), 271-280.
[http://dx.doi.org/10.1590/S0004-27302006000200013]
[57]
Barakat, A.; Al-Najjar, H.J.; Al-Majid, A.M.; Soliman, S.M.; Mabkhot, Y.N.; Al-Agamy, M.H.M.; Ghabbour, H.A.; Fun, H-K. Synthesis, molecular structure investigations and antimicrobial activity of 2-thioxothiazolidin-4-one derivatives. J. Mol. Struct., 2015, 2015(1081), 519-529.
[http://dx.doi.org/10.1016/j.molstruc.2014.10.038]
[58]
Abbas, N.; Zaib, S.; Bakht, S.M.; Ibrar, A.; Khan, I.; Batool, S.; Saeed, A.; Iqbal, J. Symmetrical aryl linked bis-iminothiazolidinones as new chemical entities for the inhibition of monoamine oxidases: Synthesis, in vitro biological evaluation and molecular modelling analysis. Bioorg. Chem., 2017, 70(70), 17-26.
[http://dx.doi.org/10.1016/j.bioorg.2016.11.004] [PMID: 27863747]
[59]
Kaur Manjal, S.; Kaur, R.; Bhatia, R.; Kumar, K.; Singh, V.; Shankar, R.; Kaur, R.; Rawal, R.K. Synthetic and medicinal perspective of thiazolidinones: A review. Bioorg. Chem., 2017, 75(75), 406-423.
[http://dx.doi.org/10.1016/j.bioorg.2017.10.014] [PMID: 29102723]
[60]
Cunico, W.; Gomes, C.R.B.; Vellasco, W.T. Jr Chemistry and biological activities of 1,3-thiazolidin-4-ones. Mini Rev. Org. Chem., 2008, 5(4), 336-344.
[http://dx.doi.org/10.2174/157019308786242232]
[61]
Srivastava, T.; Haq, W.; Katti, S.B. Carbodiimide mediated synthesis of 4-thiazolidinones by one-pot three-component condensation. Tetrahedron, 2002, 58(38), 7619-7624.
[http://dx.doi.org/10.1016/S0040-4020(02)00866-9]
[62]
Gadekar, S.P.; Machhindra, K.; Lande, M.K. TS-1 zeolite as a Lewis acid catalyst for solvent-free one-pot synthesis of 1,3-thiazolidin-4-ones. Res. Chem. Intermed., 2019, 45(2), 237-247.
[http://dx.doi.org/10.1007/s11164-018-3599-2]
[63]
Kumar, D.; Sonawane, M.; Pujala, B.; Jain, V.K.; Bhagat, S.; Chakraborti, A.K. Supported protic acid-catalyzed synthesis of 2,3-disubstituted thiazolidin-4-ones: Enhancement of the catalytic potential of protic acid by adsorption on solid supports. Green Chem., 2013, 15(10), 2872-2884.
[http://dx.doi.org/10.1039/c3gc41218k]
[64]
Surrey, A.R. The preparation of 4-thiazolidones by the reaction of thioglycolic acid with Schiff bases. J. Am. Chem. Soc., 1947, 69(11), 2911-2912.
[http://dx.doi.org/10.1021/ja01203a507] [PMID: 20270850]
[65]
Tierney, J.; Mascavage, L.; McCoy, M.; Findeisen, A.; Kilburn, J. Effects and conformational analysis of some substituted 2,3-diphenyl-1,3-thiazolidin-4-ones. Magn. Reson. Chem., 1996, 34(8), 573-576.
[http://dx.doi.org/10.1002/(SICI)1097-458X(199608)34:8<573::AID-OMR928>3.0.CO;2-D]
[66]
Cannon, K.C.; Alkurdi, A.; Himel, H.; Kurochka, I.; Liu, S.; Costa, M.; Sundberg, B.; Lagalante, A.F. Selective synthesis of ortho-substituted 2-aryl-3-phenyl-1,3-thiazolidin-4-one sulfoxides and sulfones by S-oxidation with oxone®. Int. J. Chem., 2017, 9(4), 87-97.
[http://dx.doi.org/10.5539/ijc.v9n4p87]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy