Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Resorcinol Derivatives as Novel Aldose Reductase Inhibitors: In Silico and In Vitro Evaluation

Author(s): Namık Kılınç*

Volume 19, Issue 9, 2022

Published on: 21 April, 2022

Page: [837 - 846] Pages: 10

DOI: 10.2174/1570180819666220414103203

Price: $65

Abstract

Background: The polyol pathway, an alternative way of carbohydrate metabolism, is activated by hyperglycemia. Aldose reductase (AR), the first and rate-limiting enzyme of the polyol pathway, is responsible for the reduction of glucose to sorbitol. Inhibiting the aldose reductase enzyme and reducing the polyol pathway is considered an effective method to prevent and postpone the onset of diabetic complications.

Objective: Therefore, in this work, we investigate the inhibition effects of certain resorcinol derivatives and the positive control compound quercetin on the AR enzyme in vitro and in silico. These phenolic compounds, whose inhibitory effects on the AR enzyme were investigated, were also compared with known drugs in terms of their drug-like characteristics.

Methods: Three methods were used to determine the inhibitory effects of resorcinol derivatives on recombinant human AR enzyme. After the in vitro inhibition effects were determined spectrophotometrically, the binding energy and binding modes were determined by molecular docking method. Finally, the MM-GBSA method was used to determine the free binding energies of the inhibitors for the AR enzyme.

Results: 5-pentylresorcinol compound showed the strongest inhibition effect on recombinant human AR enzyme with an IC50 value of 9.90 μM. The IC50 values of resorcinol, 5-methylresorcinol, 4- ethylresorcinol, 4-hexylresorcinol, 2-methylresorcinol, and 2,5-dimethylresorcinol compounds were determined as 49.50 μM, 43.31 μM, 19.25 μM, 17.32 μM, 28.87 μM, 57.75 μM, respectively.

Conclusion: The results of this research showed that resorcinol compounds are effective AR inhibitors. These findings are supported by molecular docking, molecular mechanics, and ADME investigations undertaken to corroborate the experimental in vitro results.

Keywords: Aldose reductase, Resorcinol derivatives, molecular docking, diabetic complications, polyol pathway, ADME.

Graphical Abstract

[1]
Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; Shaw, J.E.; Bright, D.; Williams, R. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition.Diabetes Res. Clin. Pract; , 2019, 157, p. 107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843] [PMID: 31518657]
[2]
Tang, W.H.; Martin, K.A.; Hwa, J. Aldose reductase, oxidative stress, and diabetic mellitus. Front. Pharmacol., 2012, 3, 87.
[http://dx.doi.org/10.3389/fphar.2012.00087] [PMID: 22582044]
[3]
Oates, P.J. Aldose reductase, still a compelling target for diabetic neuropathy. Curr. Drug Targets, 2008, 9(1), 14-36.
[http://dx.doi.org/10.2174/138945008783431781] [PMID: 18220710]
[4]
Yang, J.; Zhang, L.J.; Wang, F.; Hong, T.; Liu, Z. Molecular imaging of diabetes and diabetic complications: Beyond pancreatic β- cell targeting. Adv. Drug Deliv. Rev., 2019, 139, 32e50.
[http://dx.doi.org/10.1016/j.addr.2018.11.007]
[5]
Nickerson, H.D.; Dutta, S. Diabetic complications: Current challenges and opportunities. J. Cardiovasc. Transl. Res., 2012, 5, 375e379.
[http://dx.doi.org/10.1007/s12265-012-9388-1]
[6]
Suzen, S.; Buyukbingol, E. Recent studies of aldose reductase enzyme inhibition for diabetic complications. Curr. Med. Chem., 2003, 10(15), 1329-1352.
[http://dx.doi.org/10.2174/0929867033457377] [PMID: 12871133]
[7]
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414(6865), 813-820.
[http://dx.doi.org/10.1038/414813a] [PMID: 11742414]
[8]
Kumar, M.; Choudhary, S.; Singh, P.K.; Silakari, O. Addressing selectivity issues of aldose reductase 2 inhibitors for the management of diabetic complications. Future Med. Chem., 2020, 12(14), 1327-1358.
[http://dx.doi.org/10.4155/fmc-2020-0032] [PMID: 32602375]
[9]
Caglayan, C.; Demir, Y.; Kucukler, S.; Taslimi, P.; Kandemir, F.M. Gulçin, İ. The effects of hesperidin on sodium arsenite-induced different organ toxicity in rats on metabolic enzymes as antidiabetic and anticholinergics potentials: A biochemical approach. J. Food Biochem., 2019, 43(2), e12720.
[http://dx.doi.org/10.1111/jfbc.12720] [PMID: 31353640]
[10]
Alim, Z. Kilinç, N.; Şengül, B.; Beydemir, Ş. Inhibition behaviours of some phenolic acids on rat kidney aldose reductase enzyme: An in vitro study. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 277-284.
[http://dx.doi.org/10.1080/14756366.2016.1250752] [PMID: 28111996]
[11]
Ramasamy, R.; Goldberg, I.J. Aldose reductase and cardiovascular diseases, creating human-like diabetic complications in an experimental model. Circ. Res., 2010, 106(9), 1449-1458.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.213447] [PMID: 20466987]
[12]
Kinoshita, J.H.; Nishimura, C. The involvement of aldose reductase in diabetic complications. Diabetes Metab. Rev., 1988, 4(4), 323-337.
[http://dx.doi.org/10.1002/dmr.5610040403] [PMID: 3134179]
[13]
Reddy, G.B.; Muthenna, P.; Akileshwari, C.; Saraswat, M.; Petrash, J.M. Inhibition of aldose reductase and sorbitol accumulation by dietary rutin. Curr. Sci., 2011, 1191-1197.
[14]
Yan, L.J. Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. Animal Model. Exp. Med., 2018, 1(1), 7-13.
[http://dx.doi.org/10.1002/ame2.12001] [PMID: 29863179]
[15]
Jung, H.A.; Jung, Y.J.; Yoon, N.Y.; Jeong, D.M.; Bae, H.J.; Kim, D.W.; Na, D.H.; Choi, J.S. Inhibitory effects of Nelumbo nucifera leaves on rat lens aldose reductase, advanced glycation endproducts formation, and oxidative stress. Food Chem. Toxicol., 2008, 46(12), 3818-3826.
[http://dx.doi.org/10.1016/j.fct.2008.10.004] [PMID: 18952135]
[16]
Vedantham, S.; Ananthakrishnan, R.; Schmidt, A.M.; Ramasamy, R. Aldose reductase, oxidative stress and diabetic cardiovascular complications. Cardiovasc. Hematol. Agents Med. Chem., 2012, 10(3), 234-240.
[http://dx.doi.org/10.2174/187152512802651097] [PMID: 22632267]
[17]
Burlacu, E.; Nisca, A.; Tanase, C. A comprehensive review of phytochemistry and biological activities of Quercus species. Forests, 2020, 11(9), 904.
[http://dx.doi.org/10.3390/f11090904]
[18]
Laura, A.; Moreno-Escamilla, J.O.; Rodrigo-García, J.; Alvarez-Parrilla, E. Phenolic compounds. In: Postharvest physiology and biochemistry of fruits and vegetables; Woodhead Publishing, 2019.
[19]
Medina, M.B. Simple and rapid method for the analysis of phenolic compounds in beverages and grains. J. Agric. Food Chem., 2011, 59(5), 1565-1571.
[http://dx.doi.org/10.1021/jf103711c] [PMID: 21309564]
[20]
Sies, H. Polyphenols and health: Update and perspectives. Arch. Biochem. Biophys., 2010, 501(1), 2-5.
[http://dx.doi.org/10.1016/j.abb.2010.04.006] [PMID: 20398620]
[21]
Seifried, H.E.; Anderson, D.E.; Fisher, E.I.; Milner, J.A. A review of the interaction among dietary antioxidants and reactive oxygen species. J. Nutr. Biochem., 2007, 18(9), 567-579.
[http://dx.doi.org/10.1016/j.jnutbio.2006.10.007] [PMID: 17360173]
[22]
Veeresham, C.; Rama Rao, A.; Asres, K. Aldose reductase inhibitors of plant origin. Phytother. Res., 2014, 28(3), 317-333.
[http://dx.doi.org/10.1002/ptr.5000] [PMID: 23674239]
[23]
Güvenç, A.; Okada, Y.; Akkol, E.K.; Duman, H.; Okuyama, T. Çalış, İ. Investigations of anti-inflammatory, antinociceptive, antioxidant and aldose reductase inhibitory activities of phenolic compounds from Sideritis brevibracteata. Food Chem., 2010, 118(3), 686-692.
[http://dx.doi.org/10.1016/j.foodchem.2009.05.034]
[24]
Demir, Y.; Durmaz, L.; Taslimi, P. Gulçin, İ. Antidiabetic properties of dietary phenolic compounds: Inhibition effects on α-amylase, aldose reductase, and α-glycosidase. Biotechnol. Appl. Biochem., 2019, 66(5), 781-786.
[http://dx.doi.org/10.1002/bab.1781] [PMID: 31135076]
[25]
Kozubek, A.; Tyman, J.H.P. Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem. Rev., 1999, 99(1), 1-26.
[http://dx.doi.org/10.1021/cr970464o] [PMID: 11848979]
[26]
Cerelli, M.J.; Curtis, D.L.; Dunn, J.P.; Nelson, P.H.; Peak, T.M.; Waterbury, L.D. Antiinflammatory and aldose reductase inhibitory activity of some tricyclic arylacetic acids. J. Med. Chem., 1986, 29(11), 2347-2351.
[http://dx.doi.org/10.1021/jm00161a033] [PMID: 3097317]
[27]
Kilinç, N. Inhibition profiles and molecular docking studies of antiproliferative agents against aldose reductase enzyme. Int. J. Chem. Technol., 2021, 5(1), 77-82.
[28]
Release, S. 2020–3: Maestro; Schrödinger, LLC: New York, NY, 2020.
[29]
Akıncıoğlu, A.; Göksu, S.; Naderi, A.; Akıncıoğlu, H.; Kılınç, N.; Gülçin, İ. Cholinesterases, carbonic anhydrase inhibitory properties and in silico studies of novel substituted benzylamines derived from dihydrochalcones. Comput. Biol. Chem., 2021, 94, 107565.
[http://dx.doi.org/10.1016/j.compbiolchem.2021.107565] [PMID: 34474201]
[30]
Sherman, W.; Day, T.; Jacobson, M.P.; Friesner, R.A.; Farid, R. Novel procedure for modeling ligand/receptor induced fit effects. J. Med. Chem., 2006, 49(2), 534-553.
[http://dx.doi.org/10.1021/jm050540c] [PMID: 16420040]
[31]
Gök, N. Akıncıoğlu, A.; Erümit Binici, E.; Akıncıoğlu, H.; Kılınç, N.; Göksu, S. Synthesis of novel sulfonamides with anti-Alzheimer and antioxidant capacities. Arch. Pharm. (Weinheim), 2021, 354(7), e2000496.
[http://dx.doi.org/10.1002/ardp.202000496] [PMID: 33749025]
[32]
Mohan, B.; Muhammad, S. Al-Sehemi, A.G.; Bharti, S.; Kumar, S.; Choudhary, M. Synthesis of copper (II) coordination complex, its molecular docking and computational exploration for novel functional properties: A dual approach. ChemistrySelect, 2021, 6(4), 738-745.
[http://dx.doi.org/10.1002/slct.202003738]
[33]
Alarfaji, S.S.; Hussain, S.; Al-Sehemi, A.G.; Muhammad, S.; Khan, I.U.; Rabbani, F.; Gilani, M.A.; Ullah, H. Synthesis, characterization, and computational study of copper bipyridine complex [Cu (C18H24N2) (NO3)2] to explore its functional properties. Z. Naturforsch. C J. Biosci., 2021, 0(0)
[http://dx.doi.org/10.1515/znc-2021-0248] [PMID: 34856089]
[34]
Jawaria, R.; Khan, M.U.; Hussain, M.; Muhammad, S.; Sagir, M.; Hussain, A.; Al-Sehemi, A.G. Synthesis and characterization of ferrocene-based thiosemicarbazones along with their computational studies for potential as inhibitors for SARS-CoV-2. J. Iran. Chem. Soc., 2021, 1-8.
[35]
Muhammad, S.; Hassan, S.H.; Al-Sehemi, A.G.; Shakir, H.A.; Khan, M.; Irfan, M.; Iqbal, J. Exploring the new potential antiviral constituents of Moringa oliefera for SARS-COV-2 pathogenesis: An in silico molecular docking and dynamic studies. Chem. Phys. Lett., 2021, 767, 138379.
[http://dx.doi.org/10.1016/j.cplett.2021.138379] [PMID: 33518774]
[36]
Yuriev, E.; Agostino, M.; Ramsland, P.A. Challenges and advances in computational docking: 2009 in review. J. Mol. Recognit., 2011, 24(2), 149-164.
[http://dx.doi.org/10.1002/jmr.1077] [PMID: 21360606]
[37]
Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov., 2015, 10(5), 449-461.
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[38]
Lyne, P.D.; Lamb, M.L.; Saeh, J.C. Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J. Med. Chem., 2006, 49(16), 4805-4808.
[http://dx.doi.org/10.1021/jm060522a] [PMID: 16884290]
[39]
Gálvez, J.; Polo, S.; Insuasty, B.; Gutiérrez, M.; Cáceres, D.; Alzate-Morales, J.H.; De-la-Torre, P.; Quiroga, J. Design, facile synthesis, and evaluation of novel spiro- and pyrazolo[1,5-c]quinazolines as cholinesterase inhibitors: Molecular docking and MM/GBSA studies. Comput. Biol. Chem., 2018, 74, 218-229.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.03.001] [PMID: 29655025]
[40]
Prime;, Schrödinger, LLC: New York, NY. 2021. Available from: https://www.schrodinger.com/products/prime
[41]
Zia, M.; Muhammad, S. Shafiq-urRehman; Bibi, S.; Abbasi, S.W.; Al-Sehemi, A.G.; Chaudhary, A.R.; Bai, F.Q. Exploring the potential of novel phenolic compounds as potential therapeutic candidates against SARS-CoV-2, using quantum chemistry, molecular docking and dynamic studies. Bioorg. Med. Chem. Lett., 2021, 43, 128079.
[http://dx.doi.org/10.1016/j.bmcl.2021.128079] [PMID: 33940136]
[42]
Haroon, M.; Akhtar, T.; Khalid, M.; Ali, S.; Zahra, S.; Ul Haq, I.; Alhujaily, M. C H de B Dias, M.; Cristina Lima Leite, A.; Muhammad, S. Synthesis, antioxidant, antimicrobial and antiviral docking studies of ethyl 2-(2-(arylidene)hydrazinyl)thiazole-4-carboxylates. Z. Naturforsch. C J. Biosci., 2021, 76(11-12), 467-480.
[http://dx.doi.org/10.1515/znc-2021-0042] [PMID: 33901389]
[43]
Saeedi, P.; Salpea, P.; Karuranga, S.; Petersohn, I.; Malanda, B.; Gregg, E.W.; Unwin, N.; Wild, S.H.; Williams, R. Mortality attributable to diabetes in 20-79 years old adults, 2019 estimates: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract., 2020, 162, 108086.
[http://dx.doi.org/10.1016/j.diabres.2020.108086] [PMID: 32068099]
[44]
Costantino, L.; Rastelli, G.; Vianello, P.; Cignarella, G.; Barlocco, D. Diabetes complications and their potential prevention: Aldose reductase inhibition and other approaches. Med. Res. Rev., 1999, 19(1), 3-23.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199901)19:1<3:AID-MED2>3.0.CO;2-7] [PMID: 9918192]
[45]
Van den Berghe, G. How does blood glucose control with insulin save lives in intensive care? J. Clin. Invest., 2004, 114(9), 1187-1195.
[http://dx.doi.org/10.1172/JCI23506] [PMID: 15520847]
[46]
Zimmet, P. Preventing diabetic complications: A primary care perspective. Diabetes Res. Clin. Pract., 2009, 84(2), 107-116.
[http://dx.doi.org/10.1016/j.diabres.2009.01.016] [PMID: 19278746]
[47]
Alim, Z.; Kilinc, N.; Sengul, B.; Beydemir, S. Mechanism of capsaicin inhibition of aldose reductase activity. J. Biochem. Mol. Toxicol., 2017, 31(7), e21898.
[http://dx.doi.org/10.1002/jbt.21898] [PMID: 28217947]
[48]
Taslimi, P.; Aslan, H.E.; Demir, Y.; Oztaskin, N. Maraş, A.; Gulçin, İ.; Beydemir, S.; Goksu, S. Diarylmethanon, bromophenol and diarylmethane compounds: Discovery of potent aldose reductase, α-amylase and α-glycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia. Int. J. Biol. Macromol., 2018, 119, 857-863.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.004] [PMID: 30077669]
[49]
Sonowal, H.; Ramana, K.V. Development of aldose reductase inhibitors for the treatment of inflammatory disorders and cancer: Current drug design strategies and future directions. Curr. Med. Chem., 2021, 28(19), 3683-3712.
[http://dx.doi.org/10.2174/0929867327666201027152737] [PMID: 33109031]
[50]
Grewal, A.S.; Bhardwaj, S.; Pandita, D.; Lather, V.; Sekhon, B.S. Updates on aldose reductase inhibitors for management of diabetic complications and non-diabetic diseases. Mini Rev. Med. Chem., 2016, 16(2), 120-162.
[http://dx.doi.org/10.2174/1389557515666150909143737] [PMID: 26349493]
[51]
Quattrini, L.; La Motta, C. Aldose reductase inhibitors: 2013-present. Expert Opin. Ther. Pat., 2019, 29(3), 199-213.
[http://dx.doi.org/10.1080/13543776.2019.1582646] [PMID: 30760060]
[52]
Mok, S.Y.; Lee, S. Identification of flavonoids and flavonoid rhamnosides from Rhododendron mucronulatum for albiflorum and their inhibitory activities against aldose reductase. Food Chem., 2013, 136(2), 969-974.
[http://dx.doi.org/10.1016/j.foodchem.2012.08.091] [PMID: 23122151]
[53]
Comakli, V.; Adem, S.; Oztekin, A.; Demirdag, R. Screening inhibitory effects of selected flavonoids on human recombinant aldose reductase enzyme: In vitro and in silico study. Arch. Physiol. Biochem., 2020, 1-7.
[http://dx.doi.org/10.1080/13813455.2020.1771377] [PMID: 32463711]
[54]
Srimai, V.; Ramesh, M.; Parameshwar, K.S.; Parthasarathy, T. Computer-aided design of selective Cytochrome P450 inhibitors and docking studies of alkyl resorcinol derivatives. Med. Chem. Res., 2013, 22(11), 5314-5323.
[http://dx.doi.org/10.1007/s00044-013-0532-5]
[55]
Güller, P. The in vitro and in silico inhibition mechanism of glutathione reductase by resorcinol derivatives: A molecular docking study. J. Mol. Struct., 2021, 1228, 129790.
[http://dx.doi.org/10.1016/j.molstruc.2020.129790]

© 2025 Bentham Science Publishers | Privacy Policy