Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Thiazolopyrimidine Scaffold as a Promising Nucleus for Developing Anticancer Drugs: A Review Conducted in Last Decade

Author(s): Md. Rabiul Islam and Hesham Fahmy*

Volume 22, Issue 17, 2022

Published on: 15 June, 2022

Page: [2942 - 2955] Pages: 14

DOI: 10.2174/1871520622666220411110528

Price: $65

Abstract

The thiazolopyrimidine nucleus is a bioisosteric analog of purine and an important class of N-containing heterocycles. Thiazolopyrimidine scaffolds are considered a promising class of bioactive compounds that encompass diverse biological activities, such as antibacterial, antiviral, antifungal, anticancer, corticotrophin-releasing factor antagonists, anti-inflammatory, antituberculosis, and glutamic receptors antagonists. Despite the importance of thiazolopyrimidines from a pharmacological viewpoint, there is hardly a comprehensive review on this important heterocyclic nucleus. Throughout the years, those scaffolds have been studied extensively for its anticancer properties and several compounds were designed, synthesized, and evaluated for their anticancer effects with activity in the μM to nM range. However, there are hardly any reviews covering the anticancer effects of thiazolopyrimidines.

In this review, an effort was made to compile literature covering the anticancer activity of thiazolopyrimidines reported in the last decade (2010-2020). Nearly thirty articles were reviewed and compounds with IC50 < 50 μM against at least 50% of the used cell lines were listed in this review. The best ten compounds (10a, 14b, 17g, 18, 25e, 25k, 34e, 41i, 49a and 49c) showing the best anticancer activity against the corresponding cell lines during the last 10 years are highlighted.

By highlighting the most active compounds, this review article sheds light on the structural features associated with the strongest anticancer effects to provide guidance for future research aiming to develop anticancer molecules.

Keywords: Thiazolopyrimdines, thiazolo[3, 2-a]pyrimdines, 2-c]pyrimdines, 4-a]pyrimdines, 4-c]pyrimdines, thiazolo[4, 5-d]pyrimdines, anticancer activity.

Graphical Abstract

[1]
Abbas, N.; Swamy, P.M.G.; Dhiwar, P.; Patel, S.; Giles, D. Development of fused and substituted pyrimidine derivatives as potent anti-cancer agents (A review). Pharm. Chem. J., 2021, 54(12), 1215-1226.
[http://dx.doi.org/10.1007/s11094-021-02346-8]
[2]
Kuppast, B.; Fahmy, H. Thiazolo[4,5-d]pyrimidines as a privileged scaffold in drug discovery. Eur. J. Med. Chem., 2016, 113, 198-213.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.031] [PMID: 26942627]
[3]
Suresh, L.; Sagar Vijay Kumar, P.; Poornachandra, Y.; Ganesh Kumar, C.; Babu, N.J.; Chandramouli, G.V. An expeditious four-component domino protocol for the synthesis of novel thiazolo[3,2-a]thiochromeno[4,3-d]pyrimidine derivatives as antibacterial and an-tibiofilm agents. Bioorg. Med. Chem., 2016, 24(16), 3808-3817.
[http://dx.doi.org/10.1016/j.bmc.2016.06.025] [PMID: 27344213]
[4]
Bekhit, A.A.; Fahmy, H.T.; Rostom, S.A.; Baraka, A.M. Design and synthesis of some substituted 1H-pyrazolyl-thiazolo[4,5-d]pyrimidines as anti-inflammatory-antimicrobial Agents. Eur. J. Med. Chem., 2003, 38(1), 27-36.
[http://dx.doi.org/10.1016/S0223-5234(02)00009-0] [PMID: 12593914]
[5]
Tozkoparan, B.; Ertan, M.; Kelicen, P.; Demirdamar, R. Synthesis and anti-inflammatory activities of some thiazolo[3,2-a]pyrimidine derivatives. Farmaco, 1999, 54(9), 588-593.
[http://dx.doi.org/10.1016/S0014-827X(99)00068-3] [PMID: 10555260]
[6]
Pan, B.; Huang, R.; Zheng, L.; Chen, C.; Han, S.; Qu, D.; Zhu, M.; Wei, P. Thiazolidione derivatives as novel antibiofilm agents: Design, synthesis, biological evaluation, and structure-activity relationships. Eur. J. Med. Chem., 2011, 46(3), 819-824.
[http://dx.doi.org/10.1016/j.ejmech.2010.12.014] [PMID: 21255878]
[7]
Mohamed, S.F.; Flefel, E.M.; Amr, A-G.; Abd El-Shafy, D.N. Anti-HSV-1 activity and mechanism of action of some new synthesized substituted pyrimidine, thiopyrimidine and thiazolopyrimidine derivatives. Eur. J. Med. Chem., 2010, 45(4), 1494-1501.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.057] [PMID: 20110135]
[8]
Cai, D.; Zhang, Z.H.; Chen, Y.; Yan, X.J.; Zou, L.J.; Wang, Y.X.; Liu, X.Q. Synthesis, antibacterial and antitubercular activities of some 5H-thiazolo[3,2-a]pyrimidin-5-ones and sulfonic acid derivatives. Molecules, 2015, 20(9), 16419-16434.
[http://dx.doi.org/10.3390/molecules200916419] [PMID: 26378507]
[9]
Al-Omary, F.A.; Hassan, G.S.; El-Messery, S.M.; El-Subbagh, H.I. Substituted thiazoles V. synthesis and antitumor activity of novel thia-zolo[2,3-b]quinazoline and pyrido[4,3-d]thiazolo[3,2-a]pyrimidine analogues. Eur. J. Med. Chem., 2012, 47(1), 65-72.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.023] [PMID: 22056277]
[10]
Wichmann, J.; Adam, G.; Kolczewski, S.; Mutel, V.; Woltering, T. Structure-activity relationships of substituted 5H-thiazolo[3,2-a]pyrimidines as group 2 metabotropic glutamate receptor antagonists. Bioorg. Med. Chem. Lett., 1999, 9(11), 1573-1576.
[http://dx.doi.org/10.1016/S0960-894X(99)00227-9] [PMID: 10386938]
[11]
Fahmy, H.T.; Rostom, S.A.; Saudi, M.N.; Zjawiony, J.K.; Robins, D.J. Synthesis and in vitro evaluation of the anticancer activity of novel fluorinated thiazolo[4, 5-d]pyrimidines. Arch. Pharm. (Weinheim), 2003, 336(4-5), 216-225.
[http://dx.doi.org/10.1002/ardp.200300734] [PMID: 12916055]
[12]
Teleb, M.; Kuppast, B.; Spyridaki, K.; Liapakis, G.; Fahmy, H. Synthesis of 2-imino and 2-hydrazono thiazolo[4,5-d]pyrimidines as cor-ticotropin releasing factor (CRF) antagonists. Eur. J. Med. Chem., 2017, 138, 900-908.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.016] [PMID: 28750312]
[13]
Kuppast, B.; Spyridaki, K.; Liapakis, G.; Fahmy, H. Synthesis of substituted pyrimidines as corticotropin releasing factor (CRF) receptor ligands. Eur. J. Med. Chem., 2014, 78, 1-9.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.040] [PMID: 24675175]
[14]
Fatima, S.; Sharma, A.; Saxena, R.; Tripathi, R.; Shukla, S.K.; Pandey, S.K.; Tripathi, R.; Tripathi, R.P. One pot efficient diversity oriented synthesis of polyfunctional styryl thiazolopyrimidines and their bio-evaluation as antimalarial and anti-HIV agents. Eur. J. Med. Chem., 2012, 55, 195-204.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.018] [PMID: 22871486]
[15]
World Health Organization: Cancer. 2021. Available from: https://www.who.int/en/news-room/fact-sheets/detail/cancer
[16]
Nussbaumer, S.; Bonnabry, P.; Veuthey, J.L.; Fleury-Souverain, S. Analysis of anticancer drugs: A review. Talanta, 2011, 85(5), 2265-2289.
[http://dx.doi.org/10.1016/j.talanta.2011.08.034] [PMID: 21962644]
[17]
Thurston, D.E. Chemistry and pharmacology of anticancer drugs; . CRC Press. Taylor and Francis Group: Boca Raton, 2007.
[18]
Abdellatif, K.; Bakr, R. Pyrimidine and fused pyrimidine derivatives as promising protein kinase inhibitors for cancer treatment. Med. Chem. Res., 2021, 30(1), 1-19.
[http://dx.doi.org/10.1007/s00044-020-02656-8]
[19]
Elassar, A-Z.A-A. Abdel-Zaher; Elassar, Bridgehead nitrogen thiazolopyrimidines. Sulfur Reports, 2002, 23(1), 47-77.
[http://dx.doi.org/10.1080/01961770208047967]
[20]
Basyouni, K.M.E-B.W.M. Thiazolopyrimidines without bridge-head nitrogen: Thiazolo [4,5-d] pyrimidines. J. Sulfur Chem., 2010, 31(6), 551-590.
[http://dx.doi.org/10.1080/17415993.2010.521939]
[21]
Wambang, N.; Schifano-Faux, N.; Aillerie, A.; Baldeyrou, B.; Jacquet, C.; Bal-Mahieu, C.; Bousquet, T.; Pellegrini, S.; Ndifon, P.T.; Meignan, S.; Goossens, J.F.; Lansiaux, A.; Pélinski, L. Synthesis and biological activity of ferrocenyl indeno[1,2-c]isoquinolines as topoi-somerase II inhibitors. Bioorg. Med. Chem., 2016, 24(4), 651-660.
[http://dx.doi.org/10.1016/j.bmc.2015.12.033] [PMID: 26740155]
[22]
Watt, P.M.; Hickson, I.D. Structure and function of type II DNA topoisomerases. Biochem. J., 1994, 303(Pt 3), 681-695.
[http://dx.doi.org/10.1042/bj3030681] [PMID: 7980433]
[23]
Woessner, R.D.; Mattern, M.R.; Mirabelli, C.K.; Johnson, R.K.; Drake, F.H. Proliferation- and cell cycle-dependent differences in expres-sion of the 170 kilodalton and 180 kilodalton forms of topoisomerase II in NIH-3T3 cells. Cell Growth Differ., 1991, 2(4), 209-214.
[PMID: 1651102]
[24]
Sekhar, T.; Thriveni, P.; Venkateswarlu, A.; Daveedu, T.; Peddanna, K.; Sainath, S.B. One-pot synthesis of thiazolo[3,2-a]pyrimidine derivatives, their cytotoxic evaluation and molecular docking studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 231, 118056.
[http://dx.doi.org/10.1016/j.saa.2020.118056] [PMID: 32006911]
[25]
Nemr, M.T.M. AboulMagd, A.M. New fused pyrimidine derivatives with anticancer activity: Synthesis, topoisomerase II inhibition, apoptotic inducing activity and molecular modeling study. Bioorg. Chem., 2020, 103, 104134.
[http://dx.doi.org/10.1016/j.bioorg.2020.104134] [PMID: 32750610]
[26]
Zhang, B.; Wang, N.; Zhang, C.; Gao, C.; Zhang, W.; Chen, K.; Wu, W.; Chen, Y.; Tan, C.; Liu, F.; Jiang, Y. Novel multi-substituted benzyl acridone derivatives as survivin inhibitors for hepatocellular carcinoma treatment. Eur. J. Med. Chem., 2017, 129, 337-348.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.027] [PMID: 28237663]
[27]
Keshari, A.K.; Singh, A.K.; Raj, V.; Rai, A.; Trivedi, P.; Ghosh, B.; Kumar, U.; Rawat, A.; Kumar, D.; Saha, S. p-TSA-promoted syntheses of 5H-benzo[h] thiazolo[2,3-b]quinazoline and indeno[1,2-d] thiazolo[3,2-a]pyrimidine analogs: Molecular modeling and in vitro anti-tumor activity against hepatocellular carcinoma. Drug Des. Devel. Ther., 2017, 11, 1623-1642.
[http://dx.doi.org/10.2147/DDDT.S136692] [PMID: 28615927]
[28]
Taher, A.T.; Helwa, A.A. Synthesis, antitumor and antimicrobial testing of some new thiopyrimidine analogues. Chem. Pharm. Bull. (Tokyo), 2012, 60(10), 1305-1313.
[http://dx.doi.org/10.1248/cpb.c12-00557] [PMID: 22863845]
[29]
Hassan, G.S. Synthesis and antitumor activity of certain new thiazolo[2,3-b]quinazoline and thiazolo[3,2-a]pyrimidine analogs. Med. Chem. Res., 2014, 23(1), 288-401.
[http://dx.doi.org/10.1007/s00044-013-0649-6]
[30]
Al-Rashood, S.T.; Elshahawy, S.S.; El-Qaias, A.M.; El-Behedy, D.S.; Hassanin, A.A.; El-Sayed, S.M.; El-Messery, S.M.; Shaldam, M.A.; Hassan, G.S. New thiazolopyrimidine as anticancer agents: Synthesis, biological evaluation, DNA binding, molecular modeling and ADMET study. Bioorg. Med. Chem. Lett., 2020, 30(23), 127611.
[http://dx.doi.org/10.1016/j.bmcl.2020.127611] [PMID: 33068712]
[31]
Ramadan, S.K.; El-Helw, E.E.; Sallam, H.A. Cytotoxic and antimicrobial activities of some novel heterocycles employing 6-(1,3-diphenyl-1H-pyrazol-4-yl)-4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimi dine-5-carbonitrile. Heterocycl. Commun., 2019, 25(1), 107-115.
[http://dx.doi.org/10.1515/hc-2019-0008]
[32]
Ma, C.; Wang, Y.; Dong, F.; Wang, Z.; Zhao, Y.; Shan, Y.; Gu, W.; Wang, S. Synthesis and antitumor activity of isolongifoleno[7,8-d]thiazolo[3,2-a]pyrimidine derivatives via enhancing ROS level. Chem. Biol. Drug Des., 2019, 94(2), 1457-1466.
[http://dx.doi.org/10.1111/cbdd.13522] [PMID: 30920166]
[33]
Abdo, M.N.Y. Synthesis and antitumor evaluation of novel dihydropyrimidine, thiazolo[3,2-a]pyrimidine and pyrano[2,3-d]pyrimidine derivatives. Acta Chim. Slov., 2015, 62(1), 168-180.
[http://dx.doi.org/10.17344/acsi.2014.867] [PMID: 25830973]
[34]
Yahyaa, T.A.; Abdullaha, J.H.; Al-Ghorafib, M.H.; Yassina, S.H.; Almahbshi, H.M. Synthesis of some arylidene derivatives of thia-zolopyrimidineas anticancer. Pharma Chem., 2015, 7(1), 106-110.
[35]
Selvam, T.P.; Karthick, V.; Kumar, P.V.; Ali, M.A. Synthesis and structure-activity relationship study of 2-(substituted benzylidene)-7-(4-fluorophenyl)-5-(furan-2-yl)-2H-thiazolo[3,2-a]pyrimidin-3(7H)-one derivatives as anticancer agents. Drug Discov. Ther., 2012, 6(4), 198-204.
[http://dx.doi.org/10.5582/ddt.2012.v6.4.198] [PMID: 23006990]
[36]
Mahmoud, N.A. Synthesis and anticancer activity of novel 2-(4-amino-5-isocyanomethyl-2,3-dihydro-thiophen-2-yl)-7-[hydroxy-3-methyl-6,7-dihydrothiazolo[3,2-a]pyrimidin-5-one derivatives. Pharma Chem., 2016, 8(19), 415-423.
[37]
Cheng, N.; Janumyan, Y.M.; Didion, L.; Van Hofwegen, C.; Yang, E.; Knudson, C.M. Bcl-2 inhibition of T-cell proliferation is related to prolonged T-cell survival. Oncogene, 2004, 23(21), 3770-3780.
[http://dx.doi.org/10.1038/sj.onc.1207478] [PMID: 15034548]
[38]
Andersen, R.S.; Wenandy, L.; Sørensen, R.B. thor Straten, P.; Andersen, M.H. Mcl-1 and anticancer vaccination: Identification of an HLA-A2-restricted epitope. Leukemia, 2008, 22(3), 668-669.
[http://dx.doi.org/10.1038/sj.leu.2404937] [PMID: 17805325]
[39]
Lessene, G.; Czabotar, P.E.; Colman, P.M. BCL-2 family antagonists for cancer therapy. Nat. Rev. Drug Discov., 2008, 7(12), 989-1000.
[http://dx.doi.org/10.1038/nrd2658] [PMID: 19043450]
[40]
Zhou, B.; Li, X.; Li, Y.; Xu, Y.; Zhang, Z.; Zhou, M.; Zhang, X.; Liu, Z.; Zhou, J.; Cao, C.; Yu, B.; Wang, R. Discovery and development of thiazolo[3,2-a]pyrimidinone derivatives as general inhibitors of Bcl-2 family proteins. ChemMedChem, 2011, 6(5), 904-921.
[http://dx.doi.org/10.1002/cmdc.201000484] [PMID: 21520420]
[41]
Tang, A.; Gao, K.; Chu, L.; Zhang, R.; Yang, J.; Zheng, J. Aurora kinases: Novel therapy targets in cancers. Oncotarget, 2017, 8(14), 23937-23954.
[http://dx.doi.org/10.18632/oncotarget.14893] [PMID: 28147341]
[42]
Landen, C.N., Jr; Lin, Y.G.; Immaneni, A.; Deavers, M.T.; Merritt, W.M.; Spannuth, W.A.; Bodurka, D.C.; Gershenson, D.M.; Brinkley, W.R.; Sood, A.K. Overexpression of the centrosomal protein Aurora-A kinase is associated with poor prognosis in epithelial ovarian can-cer patients. Clin. Cancer Res., 2007, 13(14), 4098-4104.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0431] [PMID: 17634535]
[43]
Umene, K.; Banno, K.; Kisu, I.; Yanokura, M.; Nogami, Y.; Tsuji, K.; Masuda, K.; Ueki, A.; Kobayashi, Y.; Yamagami, W.; Nomura, H.; Tominaga, E.; Susumu, N.; Aoki, D. Aurora kinase inhibitors: Potential molecular targeted drugs for gynecologic malignant tumors (Re-view) Corrigendum in Biomed. Rep., 2013, 1(3), 335-340.
[http://dx.doi.org/10.3892/br.2019.1249]
[44]
Giet, R.; Petretti, C.; Prigent, C. Aurora kinases, aneuploidy and cancer, a coincidence or a real link? Trends Cell Biol., 2005, 15(5), 241-250.
[http://dx.doi.org/10.1016/j.tcb.2005.03.004] [PMID: 15866028]
[45]
Bavetsias, V.; Linardopoulos, S. Aurora Kinase Inhibitors: Current status and outlook. Front. Oncol., 2015, 5, 278.
[http://dx.doi.org/10.3389/fonc.2015.00278] [PMID: 26734566]
[46]
Balakumar, C.; Ramesh, M.; Tham, C.L.; Khathi, S.P.; Kozielski, F.; Srinivasulu, C.; Hampannavar, G.A.; Sayyad, N.; Soliman, M.E.; Karpoormath, R. Ligand- and structure-based in silico studies to identify kinesin spindle protein (KSP) inhibitors as potential anticancer agents. J. Biomol. Struct. Dyn., 2018, 36(14), 3687-3704.
[http://dx.doi.org/10.1080/07391102.2017.1396255] [PMID: 29064326]
[47]
Bongero, D.; Paoluzzi, L.; Marchi, E.; Zullo, K.M.; Neisa, R.; Mao, Y.; Escandon, R.; Wood, K.; O’Connor, O.A. The novel kinesin spin-dle protein (KSP) inhibitor SB-743921 exhibits marked activity in in vivo and in vitro models of aggressive large B-cell lymphoma. Leuk. Lymphoma, 2015, 56(10), 2945-2952.
[http://dx.doi.org/10.3109/10428194.2015.1020058] [PMID: 25860245]
[48]
Yin, Y.; Sun, H.; Xu, J.; Xiao, F.; Wang, H.; Yang, Y.; Ren, H.; Wu, C.T.; Gao, C.; Wang, L. Kinesin spindle protein inhibitor SB743921 induces mitotic arrest and apoptosis and overcomes imatinib resistance of chronic myeloid leukemia cells. Leuk. Lymphoma, 2015, 56(6), 1813-1820.
[http://dx.doi.org/10.3109/10428194.2014.956319] [PMID: 25146433]
[49]
Amira, S. Abd El-All; Asmaa, A. Magd-El-Din; Fatma, A. F. Ragab; Mahmoud, Elhefnawi; Mohamed, M. Abdalla; Shadia, A. Galal; El-Rashedy, A.A. New benzimidazoles and their antitumor effects with aurora A kinase and KSP inhibitory activities. Arch. Pharm. (Weinheim), 2015, 348(7), 1-12.
[http://dx.doi.org/10.1002/ardp.201400441]
[50]
Yousif, M.N.M.; El-Sayed, W.A.; Abbas, H-S.; Awad, H.M. 2017, Anticancer activity of new substituted pyrimidines, their thioglycosides and thiazolopyrimidine derivatives. J. Appl. Pharm. Sci., 2017, 7(11), 021-032.
[http://dx.doi.org/10.7324/JAPS.2017.71104]
[51]
Abu-Hashem, A.A.; Youssef, M.M.; Hussein, H.R. Synthesis, antioxidant, antituomer activities of Some New thiazolopyrimidines, pyr-rolothiazolopyrimidines and triazolopyrrolothiazolopyrimidines derivatives. J. Chin. Chem. Soc. (Taipei), 2011, 58(1), 41-48.
[http://dx.doi.org/10.1002/jccs.201190056]
[52]
Awad, S.M.; Fathalla, O.A.; Wietrzyk, J.; Milczarek, M.; Soliman, A.M.; Mohamed, M.S. Synthesis of new pyrimidine derivatives and their antiproliferative activity against selected human cancer cell lines. Res. Chem. Intermed., 2015, 41(3), 1789-1801.
[http://dx.doi.org/10.1007/s11164-013-1312-z]
[53]
Naglaa, A. Abdel-Hafez; Salwa, F. Mohamed; Fatma, A. A. El-Hag; Usama, W. Hawas; Awad, H.M. Synthesis and cytotoxicity evaluation of some new pyrimidinethione and thiazolopyrimidine derivatives linked to N-propylpiperidone. Pharma Chem., 2016, 8(14), 57-66.
[54]
Lei, Z.; Yaa, L.; Jing, W.; Xinling, Z.; Qiulia, Y.; Qizhengb, Y. Synthesis and antiproliferative activity of novel thiazolo[3,2-a]pyrimidine derivates. Youji Huaxue, 2015, 35(2), 497-504.
[http://dx.doi.org/10.6023/cjoc201408039]
[55]
Ohta, A.; Gorelik, E.; Prasad, S.J.; Ronchese, F.; Lukashev, D.; Wong, M.K.; Huang, X.; Caldwell, S.; Liu, K.; Smith, P.; Chen, J.F.; Jack-son, E.K.; Apasov, S.; Abrams, S.; Sitkovsky, M. A2A adenosine receptor protects tumors from antitumor T cells. Proc. Natl. Acad. Sci. USA, 2006, 103(35), 13132-13137.
[http://dx.doi.org/10.1073/pnas.0605251103] [PMID: 16916931]
[56]
Congreve, M.; Brown, G.A.; Borodovsky, A.; Lamb, M.L. Targeting adenosine A2A receptor antagonism for treatment of cancer. Expert Opin. Drug Discov., 2018, 13(11), 997-1003.
[http://dx.doi.org/10.1080/17460441.2018.1534825] [PMID: 30336706]
[57]
Vijayan, D.; Young, A.; Teng, M.W.L.; Smyth, M.J. Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer, 2017, 17(12), 709-724.
[http://dx.doi.org/10.1038/nrc.2017.86] [PMID: 29059149]
[58]
Varano, F.; Catarzi, D.; Vigiani, E.; Vincenzi, F.; Pasquini, S.; Varani, K.; Colotta, V. Piperazine- and piperidine-containing thiazolo[5,4-d]pyrimidine derivatives as new potent and selective adenosine A2A receptor inverse agonists. Pharmaceuticals (Basel), 2020, 13(8), E161.
[http://dx.doi.org/10.3390/ph13080161] [PMID: 32722122]
[59]
Pietenpol, J.A.; Stewart, Z.A. Cell cycle checkpoint signaling: Cell cycle arrest versus apoptosis. Toxicology, 2002, 181-182, 475-481.
[http://dx.doi.org/10.1016/S0300-483X(02)00460-2] [PMID: 12505356]
[60]
Mohamed, S.H.; Elgiushy, H.R.; Taha, H.; Hammad, S.F.; Abou-Taleb, N.A.; Abouzid, K.A.M.; Al-Sawaf, H.; Hassan, Z. An investigative study of antitumor properties of a novel thiazolo[4,5-d]pyrimidine small molecule revealing superior antitumor activity with CDK1 selec-tivity and potent pro-apoptotic properties. Bioorg. Med. Chem., 2020, 28(17), 115633.
[http://dx.doi.org/10.1016/j.bmc.2020.115633] [PMID: 32773088]
[61]
Sanphanya, K.; Wattanapitayakul, S.K.; Phowichit, S.; Fokin, V.V.; Vajragupta, O. Novel VEGFR-2 kinase inhibitors identified by the back-to-front approach. Bioorg. Med. Chem. Lett., 2013, 23(10), 2962-2967.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.042] [PMID: 23562241]
[62]
Xue, W.J.; Deng, Y.H.; Yan, Z.H.; Liu, J.P.; Liu, Y.; Sun, L.P. Phenyl and diaryl ureas with thiazolo[5,4-d]pyrimidine scaffold as angio-genesis inhibitors: Design, synthesis and biological evaluation. Chem. Biodivers., 2019, 16(4), e1800493.
[http://dx.doi.org/10.1002/cbdv.201800493] [PMID: 30688404]
[63]
Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Mol. Cancer, 2019, 18(1), 26.
[http://dx.doi.org/10.1186/s12943-019-0954-x] [PMID: 30782187]
[64]
Wee, S.; Wiederschain, D.; Maira, S.M.; Loo, A.; Miller, C.; deBeaumont, R.; Stegmeier, F.; Yao, Y.M.; Lengauer, C. PTEN-deficient can-cers depend on PIK3CB. Proc. Natl. Acad. Sci. USA, 2008, 105(35), 13057-13062.
[http://dx.doi.org/10.1073/pnas.0802655105] [PMID: 18755892]
[65]
Lin, H.; Schulz, M.J.; Xie, R.; Zeng, J.; Luengo, J.I.; Squire, M.D.; Tedesco, R.; Qu, J.; Erhard, K.; Mack, J.F.; Raha, K.; Plant, R.; Rominger, C.M.; Ariazi, J.L.; Sherk, C.S.; Schaber, M.D.; McSurdy-Freed, J.; Spengler, M.D.; Davis, C.B.; Hardwicke, M.A.; Rivero, R.A. Rational design, synthesis, and SAR of a novel thiazolopyrimidinone series of selective PI3K-beta inhibitors. ACS Med. Chem. Lett., 2012, 3(7), 524-529.
[http://dx.doi.org/10.1021/ml300045b] [PMID: 24900504]
[66]
Abd Elhameed, A.A.; El-Gohary, N.S.; El-Bendary, E.R.; Shaaban, M.I.; Bayomi, S.M. Synthesis and biological screening of new thia-zolo[4,5-d]pyrimidine and dithiazolo[3,2-a:5′,4′-e]pyrimidinone derivatives as antimicrobial, antiquorum-sensing and antitumor agents. Bioorg. Chem., 2018, 81, 299-310.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.013] [PMID: 30172111]
[67]
Li, Z.H.; Zhang, J.; Liu, X.Q.; Geng, P.F.; Ma, J.L.; Wang, B.; Zhao, T.Q.; Zhao, B.; Wei, H.M.; Wang, C.; Fu, D.J.; Yu, B.; Liu, H.M. Iden-tification of thiazolo[5,4-d]pyrimidine derivatives as potent antiproliferative agents through the drug repurposing strategy. Eur. J. Med. Chem., 2017, 135, 204-212.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.056] [PMID: 28456031]
[68]
Li, Z.H.; Liu, X.Q.; Geng, P.F.; Zhang, J.; Ma, J.L.; Wang, B.; Zhao, T.Q.; Zhao, B.; Zhang, X.H.; Yu, B.; Liu, H.M. Design, synthesis and antiproliferative activity of thiazolo[5,4-d]pyrimidine derivatives through the atom replacement strategy. Eur. J. Med. Chem., 2017, 138, 1034-1041.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.039] [PMID: 28759876]
[69]
Li, Z-H.; Liu, X-Q.; Geng, P-F.; Ma, J-L.; Zhao, T-Q.; Wei, H-M.; Yu, B.; Liu, H-M. Design, synthesis, and biological evaluation of new thiazolo[5,4-d]pyrimidine derivatives as potent antiproliferative agents. MedChemComm, 2017, 8(8), 1655-1658.
[http://dx.doi.org/10.1039/C7MD00165G] [PMID: 30108876]
[70]
Becan, L.; Wagner, E. Synthesis and anticancer evaluation of novel 3,5-diaryl-thiazolo[4,5-d]pyrimidin-2-one derivatives. Med. Chem. Res., 2013, 22(5), 2376-2384.
[http://dx.doi.org/10.1007/s00044-012-0231-7] [PMID: 23543906]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy