Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Novel Approaches for the Application of Herbs for Skin Care

Author(s): Hitesh Chopra, Christos Tsagkaris, Lauren Matthews, Rupesh Kumar Gautam* and Mohammad Amjad Kamal*

Volume 24, Issue 1, 2023

Published on: 27 August, 2022

Page: [164 - 187] Pages: 24

DOI: 10.2174/1389201023666220411110358

Price: $65

Abstract

Skin is the largest non–parenchymal organ of the human body. It constitutes a natural barrier against pathogens and harmful environmental exposures and contributes to the human body's homeostasis. Conditions affecting the skin range from infections and injury to autoimmune diseases and cancer. Herbs have been used to treat dermatological conditions for a long time. Traditional approaches to delivering herbs to the skin include ointments, gels, creams, and lotions. However, poor lipophilicity or hydrophilicity in most herbal preparations results in limited bioavailability and poor penetration, restricting their effectiveness. Nanotechnology-based approaches have major potential, showing more promising results in enhancing transdermal penetration than traditional approaches. This review article summarizes such advances and sheds light on future directions in using nanotechnology-based strategies.

Keywords: Herbs, nanotechnology, transdermal, psoriasis, cosmetics, autoimmune disease.

Graphical Abstract

[1]
Petrovska, B.B. Historical review of medicinal plants’ usage. Pharmacogn. Rev., 2012, 6(11), 1-5.
[http://dx.doi.org/10.4103/0973-7847.95849] [PMID: 22654398]
[2]
Tabassum, N.; Hamdani, M. Plants used to treat skin diseases. Pharmacogn. Rev., 2014, 8(15), 52-60.
[http://dx.doi.org/10.4103/0973-7847.125531] [PMID: 24600196]
[3]
Holick, M.F.; Smith, E.; Pincus, S. Skin as the site of vitamin D synthesis and target tissue for 1,25-dihydroxyvitamin D3. Use of calcitriol (1,25-dihydroxyvitamin D3) for treatment of psoriasis. Arch. Dermatol., 1987, 123(12), 1677-1683a.
[http://dx.doi.org/10.1001/archderm.1987.01660360108022] [PMID: 2825606]
[4]
Liu, S.; Zhang, H.; Duan, E. Epidermal development in mammals: Key regulators, signals from beneath, and stem cells. Int. J. Mol. Sci., 2013, 14(6), 10869-10895.
[http://dx.doi.org/10.3390/ijms140610869] [PMID: 23708093]
[5]
Hay, R.J.; Johns, N.E.; Williams, H.C.; Bolliger, I.W.; Dellavalle, R.P.; Margolis, D.J.; Marks, R.; Naldi, L.; Weinstock, M.A.; Wulf, S.K.; Michaud, C.J.L.; Murray, C.; Naghavi, M. The global burden of skin disease in 2010: An analysis of the prevalence and impact of skin conditions. J. Invest. Dermatol., 2014, 134(6), 1527-1534.
[http://dx.doi.org/10.1038/jid.2013.446] [PMID: 24166134]
[6]
Karimkhani, C.; Dellavalle, R.P.; Coffeng, L.E.; Flohr, C.; Hay, R.J.; Langan, S.M.; Nsoesie, E.O.; Ferrari, A.J.; Erskine, H.E.; Silverberg, J.I.; Vos, T.; Naghavi, M. Global skin disease morbidity and mortality an update from the global burden of disease study 2013. JAMA Dermatol., 2017, 153(5), 406-412.
[http://dx.doi.org/10.1001/jamadermatol.2016.5538] [PMID: 28249066]
[7]
Cunningham, S.D.; Kerrigan, D.L.; Jennings, J.M.; Ellen, J.M. Relationships between perceived STD-related stigma, STD-related shame and STD screening among a household sample of adolescents. Perspect. Sex. Reprod. Health, 2009, 41(4), 225-230.
[http://dx.doi.org/10.1363/4122509] [PMID: 20444177]
[8]
Mian, M.; Silfvast-Kaiser, A.S.; Paek, S.Y.; Kivelevitch, D.; Menter, A. A review of the most common dermatologic conditions and their debilitating psychosocial impacts. Int Arch Intern Med., 2019, 3(2), 1-13.
[http://dx.doi.org/10.23937/2643-4466/1710018]
[9]
Levy, R.M.; Huang, E.Y.; Roling, D.; Leyden, J.J.; Margolis, D.J. Effect of antibiotics on the oropharyngeal flora in patients with acne. Arch. Dermatol., 2003, 139(4), 467-471.
[http://dx.doi.org/10.1001/archderm.139.4.467] [PMID: 12707094]
[10]
Yeatman, J.M.; Kilkenny, M.F.; Stewart, K.; Marks, R. Advice about management of skin conditions in the community: Who are the pro-viders? Australas. J. Dermatol., 1996, 37(s1)(Suppl. 1), S46-S47.
[http://dx.doi.org/10.1111/j.1440-0960.1996.tb01084.x] [PMID: 8713016]
[11]
Caumes, E. Skin diseases.Travel medicine; Elsevier, 2019.
[http://dx.doi.org/10.1016/B978-0-323-54696-6.00057-4]
[12]
Fabbrocini, G.; Cameli, N.; Romano, M.C.; Mariano, M.; Panariello, L.; Bianca, D.; Monfrecola, G. Chemotherapy and skin reactions. J. Exp. Clin. Cancer Res., 2012, 31(1), 50.
[http://dx.doi.org/10.1186/1756-9966-31-50] [PMID: 22640460]
[13]
Sidbury, R.; Davis, D.M.; Cohen, D.E.; Cordoro, K.M.; Berger, T.G.; Bergman, J.N.; Chamlin, S.L.; Cooper, K.D.; Feldman, S.R.; Hanifin, J.M.; Krol, A.; Margolis, D.J.; Paller, A.S.; Schwarzenberger, K.; Silverman, R.A.; Simpson, E.L.; Tom, W.L.; Williams, H.C.; Elmets, C.A.; Block, J.; Harrod, C.G.; Begolka, W.S.; Eichenfield, L.F. American Academy of Dermatology. Guidelines of care for the management of atopic dermatitis: Section 3. Management and treatment with phototherapy and systemic agents. J. Am. Acad. Dermatol., 2014, 71(2), 327-349.
[http://dx.doi.org/10.1016/j.jaad.2014.03.030] [PMID: 24813298]
[14]
Karunamoorthi, K.; Jegajeevanram, K.; Vijayalakshmi, J.; Mengistie, E. Traditional medicinal plants: A source of phytotherapeutic modali-ty in resource-constrained health care settings. J. Evid. Based Complementary Altern. Med., 2012, 18(1), 67-74.
[http://dx.doi.org/10.1177/2156587212460241]
[15]
Moreira. D. de., L.; Teixeira, S.S.; Monteiro, M.H.D.; De-Oliveira, A.C.A.X.; Paumgartten, F.J.R. Traditional use and safety of herbal med-icines. Rev. Bras. Farmacogn., 2014, 24(2), 248-257.
[16]
Pan, S.Y.; Litscher, G.; Gao, S.H.; Zhou, S.F.; Yu, Z.L.; Chen, H.Q.; Zhang, S.F.; Tang, M.K.; Sun, J.N.; Ko, K.M. Historical perspective of traditional indigenous medical practices: The current renaissance and conservation of herbal resources. J Evid Based Complementary Altern Med 2014, 2014
[17]
Toplak, Galle Domestic medicinal plants. Zagreb: Mozaic book; , 2005, pp. 60-61.
[18]
Tsagkaris, C.; Kalachanis, K. The hippocratic account of mental health: Humors and human temperament. Mental Health: Global Chal-lenges Journal., 2020, 3(1), 33-37.
[http://dx.doi.org/10.32437/mhgcj.v3i1.83]
[19]
Thorwald, J. Power and knowledge of ancient physicians; August Cesarec: Zagreb, 1991, pp. 10-255.
[20]
Tsoucalas, G.; Papaioannou, T.; Panayiotakopoulos, G.; Saridaki, Z.; Vrachatis, D.A.; Karamanou, M. Colchicum genus in the writings of ancient greek and byzantine physicians. Curr. Pharm. Des., 2018, 24(6), 648-653.
[http://dx.doi.org/10.2174/1381612824666180115111546] [PMID: 29336250]
[21]
Dimitrova, Z. The history of pharmacy. Sofija: St Clement of Ohrid;, 1999, pp. 13-26.
[22]
Tucakov, J. Healing with plants.Beograd: Rad; , 1990, pp. 576- 578.
[23]
Parham, S.; Kharazi, A.Z.; Bakhsheshi-Rad, H.R.; Nur, H.; Ismail, A.F.; Sharif, S. RamaKrishna, S.; Berto, F. Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants, 2020, 9(12), 1-36.
[http://dx.doi.org/10.3390/antiox9121309]
[24]
Catalán, A.; Pacheco, J.G.; Martínez, A.; Mondaca, M.A. In vitro and in vivo activity of Melaleuca alternifolia mixed with tissue condition-er on Candida albicans. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2008, 105(3), 327-332.
[http://dx.doi.org/10.1016/j.tripleo.2007.08.025] [PMID: 18280967]
[25]
Roana, J.; Mandras, N.; Scalas, D.; Campagna, P.; Tullio, V. Antifungal activity of melaleuca alternifolia essential oil (TTO) and its syner-gy with itraconazole or ketoconazole against trichophyton rubrum. Molecules, 2021, 26(2), 1-10.
[http://dx.doi.org/10.3390/molecules26020461] [PMID: 33477259]
[26]
Benger, S.; Townsend, P.; Ashford, R.L.; Lambert, P. An in vitro study to determine the minimum inhibitory concentration of Melaleuca alternifolia against the dermatophyte Trichophyton rubrum. Foot, 2004, 14(2), 86-91.
[http://dx.doi.org/10.1016/j.foot.2003.11.002]
[27]
Marcos-Tejedor, F.; González-García, P.; Mayordomo, R. Solubilization in vitro of tea tree oil and first results of antifungal effect in ony-chomycosis. Enferm. Infecc. Microbiol. Clin., 2021, 39(8), 395-398.
[http://dx.doi.org/10.1016/j.eimce.2021.07.001] [PMID: 34334327]
[28]
Flores, F.C.; de Lima, J.A.; Ribeiro, R.F.; Alves, S.H.; Rolim, C.M.; Beck, R.C.; da Silva, C.B. Antifungal activity of nanocapsule suspen-sions containing tea tree oil on the growth of Trichophyton rubrum. Mycopathologia, 2013, 175(3-4), 281-286.
[http://dx.doi.org/10.1007/s11046-013-9622-7] [PMID: 23392821]
[29]
Hammer, K.A.; Carson, C.F.; Riley, T.V. In vitro activity of Melaleuca alternifolia (tea tree) oil against dermatophytes and other filamen-tous fungi. J. Antimicrob. Chemother., 2002, 50(2), 195-199.
[http://dx.doi.org/10.1093/jac/dkf112] [PMID: 12161399]
[30]
Devkatte, A.N.; Zore, G.B.; Karuppayil, S.M. Potential of plant oils as inhibitors of Candida albicans growth. FEMS Yeast Res., 2005, 5(9), 867-873.
[http://dx.doi.org/10.1016/j.femsyr.2005.02.003] [PMID: 15925315]
[31]
Bona, E.; Cantamessa, S.; Pavan, M.; Novello, G.; Massa, N.; Rocchetti, A.; Berta, G.; Gamalero, E. Sensitivity of Candida albicans to essential oils: Are they an alternative to antifungal agents? J. Appl. Microbiol., 2016, 121(6), 1530-1545.
[http://dx.doi.org/10.1111/jam.13282] [PMID: 27568869]
[32]
D’Auria, F.D.; Laino, L.; Strippoli, V.; Tecca, M.; Salvatore, G.; Battinelli, L.; Mazzanti, G. In vitro activity of tea tree oil against Candida albicans mycelial conversion and other pathogenic fungi. J. Chemother., 2001, 13(4), 377-383.
[http://dx.doi.org/10.1179/joc.2001.13.4.377] [PMID: 11589479]
[33]
Mertas, A.; Garbusińska, A.; Szliszka, E.; Jureczko, A.; Kowalska, M.; Król, W. The influence of tea tree oil (Melaleuca alternifolia) on fluconazole activity against fluconazole-resistant Candida albicans strains. BioMed Res. Int., 2015, 2015, 590470.
[http://dx.doi.org/10.1155/2015/590470] [PMID: 25722982]
[34]
Liu, T.; Wang, J.; Gong, X.; Wu, X.; Liu, L.; Chi, F. Rosemary and tea tree essential oils exert antibiofilm activities in vitro against staphy-lococcus aureus and Escherichia coli. J. Food Prot., 2020, 83(7), 1261-1267.
[http://dx.doi.org/10.4315/0362-028X.JFP-19-337] [PMID: 32577759]
[35]
O’Bryan, C.A.; Pendleton, S.J.; Crandall, P.G.; Ricke, S.C. Potential of plant essential oils and their components in animal agriculture - in vitro studies on antibacterial mode of action. Front. Vet. Sci., 2015, 2, 35.
[http://dx.doi.org/10.3389/fvets.2015.00035] [PMID: 26664964]
[36]
Hammer, K.A.; Carson, C.F.; Riley, T.V. Effects of Melaleuca alternifolia (tea tree) essential oil and the major monoterpene component terpinen-4-ol on the development of single- and multistep antibiotic resistance and antimicrobial susceptibility. Antimicrob. Agents Chemother., 2012, 56(2), 909-915.
[http://dx.doi.org/10.1128/AAC.05741-11] [PMID: 22083482]
[37]
Esmael, A.; Hassan, M.G.; Amer, M.M.; Abdelrahman, S.; Hamed, A.M.; Abd-Raboh, H.A.; Foda, M.F. Antimicrobial activity of certain natural-based plant oils against the antibiotic-resistant acne bacteria. Saudi J. Biol. Sci., 2020, 27(1), 448-455.
[http://dx.doi.org/10.1016/j.sjbs.2019.11.006] [PMID: 31889869]
[38]
Ossa-Tabares, J.C.; Llanos, C.J.; García, A.M. Evaluation of tea tree oil physicochemical features and its antimicrobial activity against Cutibacterium acnes (Propionibacterium acnes) ATCC 6919. Biomédica, 2020, 40(4), 693-701.
[http://dx.doi.org/10.7705/biomedica.5122] [PMID: 33275348]
[39]
Raman, A.; Weir, U.; Bloomfield, S.F. Antimicrobial effects of tea-tree oil and its major components on Staphylococcus aureus, Staph. epidermidis and Propionibacterium acnes. Lett. Appl. Microbiol., 1995, 21(4), 242-245.
[http://dx.doi.org/10.1111/j.1472-765X.1995.tb01051.x] [PMID: 7576514]
[40]
Orchard, A.; Van Vuuren, S. Commercial essential oils as potential antimicrobials to treat skin diseases. evidence-based complement. Altern. Med., 2017, 2017, 1-92.
[41]
Halcón, L.; Milkus, K. Staphylococcus aureus and wounds: A review of tea tree oil as a promising antimicrobial. Am. J. Infect. Control, 2004, 32(7), 402-408.
[http://dx.doi.org/10.1016/j.ajic.2003.12.008] [PMID: 15525915]
[42]
Carson, C.F.; Cookson, B.D.; Farrelly, H.D.; Riley, T.V. Susceptibility of methicillin-resistant Staphylococcus aureus to the essential oil of Melaleuca alternifolia. J. Antimicrob. Chemother., 1995, 35(3), 421-424.
[http://dx.doi.org/10.1093/jac/35.3.421] [PMID: 7782258]
[43]
Souza, C.F.; Baldissera, M.D.; Vaucher, R.A.; Lopes, L.Q.; Vizzotto, B.S.; Raffin, R.P. Santos, R.C.da; Veiga, M.L.; Rocha, M.I.; Stefani, L.M.; Baldisserotto, B. In vivo bactericidal effect of Melaleuca alternifolia essential oil against Aeromonas hydrophila: Silver catfish (Rhamdiaquelen) as an experimental model. MicrobPatho., 2016, 98, 82-87.
[44]
Carson, C.F.; Riley, T.V. Susceptibility of Propionibacterium acnes to the essential oil of Melaleuca alternifolia. Lett. Appl. Microbiol., 1994, 19(1), 24-25.
[http://dx.doi.org/10.1111/j.1472-765X.1994.tb00894.x]
[45]
Griffin, S.G.; Markham, J.L.; Leach, D.N. An agar dilution method for the determination of the minimum inhibitory concentration of es-sential oils. J. Essent. Oil Res., 2000, 12(2), 249-255.
[http://dx.doi.org/10.1080/10412905.2000.9699509]
[46]
Singh, U.P.; Pandey, V.N.; Wagner, K.G.; Singh, K.P. Antifungal activity of ajoene, a constituent of garlic (Allium sativum). Can. J. Bot., 1990, 68(6), 1354-1356.
[http://dx.doi.org/10.1139/b90-172]
[47]
Lee, T.Y.; Lam, T.H. Contact dermatitis due to topical treatment with garlic in Hong Kong. Contact Dermat., 1991, 24(3), 193-196.
[http://dx.doi.org/10.1111/j.1600-0536.1991.tb01697.x] [PMID: 1831097]
[48]
Öner, Ü.; Bilen, H.; Melikoğlu, M. A case of garlic induced irritant contact dermatitis. Turkiye Klin J. Case Rep., 2020, 28(2), 103-105.
[http://dx.doi.org/10.5336/caserep.2019-73087]
[49]
Pazyar, N.; Feily, A. Garlic in dermatology. Dermatol. Rep., 2011, 3(1), e4.
[http://dx.doi.org/10.4081/dr.2011.e4] [PMID: 25386259]
[50]
Segvić Klarić, M.; Kosalec, I.; Mastelić, J.; Piecková, E.; Pepeljnak, S. ŠegvićKlarić. Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Lett. Appl. Microbiol., 2007, 44(1), 36-42.
[http://dx.doi.org/10.1111/j.1472-765X.2006.02032.x] [PMID: 17209812]
[51]
Das, N.J.; Pinto, E.; Amaral, M.H.; Bahia, M.F. Antifungal activity of a gel containing Thymus vulgaris essential oil against Candida species commonly involved in vulvovaginal candidosis. Pharm. Biol., 2009, 47(2), 151-153.
[http://dx.doi.org/10.1080/13880200802436232]
[52]
Kowalczyk, A.; Przychodna, M.; Sopata, S.; Bodalska, A.; Fecka, I. Thymol and thyme essential oil—new insights into selected therapeu-tic applications. Molecules, 2020, 25(18), 1-16.
[http://dx.doi.org/10.3390/molecules25184125] [PMID: 32917001]
[53]
Venza, M.; Visalli, M.; Beninati, C.; De Gaetano, G.V.; Teti, D.; Venza, I. Cellular mechanisms of oxidative stress and action in melanoma. Oxid. Med. Cell. Longev., 2015, 2015, 1-12.
[http://dx.doi.org/10.1155/2015/481782]
[54]
Narendhirakannan, R.T.; Hannah, M.A.C. Oxidative stress and skin cancer: An overview. Indian J. Clin. Biochem., 2013, 28(2), 110-115.
[http://dx.doi.org/10.1007/s12291-012-0278-8] [PMID: 24426195]
[55]
Alok, S.; Jain, S.K.; Verma, A.; Kumar, M.; Mahor, A.; Sabharwal, M. Herbal antioxidant in clinical practice: A review. Asian Pac. J. Trop. Biomed., 2014, 4(1), 78-84.
[http://dx.doi.org/10.1016/S2221-1691(14)60213-6] [PMID: 24144136]
[56]
Butt, M.S.; Sultan, M.T. Ginger and its health claims: Molecular aspects. Crit. Rev. Food Sci. Nutr., 2011, 51(5), 383-393.
[http://dx.doi.org/10.1080/10408391003624848] [PMID: 21491265]
[57]
Mashhadi, N.S.; Ghiasvand, R.; Askari, G.; Hariri, M.; Darvishi, L.; Mofid, M.R. Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: Review of current evidence. Int. J. Prev. Med., 2013, 4(Suppl. 1), S36-S42. MID: 23717767.
[58]
Jung, H.W.; Yoon, C.H.; Park, K.M.; Han, H.S.; Park, Y.K. Hexane fraction of Zingiberis Rhizoma Crudus extract inhibits the production of nitric oxide and proinflammatory cytokines in LPS-stimulated BV2 microglial cells via the NF-kappaB pathway. Food Chem. Toxicol., 2009, 47(6), 1190-1197.
[http://dx.doi.org/10.1016/j.fct.2009.02.012] [PMID: 19233241]
[59]
Sami, D.G.; Abdellatif, A.; Azzazy, H.M.E. Turmeric/oregano formulations for treatment of diabetic ulcer wounds. Drug Dev. Ind. Pharm., 2020, 46(10), 1613-1621.
[http://dx.doi.org/10.1080/03639045.2020.1811305] [PMID: 32806984]
[60]
Khorasani, G.; Ahmadi, A.; Jalal Hosseinimehr, S.; Ahmadi, A.; Taheri, A.; Fathi, H. The effects of aloe vera cream on split-thickness skin graft donor site management: A randomized, blinded, placebo-controlled study. Wounds, 2011, 23(2), 44-48.
[PMID: 25881055]
[61]
Davis, R.H.; Donato, J.J.; Hartman, G.M.; Haas, R.C. Anti-inflammatory and wound healing activity of a growth substance in Aloe vera. J. Am. Podiatr. Med. Assoc., 1994, 84(2), 77-81.
[http://dx.doi.org/10.7547/87507315-84-2-77] [PMID: 8169808]
[62]
Takzare, N.; Hosseini, M.J.; Hasanzadeh, G.; Mortazavi, H.; Takzare, A.; Habibi, P. Influence of Aloe Vera gel on dermal wound healing process in rat. Toxicol. Mech. Methods, 2009, 19(1), 73-77.
[http://dx.doi.org/10.1080/15376510802442444] [PMID: 19778236]
[63]
Teplicki, E.; Ma, Q.; Castillo, D.E.; Zarei, M.; Hustad, A.P.; Chen, J.; Li, J. The effects of aloe vera on wound healing in cell proliferation, migration, and viability. Wounds, 2018, 30(9), 263-268.
[PMID: 30256753]
[64]
Subramani, K.; Kolathupalayam Shanmugam, B.; Rangaraj, S.; Palanisamy, M.; Periasamy, P.; Venkatachalam, R. Screening the UV-blocking and antimicrobial properties of herbal nanoparticles prepared from Aloe vera leaves for textile applications. IET Nanobiotechnol., 2018, 12(4), 459-465.
[http://dx.doi.org/10.1049/iet-nbt.2017.0097] [PMID: 29768230]
[65]
Puvabanditsin, P.; Vongtongsri, R. Efficacy of aloe vera cream in prevention and treatment of sunburn and suntan. J. Med. Assoc. Thai., 2005, 88(4)(Suppl. 4), S173-S176.
[PMID: 16623024]
[66]
Lee, C.K.; Han, S.S.; Shin, Y.K.; Chung, M.H.; Park, Y.I.; Lee, S.K.; Kim, Y.S. Prevention of ultraviolet radiation-induced suppression of contact hypersensitivity by Aloe vera gel components. Int. J. Immunopharmacol., 1999, 21(5), 303-310.
[http://dx.doi.org/10.1016/S0192-0561(99)00012-0] [PMID: 10408627]
[67]
Rodrigues, D.; Viotto, A.C.; Checchia, R.; Gomide, A.; Severino, D.; Itri, R.; Baptista, M.S.; Martins, W.K. Mechanism of Aloe Vera ex-tract protection against UVA: Shelter of lysosomal membrane avoids photodamage. Photochem. Photobiol. Sci., 2016, 15(3), 334-350.
[http://dx.doi.org/10.1039/C5PP00409H] [PMID: 26815913]
[68]
Bałan, B.J.; Niemcewicz, M.; Kocik, J.; Jung, L.; Skopińska-Różewska, E.; Skopiński, P. Oral administration of Aloe vera gel, anti-microbial and anti-inflammatory herbal remedy, stimulates cell-mediated immunity and antibody production in a mouse model. Cent. Eur. J. Immunol., 2014, 39(2), 125-130.
[http://dx.doi.org/10.5114/ceji.2014.43711] [PMID: 26155113]
[69]
Hajhashemi, V.; Ghannadi, A.; Heidari, A.H. Anti-inflammatory and wound healing activities of Aloe littoralis in rats. Res. Pharm. Sci., 2012, 7(2), 73-78.
[PMID: 23181083]
[70]
Langmead, L.; Makins, R.J.; Rampton, D.S. Anti-inflammatory effects of aloe vera gel in human colorectal mucosa in vitro. Aliment. Pharmacol. Ther., 2004, 19(5), 521-527.
[http://dx.doi.org/10.1111/j.1365-2036.2004.01874.x] [PMID: 14987320]
[71]
Vázquez, B.; Avila, G.; Segura, D.; Escalante, B. Antiinflammatory activity of extracts from Aloe vera gel. J. Ethnopharmacol., 1996, 55(1), 69-75.
[http://dx.doi.org/10.1016/S0378-8741(96)01476-6] [PMID: 9121170]
[72]
Athiban, P.P.; Borthakur, B.J.; Ganesan, S.; Swathika, B. Evaluation of antimicrobial efficacy of Aloe vera and its effectiveness in decon-taminating gutta percha cones. J. Conserv. Dent., 2012, 15(3), 246-248.
[http://dx.doi.org/10.4103/0972-0707.97949] [PMID: 22876011]
[73]
Ndhlala, A.R.; Amoo, S.O.; Stafford, G.I.; Finnie, J.F.; Van Staden, J. Antimicrobial, anti-inflammatory and mutagenic investigation of the South African tree aloe (Aloe barberae). J. Ethnopharmacol., 2009, 124(3), 404-408.
[http://dx.doi.org/10.1016/j.jep.2009.05.037] [PMID: 19505552]
[74]
Dal’Belo, S.E.; Gaspar, L.R.; Maia Campos, P.M. Moisturizing effect of cosmetic formulations containing Aloe vera extract in different concentrations assessed by skin bioengineering techniques. Skin Res. Technol., 2006, 12(4), 241-246.
[http://dx.doi.org/10.1111/j.0909-752X.2006.00155.x] [PMID: 17026654]
[75]
Saraf, S.; Sahu, S.; Kaur, C.D.; Saraf, S. Comparative measurement of hydration effects of herbal moisturizers. Pharmacognosy Res., 2010, 2(3), 146-151.
[http://dx.doi.org/10.4103/0974-8490.65508] [PMID: 21808557]
[76]
Fox, L.T.; du Plessis, J.; Gerber, M.; van Zyl, S.; Boneschans, B.; Hamman, J.H. In vivo skin hydration and anti-erythema effects of Aloe vera, Aloe ferox and Aloe marlothii gel materials after single and multiple applications. Pharmacogn. Mag., 2014, 10(38)(Suppl. 2), S392-S403.
[http://dx.doi.org/10.4103/0973-1296.133291] [PMID: 24991119]
[77]
Benson, K.F.; Newman, R.A.; Jensen, G.S. Antioxidant, anti-inflammatory, anti-apoptotic, and skin regenerative properties of an Aloe vera-based extract of Nerium oleander leaves (nae-8.(Ⓡ)) Clin. Cosmet. Investig. Dermatol., 2015, 8, 239-248.
[PMID: 26005354]
[78]
Tanaka, M.; Misawa, E.; Yamauchi, K.; Abe, F.; Ishizaki, C. Effects of plant sterols derived from Aloe vera gel on human dermal fibro-blasts in vitro and on skin condition in Japanese women. Clin. Cosmet. Investig. Dermatol., 2015, 8, 95-104.
[http://dx.doi.org/10.2147/CCID.S75441] [PMID: 25759593]
[79]
Cho, S.; Lee, S.; Lee, M.J.; Lee, D.H.; Won, C.H.; Kim, S.M.; Chung, J.H. Dietary aloe vera supplementation improves facial wrinkles and elasticity and it increases the type i procollagen gene expression in human skin in vivo. Ann. Dermatol., 2009, 21(1), 6-11.
[http://dx.doi.org/10.5021/ad.2009.21.1.6] [PMID: 20548848]
[80]
Owolabi, J.O.; Fabiyi, O.S.; Adelakin, L.A.; Ekwerike, M.C. Effects of skin lightening cream agents - hydroquinone and kojic acid, on the skin of adult female experimental rats. Clin. Cosmet. Investig. Dermatol., 2020, 13, 283-289.
[http://dx.doi.org/10.2147/CCID.S233185] [PMID: 32308462]
[81]
Jin, Y.H.; Lee, S.J.; Chung, M.H.; Park, J.H.; Park, Y.I.; Cho, T.H.; Lee, S.K. Aloesin and arbutin inhibit tyrosinase activity in a synergistic manner via a different action mechanism. Arch. Pharm. Res., 1999, 22(3), 232-236.
[http://dx.doi.org/10.1007/BF02976355] [PMID: 10403123]
[82]
Parvez, S.; Kang, M.; Chung, H.S.; Bae, H. Naturally occurring tyrosinase inhibitors: Mechanism and applications in skin health, cosmetics and agriculture industries. Phytother. Res., 2007, 21(9), 805-816.
[http://dx.doi.org/10.1002/ptr.2184] [PMID: 17605157]
[83]
Hollinger, J.C.; Angra, K.; Halder, R.M. Are natural ingredients effective in the management of hyperpigmentation? A systematic review. J. Clin. Aesthet. Dermatol., 2018, 11(2), 28-37.
[PMID: 29552273]
[84]
Ali, S.A.; Galgut, J.M.; Choudhary, R.K. On the novel action of melanolysis by a leaf extract of Aloe vera and its active ingredient aloin, potent skin depigmenting agents. Planta Med., 2012, 78(8), 767-771.
[http://dx.doi.org/10.1055/s-0031-1298406] [PMID: 22495441]
[85]
Boudreau, M.D.; Mellick, P.W.; Olson, G.R.; Felton, R.P.; Thorn, B.T.; Beland, F.A. Clear evidence of carcinogenic activity by a whole-leaf extract of Aloe barbadensis miller (aloe vera) in F344/N rats. Toxicol. Sci., 2013, 131(1), 26-39.
[http://dx.doi.org/10.1093/toxsci/kfs275] [PMID: 22968693]
[86]
Radovic, J.; Maksimovic-Ivanic, D.; Timotijevic, G.; Popadic, S.; Ramic, Z.; Trajkovic, V.; Miljkovic, D.; Stosic-Grujicic, S.; Mijatovic, S. Cell-type dependent response of melanoma cells to aloe emodin. Food Chem. Toxicol., 2012, 50(9), 3181-3189.
[http://dx.doi.org/10.1016/j.fct.2012.05.047] [PMID: 22683487]
[87]
Tabolacci, C.; Lentini, A.; Mattioli, P.; Provenzano, B.; Oliverio, S.; Carlomosti, F.; Beninati, S. Antitumor properties of aloe-emodin and induction of transglutaminase 2 activity in B16-F10 melanoma cells. Life Sci., 2010, 87(9-10), 316-324.
[http://dx.doi.org/10.1016/j.lfs.2010.07.003] [PMID: 20624404]
[88]
National Toxicology Program. Photocarcinogenesis study of aloe vera [CAS NO. 481-72-1(Aloe-emodin)] in SKH-1 mice (simulated solar light and topical application study). Natl. Toxicol. Program Tech. Rep. Ser., 2010, (553), 7-33, 35-97, 99-103 passim.
[PMID: 21031007]
[89]
Paulsen, E.; Korsholm, L.; Brandrup, F. A double-blind, placebo-controlled study of a commercial Aloe vera gel in the treatment of slight to moderate Psoriasis vulgaris. J. Eur. Acad. Dermatol. Venereol., 2005, 19(3), 326-331.
[http://dx.doi.org/10.1111/j.1468-3083.2004.01186.x] [PMID: 15857459]
[90]
El-Gammal, A.; Di Nardo, V.; Daaboul, F.; Tchernev, G.; Wollina, U.; Lotti, J.; Lotti, T. Is there a place for local natural treatment of pso-riasis? Open Access Maced. J. Med. Sci., 2018, 6(5), 839-842.
[http://dx.doi.org/10.3889/oamjms.2018.106]
[91]
Syed, T.A.; Ahmad, S.A.; Holt, A.H.; Ahmad, S.A.; Ahmad, S.H.A.A.; Afzal, M. Management of psoriasis with Aloe vera extract in a hy-drophilic cream: A placebo-controlled, double-blind study. Trop. Med. Int. Health, 1996, 1(4), 505-509.
[http://dx.doi.org/10.1046/j.1365-3156.1996.d01-91.x] [PMID: 8765459]
[92]
Fikru, A.; Makonnen, E.; Eguale, T.; Debella, A.; Abie Mekonnen, G. Evaluation of in vivo wound healing activity of methanol extract of Achyranthes aspera L. J. Ethnopharmacol., 2012, 143(2), 469-474.
[http://dx.doi.org/10.1016/j.jep.2012.06.049] [PMID: 22771316]
[93]
Edwin, S.; Jarald, E.E.; Deb, L.; Jain, A.; Kinger, H.; Dutt, K.R.; Raj, A.A. Wound healing and antioxidant activity of Achyranthes aspera. Pharm. Biol., 2008, 46(12), 824-828.
[http://dx.doi.org/10.1080/13880200802366645]
[94]
Barua, C.C.; Talukdar, A.; Begum, S.A.; Pathak, D.C.; Sarma, D.K.; Borah, R.S.; Gupta, A. In vivo wound-healing efficacy and antioxidant activity of Achyranthes aspera in experimental burns. Pharm. Biol., 2012, 50(7), 892-899.
[http://dx.doi.org/10.3109/13880209.2011.642885] [PMID: 22480137]
[95]
Sharma, J.G.; Singh, M.K.; Chakrabarti, R. Physiological responses of Catla catla larvae fed with Achyranthes aspera seed enriched diet and exposed to UV-B radiation. Indian J. Biochem. Biophys., 2015, 52(2), 155-160.
[PMID: 26118127]
[96]
Singh, M.K.; Sharma, J.G.; Chakrabarti, R. Impact of UV-B radiation on the physiology of freshwater carp labeorohita larvae and evalua-tion of UV-B protective properties of seeds of achyranthes aspera and vitamin C. Agric. Res., 2013, 2(2), 166-171.
[http://dx.doi.org/10.1007/s40003-013-0060-z]
[97]
Singh, M.K.; Sharma, J.; Chakrabarti, R. Effect of UV-B radiation on the defence system of Labeorohita (Actinopterygii: Cypriniformes: Cyprinidae) larvae and its modulation by seed of devil’s horsewhip, Achyranthes aspera. Acta Ichthyol. Piscat., 2013, 43(2), 119-126.
[http://dx.doi.org/10.3750/AIP2013.43.2.04]
[98]
Nazir, A.; Saleem, M.A.; Nazir, F.; Hussain, T.; Faizan, M.Q.; Usman, M. Comparison of UV protection properties of cotton fabrics treat-ed with aqueous and methanolic extracts of Achyranthes aspera and Alhagi maurorum plants. Photochem. Photobiol., 2016, 92(2), 343-347.
[http://dx.doi.org/10.1111/php.12566] [PMID: 26756318]
[99]
Kothavade, P.S.; Bulani, V.D.; Nagmoti, D.M.; Deshpande, P.S.; Gawali, N.B.; Juvekar, A.R. Therapeutic effect of saponin rich fraction of Achyranthes aspera Linn. on adjuvant-induced arthritis in sprague-dawley rats. Autoimmune Dis., 2015, 2015, 943645.
[http://dx.doi.org/10.1155/2015/943645] [PMID: 26273477]
[100]
Khuda, F.; Iqbal, Z.; Khan, A. Zakiullah; Nasir, F.; Shah, Y. Anti-inflammatory activity of the topical preparation of Valerianawallichii and Achyranthes aspera leaves. Pak. J. Pharm. Sci., 2013, 26, 451-454.
[PMID: 23625416]
[101]
Bhosale, U.A.; Yegnanarayan, R.; Pophale, P.; Somani, R. Effect of aqueous extracts of Achyranthes aspera Linn. on experimental animal model for inflammation. Anc. Sci. Life, 2012, 31(4), 202-206.
[http://dx.doi.org/10.4103/0257-7941.107362] [PMID: 23661870]
[102]
Sukumaran, V.K.; Sankar, P.; Varatharajan, R. Anti-inflammatory activity of roots of Achyranthes aspera. Pharm. Biol., 2009, 47(10), 973-975.
[http://dx.doi.org/10.1080/13880200902967979]
[103]
Subbarayan, P.R.; Sarkar, M.; Impellizzeri, S.; Raymo, F.; Lokeshwar, B.L.; Kumar, P.; Agarwal, R.P.; Ardalan, B. Anti-proliferative and anti-cancer properties of Achyranthes aspera: Specific inhibitory activity against pancreatic cancer cells. J. Ethnopharmacol., 2010, 131(1), 78-82.
[http://dx.doi.org/10.1016/j.jep.2010.06.002] [PMID: 20541002]
[104]
Chakraborty, A.; Brantner, A.; Mukainaka, T.; Nobukuni, Y.; Kuchide, M.; Konoshima, T.; Tokuda, H.; Nishino, H. Cancer chemopreven-tive activity of Achyranthes aspera leaves on Epstein-Barr virus activation and two-stage mouse skin carcinogenesis. Cancer Lett., 2002, 177(1), 1-5.
[http://dx.doi.org/10.1016/S0304-3835(01)00766-2] [PMID: 11809524]
[105]
Farahpour, M.R.; Hesaraki, S.; Faraji, D.; Zeinalpour, R.; Aghaei, M. Hydroethanolic Allium sativum extract accelerates excision wound healing: Evidence for roles of mast-cell infiltration and intracytoplasmic carbohydrate ratio. Braz. J. Pharm. Sci., 2017, 53(1), 1-11.
[http://dx.doi.org/10.1590/s2175-97902017000115079]
[106]
Tahvilian, R.; Zangeneh, M.M.; Falahi, H.; Sadrjavadi, K.; Jalalvand, A.R.; Zangeneh, A. Green synthesis and chemical characterization of copper nanoparticles using Allium saralicum leaves and assessment of their cytotoxicity, antioxidant, antimicrobial, and cutaneous wound healing properties. Appl. Organomet. Chem., 2019, 33(12), 1-16.
[http://dx.doi.org/10.1002/aoc.5234]
[107]
Sarhan, W.A.; Azzazy, H.M.E.; El-Sherbiny, I.M. Honey/chitosan nanofiber wound dressing enriched with Allium sativum and Cleome droserifolia: Enhanced antimicrobial and wound healing activity. ACS Appl. Mater. Interfaces, 2016, 8(10), 6379-6390.
[http://dx.doi.org/10.1021/acsami.6b00739] [PMID: 26909753]
[108]
Lee, S.Y.; Cho, S.S.; Li, Y.C.; Bae, C.S.; Park, K.M.; Park, D.H. Anti-inflammatory effect of Curcuma longa and Allium hookeri co-treatment via NF-κB and COX-2 pathways. Sci. Rep., 2020, 10(1), 1-11.
[http://dx.doi.org/10.1038/s41598-020-62749-7]
[109]
Mohammadi-Motlagh, H.R.; Mostafaie, A.; Mansouri, K. Anticancer and anti-inflammatory activities of shallot (Allium ascalonicum) extract. Arch. Med. Sci., 2011, 7(1), 38-44.
[http://dx.doi.org/10.5114/aoms.2011.20602] [PMID: 22291731]
[110]
Bae, G-C.; Bae, D-Y. The anti-inflammatory effects of ethanol extract of Allium hookeri cultivated in South Korea. Korea J Herbol., 2012, 27(6), 55-61.
[http://dx.doi.org/10.6116/kjh.2012.27.6.55]
[111]
Putnik, P.; Gabrić, D.; Roohinejad, S.; Barba, F.J.; Granato, D.; Mallikarjunan, K.; Lorenzo, J.M.; Bursać Kovačević, D. An overview of organosulfur compounds from Allium spp.: From processing and preservation to evaluation of their bioavailability, antimicrobial, and an-ti-inflammatory properties. Food Chem., 2019, 276, 680-691.
[http://dx.doi.org/10.1016/j.foodchem.2018.10.068] [PMID: 30409648]
[112]
Jeon, S.M.; Choi, M.H.; Lee, Y.J.; Shin, H.J. Anti-wrinkle effect of facial mask pack containing oinon (Allium cepa) skin extracts. Korean Soc Biotechnol Bioeng J., 2013, 28(6), 387-393.
[113]
Kim, J.E.; Kim, A.R.; Kim, M.J.; Park, S.N. Antibacterial, antioxidative and antiaging effects of Allium cepa peel extracts. Appl Chem Eng., 2011, 22(2), 178-184.
[114]
Arung, E.T.; Shimizu, K.; Kondo, R.; Furuta, S.; Ishikawa, H.; Tanaka, H. Melanin biosynthesis inhibitory and antioxidant activities of quercetin-3′-0-jff-D-glucoside isolated from Allium cepa. Zeitschrift fur naturforsch - Sect C. J. Biosci., 2011, 66, 209-214.
[PMID: 21812337]
[115]
Le Bon, A.M.; Siess, M.H. Organosulfur compounds from Allium and the chemoprevention of cancer. Drug Metabol. Drug Interact., 2000, 17(1-4), 51-79.
[http://dx.doi.org/10.1515/DMDI.2000.17.1-4.51] [PMID: 11201304]
[116]
Powolny, A.A.; Singh, S.V. Multitargeted prevention and therapy of cancer by diallyl trisulfide and related Allium vegetable-derived or-ganosulfur compounds. Cancer Lett., 2008, 269(2), 305-314.
[http://dx.doi.org/10.1016/j.canlet.2008.05.027] [PMID: 18579286]
[117]
Thomson, M.; Ali, M. Garlic [Allium sativum]: A review of its potential use as an anti-cancer agent. Curr. Cancer Drug Targets, 2003, 3(1), 67-81.
[http://dx.doi.org/10.2174/1568009033333736] [PMID: 12570662]
[118]
Bianchini, F.; Vainio, H. Allium vegetables and organosulfur compounds: Do they help prevent cancer? Environ. Health Perspect., 2001, 109(9), 893-902.
[http://dx.doi.org/10.1289/ehp.01109893] [PMID: 11673117]
[119]
Pradhan, M.; Singh, D.; Singh, M.R. Novel colloidal carriers for psoriasis: Current issues, mechanistic insight and novel delivery ap-proaches. J. Control. Release, 2013, 170(3), 380-395.
[http://dx.doi.org/10.1016/j.jconrel.2013.05.020] [PMID: 23770117]
[120]
Barnes, J.; Anderson, L.A.; Gibbons, S.; Phillipson, J.D. Echinacea species (Echinacea angustifolia (DC.) Hell., Echinacea pallida (Nutt.) Nutt.,Echinacea purpurea (L.) Moench): A review of their chemistry, pharmacology and clinical properties. J. Pharm. Pharmacol., 2005, 57(8), 929-954.
[http://dx.doi.org/10.1211/0022357056127] [PMID: 16102249]
[121]
Taghizadeh-Jahed, M.; Jarolmasjed, S.H.; Mohamadnejad, S.; Rezaii, A.; Delazar, A. The effect of echinacea purpurea aerial organ dried extract vs. Zinc oxide on skin wound healing in rat: A morphometric & histopathologic study. Tehran Univ. Med. J., 2008, 66, 625-632.
[122]
Zhai, Z.; Haney, D.M.; Wu, L.; Solco, A.K.; Murphy, P.A.; Wurtele, E.S.; Kohut, M.L.; Cunnick, J.E. Alcohol extract of Echinacea pallida reverses stress-delayed wound healing in mice. Phytomedicine, 2009, 16(6-7), 669-678.
[http://dx.doi.org/10.1016/j.phymed.2009.02.010] [PMID: 19303756]
[123]
Tragni, E.; Galli, C.L.; Tubaro, A.; Del Negro, P.; Della Loggia, R. Anti-inflammatory activity of Echinacea angustifolia fractions separated on the basis of molecular weight. Pharmacol. Res. Commun., 1988, 20(Suppl. 5), 87-90.
[http://dx.doi.org/10.1016/S0031-6989(88)80848-8] [PMID: 3247359]
[124]
Tubaro, A.; Tragni, E.; Del Negro, P.; Galli, C.L.; Della Loggia, R. Anti-inflammatory activity of a polysaccharidic fraction of Echinacea angustifolia. J. Pharm. Pharmacol., 1987, 39(7), 567-569.
[http://dx.doi.org/10.1111/j.2042-7158.1987.tb03182.x] [PMID: 2886631]
[125]
Aarland, R.C.; Bañuelos-Hernández, A.E.; Fragoso-Serrano, M.; Sierra-Palacios, E.D.C.; Díaz de León-Sánchez, F.; Pérez-Flores, L.J.; Rivera-Cabrera, F.; Mendoza-Espinoza, J.A. Studies on phytochemical, antioxidant, anti-inflammatory, hypoglycaemic and antiprolifera-tive activities of Echinacea purpurea and Echinacea angustifolia extracts. Pharm. Biol., 2017, 55(1), 649-656.
[http://dx.doi.org/10.1080/13880209.2016.1265989] [PMID: 27951745]
[126]
Raso, G.M.; Pacilio, M.; Di Carlo, G.; Esposito, E.; Pinto, L.; Meli, R. In-vivo and in-vitro anti-inflammatory effect of Echinacea purpurea and Hypericum perforatum. J. Pharm. Pharmacol., 2002, 54(10), 1379-1383.
[http://dx.doi.org/10.1211/002235702760345464] [PMID: 12396300]
[127]
Sharma, S.M.; Anderson, M.; Schoop, S.R.; Hudson, J.B. Bactericidal and anti-inflammatory properties of a standardized Echinacea ex-tract (Echinaforce): Dual actions against respiratory bacteria. Phytomedicine, 2010, 17(8-9), 563-568.
[http://dx.doi.org/10.1016/j.phymed.2009.10.022] [PMID: 20036523]
[128]
Merali, S.; Binns, S.; Paulin-Levasseur, M.; Ficker, C.; Smith, M.; Baum, B.; Brovelli, E.; Arnason, J.T. Antifungal and Anti-inflammatory Activity of the Genus Echinacea. Pharm. Biol., 2003, 41(6), 412-420.
[http://dx.doi.org/10.1076/phbi.41.6.412.17828]
[129]
Speroni, E.; Govoni, P.; Guizzardi, S.; Renzulli, C.; Guerra, M.C. Anti-inflammatory and cicatrizing activity of Echinacea pallida Nutt. root extract. J. Ethnopharmacol., 2002, 79(2), 265-272.
[http://dx.doi.org/10.1016/S0378-8741(01)00391-9] [PMID: 11801391]
[130]
Yu, D.; Yuan, Y.; Jiang, L.; Tai, Y.; Yang, X.; Hu, F.; Xie, Z. Anti-inflammatory effects of essential oil in Echinacea purpurea L. Pak. J. Pharm. Sci., 2013, 26(2), 403-408.
[PMID: 23455214]
[131]
Birt, D.F.; Widrlechner, M.P.; Lalone, C.A.; Wu, L.; Bae, J.; Solco, A.K.S.; Kraus, G.A.; Murphy, P.A.; Wurtele, E.S.; Leng, Q.; Hebert, S.C.; Maury, W.J.; Price, J.P. Echinacea in infection. Am. J. Clin. Nutr., 2008, 87(2), 488S-492S.
[http://dx.doi.org/10.1093/ajcn/87.2.488S] [PMID: 18258644]
[132]
Ulff, E.; Maroti, M.; Serup, J.; Falkmer, U. A potent steroid cream is superior to emollients in reducing acute radiation dermatitis in breast cancer patients treated with adjuvant radiotherapy. A randomised study of betamethasone versus two moisturizing creams. Radiother. Oncol., 2013, 108(2), 287-292.
[http://dx.doi.org/10.1016/j.radonc.2013.05.033] [PMID: 23827771]
[133]
Meng, H.; Li, J.; Dong, Y.; He, Y.; Ren, H.; Liu, Y.; Qu, Z.; Zhang, W.; Zhang, L.; Bao, T.; Yi, F. Poly traditional Chinese medicine formu-lation prepared with skin moisturizing properties. Dermatol. Ther., 2020, 33(6), e14105.
[http://dx.doi.org/10.1111/dth.14105] [PMID: 32735060]
[134]
Kilic, A.; Harder, A.; Reich, H.; Knie, U.; Masur, C.; Abels, C. Efficacy of hydrophilic or lipophilic emulsions containing Echinacea pur-purea extract in treatment of different types of pruritus. Clin. Cosmet. Investig. Dermatol., 2018, 11, 591-602.
[http://dx.doi.org/10.2147/CCID.S172518] [PMID: 30538520]
[135]
Dogan, Z.; Ergul, B.; Sarikaya, M.; Filik, L.; Gonultas, M.A.; Hucumenoglu, S.; Can, M. The antioxidant effect of Echinacea angustifolia and Echinacea purpurea in rat colitis model induced by acetic acid. Bratisl. Lek Listy, 2014, 115(7), 411-415.
[http://dx.doi.org/10.4149/BLL_2014_081] [PMID: 25077363]
[136]
Skopińska-Rózewska, E.; Wasiutyński, A.; Sommer, E.; Skopiński, P.; Pastewka, K.; Zdanowski, R.; Bany, J. Modulatory effect of Echinacea pallida on cellular immunity and angiogenesis in mice. Cent J Immunol., 2011, 36, 18-23.
[137]
Tafazoli, A. Echinacea for cancer patients: To give or not to give. Complement. Med. Res., 2020, 27(2), 112-116.
[http://dx.doi.org/10.1159/000503025] [PMID: 31581155]
[138]
Rogala, E.; Skopińska-Rózewska, E.; Wasiutyński, A.; Siwicki, A.K.; Sommer, E.; Pastewka, K. Echinacea purpurea diminishes neovas-cular reaction induced in mice skin by human cancer cells and stimulates non-specific cellular immunity in humans. Cent J Immunol., 2008, 33, 127-130.
[139]
Barna, M.; Kucera, A.; Hladícova, M.; Kucera, M. Wound healing effects of a Symphytum herb extract cream (Symphytum x uplandicum NYMAN:): Results of a randomized, controlled double-blind study Wien. Med. Wochenschr., 2007, 157(21-22), 569-574.
[http://dx.doi.org/10.1007/s10354-007-0474-y] [PMID: 18157595]
[140]
Hostanska, K.; Rostock, M.; Melzer, J.; Baumgartner, S.; Saller, R. A homeopathic remedy from arnica, marigold, St. John’s wort and comfrey accelerates in vitro wound scratch closure of NIH 3T3 fibroblasts. BMC Complement. Altern. Med., 2012, 12(1), 100.
[http://dx.doi.org/10.1186/1472-6882-12-100] [PMID: 22809174]
[141]
Araújo, L.U.; Reis, P.G.; Barbosa, L.C.O.; Saúde-Guimarães, D.A.; Grabe-Guimarães, A.; Mosqueira, V.C.F.; Carneiro, C.M.; Silva-Barcellos, N.M. In vivo wound healing effects of Symphytum officinale L. leaves extract in different topical formulations. Pharmazie, 2012, 67(4), 355-360.
[PMID: 22570943]
[142]
Barbakadze, V.; Mulkijanyan, K.; Gogilashvili, L.; Amiranashvili, L.; Merlani, M.; Novikova, Z.; Sulakvelidze, M. Allantoin-and pyrroliz-idine alkaloids-free wound healing compositions from Symphytum asperum. Bull Georg Natl Acad Sci., 2009, 3(1), 159-164.
[143]
Singh, H.; Du, J.; Singh, P.; Yi, T.H. Role of green silver nanoparticles synthesized from Symphytum officinale leaf extract in protection against UVB-induced photoaging. J. Nanostructure Chem., 2018, 8(3), 359-368.
[http://dx.doi.org/10.1007/s40097-018-0281-6]
[144]
Cheng, C.C.; Chou, C.Y.; Chang, Y.C.; Wang, H.W.; Wen, C.C.; Chen, Y.H. Protective role of comfrey leave extracts on UV-induced zebrafish fin damage. J. Toxicol. Pathol., 2014, 27(2), 115-121.
[http://dx.doi.org/10.1293/tox.2013-0053] [PMID: 25352712]
[145]
Petersen, G.; Lorkowski, G.; Kasper, F.R.; Gottwald, R.; Lucker, P.W. Anti-inflammatory activity of a pyrrolizidine alkaloid-free extract of roots of Symphytum officinale in humans. Planta Med., 1993, 59(S 1), A703-A704.
[http://dx.doi.org/10.1055/s-2006-960000]
[146]
Seigner, J.; Junker-Samek, M.; Plaza, A.; D’Urso, G.; Masullo, M.; Piacente, S.; Holper-Schichl, Y.M.; de Martin, R. A Symphytum offici-nale root extract exerts anti-inflammatory properties by affecting two distinct steps of NF-κB signaling. Front. Pharmacol., 2019, 10, 289.
[http://dx.doi.org/10.3389/fphar.2019.00289] [PMID: 31105555]
[147]
Vostinaru, O.; Conea, S.I.; Mogosan, C.R.; Toma, C.; Borza, C.; Vlase, L.A. Anti-inflammatory and antinociceptive effect of Symphytum officinale root. Rom. Biotechnol. Lett., 2018, 23(6), 14160-14167.
[148]
Di Mambro, V.M.; Fonseca, M.J.V. Assays of physical stability and antioxidant activity of a topical formulation added with different plant extracts. J. Pharm. Biomed. Anal., 2005, 37(2), 287-295.
[http://dx.doi.org/10.1016/j.jpba.2004.10.030] [PMID: 15708669]
[149]
Dlova, N.C.; Ollengo, M.A. Traditional and ethnobotanical dermatology practices in Africa. Clin. Dermatol., 2018, 36(3), 353-362.
[http://dx.doi.org/10.1016/j.clindermatol.2018.03.009] [PMID: 29908577]
[150]
Thibane, V.S.; Ndhlala, A.R.; Abdelgadir, H.A.; Finnie, J.F.; Van Staden, J. The cosmetic potential of plants from the Eastern Cape Prov-ince traditionally used for skincare and beauty. S. Afr. J. Bot., 2019, 122, 475-483.
[http://dx.doi.org/10.1016/j.sajb.2018.05.003]
[151]
Dähnhardt, D.; Dähnhardt-Pfeiffer, S.; Groeber-Becker, F.; Fölster-Holst, R.; Schmidt, M. Epidermal regeneration induced by comfrey extract: A study by light and electron microscopy. Skin Pharmacol. Physiol., 2020, 33(4), 189-197.
[http://dx.doi.org/10.1159/000509121] [PMID: 32683369]
[152]
Gomes, M.F.P.L.; de Oliveira Massoco, C.; Xavier, J.G.; Bonamin, L.V. Comfrey (Symphytum officinale. l.) and Experimental Hepatic Carcinogenesis: A Short-term Carcinogenesis Model Study. Evid. Based Complement. Alternat. Med., 2010, 7(2), 197-202.
[http://dx.doi.org/10.1093/ecam/nem172] [PMID: 18955295]
[153]
Mei, N.; Guo, L.; Zhang, L.; Shi, L.; Sun, Y.A.; Fung, C.; Moland, C.L.; Dial, S.L.; Fuscoe, J.C.; Chen, T. Analysis of gene expression changes in relation to toxicity and tumorigenesis in the livers of Big Blue transgenic rats fed comfrey (Symphytum officinale). BMC Bioinformatics, 2006, 7(S2)(Suppl. 2), S16.
[http://dx.doi.org/10.1186/1471-2105-7-S2-S16] [PMID: 17118137]
[154]
Busra Erarslan, Z. Ecevit; Genc, G.; Kultur, S. Medicinal plants traditionally used to treat skin diseases in turkey-eczema, psoriasis, vitiligo. J Fac Pharm Ankara., 2020, 44, 137-166.
[155]
Asadi, S.Y.; Parsaei, P.; Karimi, M.; Ezzati, S.; Zamiri, A.; Mohammadizadeh, F.; Rafieian-Kopaei, M. Effect of green tea (Camellia sinen-sis) extract on healing process of surgical wounds in rat. Int. J. Surg., 2013, 11(4), 332-337.
[http://dx.doi.org/10.1016/j.ijsu.2013.02.014] [PMID: 23459184]
[156]
Shahrahmani, H.; Kariman, N.; Jannesari, S.; Rafieian-Kopaei, M.; Mirzaei, M.; Ghalandari, S.; Shahrahmani, N.; Mardani, G. The effect of green tea ointment on episiotomy pain and wound healing in primiparous women: A randomized, double-blind, placebo-controlled clinical trial. Phytother. Res., 2018, 32(3), 522-530.
[http://dx.doi.org/10.1002/ptr.5999] [PMID: 29235159]
[157]
Park, S.Y.; Lee, H.U.; Lee, Y.C.; Kim, G.H.; Park, E.C.; Han, S.H.; Lee, J.G.; Choi, S.; Heo, N.S.; Kim, D.L.; Huh, Y.S.; Lee, J. Wound healing potential of antibacterial microneedles loaded with green tea extracts. Mater. Sci. Eng. C, 2014, 42, 757-762.
[http://dx.doi.org/10.1016/j.msec.2014.06.021] [PMID: 25063177]
[158]
Luiza de Almeida Neves, A.; Chinali Komesu, M.; Angel Sala Di Matteo, M. Effects of green tea use on wound healing. Int. J. Morphol., 2010, 28, 905-910.
[159]
Ahmad, N.; Mukhtar, H. Cutaneous photochemoprotection by green tea: A brief review. Skin Pharmacol. Appl. Skin Physiol., 2001, 14(2), 69-76.
[http://dx.doi.org/10.1159/000056336] [PMID: 11316965]
[160]
Camouse, M.M.; Domingo, D.S.; Swain, F.R.; Conrad, E.P.; Matsui, M.S.; Maes, D.; Declercq, L.; Cooper, K.D.; Stevens, S.R.; Baron, E.D. Topical application of green and white tea extracts provides protection from solar-simulated ultraviolet light in human skin. Exp. Dermatol., 2009, 18(6), 522-526.
[http://dx.doi.org/10.1111/j.1600-0625.2008.00818.x] [PMID: 19492999]
[161]
Silva, A.R.; Seidl, C.; Furusho, A.S.; Boeno, M.M.S.; Dieamant, G.C.; Weffort-Santos, A.M. In vitro evaluation of the efficacy of commer-cial green tea extracts in UV protection. Int. J. Cosmet. Sci., 2013, 35(1), 69-77.
[http://dx.doi.org/10.1111/ics.12006] [PMID: 22970715]
[162]
Cavet, M.E.; Harrington, K.L.; Vollmer, T.R.; Ward, K.W.; Zhang, J.Z. Anti-inflammatory and anti-oxidative effects of the green tea poly-phenol epigallocatechin gallate in human corneal epithelial cells. Mol. Vis., 2011, 17, 533-542.
[PMID: 21364905]
[163]
Beltz, L.A.; Bayer, D.K.; Moss, A.L.; Simet, I.M. Mechanisms of cancer prevention by green and black tea polyphenols. Anticancer. Agents Med. Chem., 2006, 6(5), 389-406.
[http://dx.doi.org/10.2174/187152006778226468] [PMID: 17017850]
[164]
Akhtar, N.; Haqqi, T.M. Epigallocatechin-3-gallate suppresses the global interleukin-1beta-induced inflammatory response in human chondrocytes. Arthritis Res. Ther., 2011, 13(3), R93.
[http://dx.doi.org/10.1186/ar3368] [PMID: 21682898]
[165]
Ohishi, T.; Goto, S.; Monira, P.; Isemura, M.; Nakamura, Y. Anti-inflammatory action of green tea. Antiinflamm. Antiallergy Agents Med. Chem., 2016, 15(2), 74-90.
[http://dx.doi.org/10.2174/1871523015666160915154443] [PMID: 27634207]
[166]
Chatterjee, P.; Chandra, S.; Dey, P.; Bhattacharya, S. Evaluation of anti-inflammatory effects of green tea and black tea: A comparative in vitro study. J. Adv. Pharm. Technol. Res., 2012, 3(2), 136-138.
[http://dx.doi.org/10.4103/2231-4040.97298] [PMID: 22837963]
[167]
Tipoe, G.L.; Leung, T.M.; Hung, M.W.; Fung, M.L. Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovas-cular protection. Cardiovasc. Hematol. Disord. Drug Targets, 2007, 7(2), 135-144.
[http://dx.doi.org/10.2174/187152907780830905] [PMID: 17584048]
[168]
Natarajan, S.B.; Chandran, S.P.; Khan, S.H.; Natarajan, P.; Rengarajan, K. Versatile health benefits of catechin from green tea (Camellia sinensis). Curr. Nutr. Food Sci., 2017, 15(1), 3-10.
[http://dx.doi.org/10.2174/1573401313666171003150503]
[169]
Puch, F.; Samson-Villeger, S.; Guyonnet, D.; Blachon, J.L.; Rawlings, A.V.; Lassel, T. Consumption of functional fermented milk contain-ing borage oil, green tea and vitamin E enhances skin barrier function. Exp. Dermatol., 2008, 17(8), 668-674.
[http://dx.doi.org/10.1111/j.1600-0625.2007.00688.x] [PMID: 18318715]
[170]
Campos, P.M.; Gianeti, M.D.; Mercurio, D.G.; Gaspar, L.R. Synergistic effects of green tea and ginkgo biloba extracts on the improvement of skin barrier function and elasticity. J. Drugs Dermatol., 2014, 13(9), 1092-1097.
[PMID: 25226010]
[171]
Gianeti, M.D.; Mercurio, D.G.; Campos, P.M. The use of green tea extract in cosmetic formulations: Not only an antioxidant active ingre-dient. Dermatol. Ther., 2013, 26(3), 267-271.
[http://dx.doi.org/10.1111/j.1529-8019.2013.01552.x] [PMID: 23742288]
[172]
Farris, P. Idebenone, green tea, and Coffeeberry extract: New and innovative antioxidants. Dermatol. Ther., 2007, 20(5), 322-329.
[http://dx.doi.org/10.1111/j.1529-8019.2007.00146.x] [PMID: 18045357]
[173]
Dal Belo, S.E.; Gaspar, L.R.; Maia Campos, P.M. Photoprotective effects of topical formulations containing a combination of Ginkgo bi-loba and green tea extracts. Phytother. Res., 2011, 25(12), 1854-1860.
[http://dx.doi.org/10.1002/ptr.3507] [PMID: 21520309]
[174]
Kim, I-Y.; Zhoh, C-K.; Han, S-R.; Bang, Y-B.; Li, R-Y. Anti-oxidative activity and moisturizing effect of fermented puer tea extract. J Korean Oil Chem Soc., 2013, 30(2), 272-279.
[http://dx.doi.org/10.12925/jkocs.2013.30.2.272]
[175]
Prasanth, M.I.; Sivamaruthi, B.S.; Chaiyasut, C.; Tencomnao, T. A review of the role of green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients, 2019, 11(2), 1-24.
[http://dx.doi.org/10.3390/nu11020474] [PMID: 30813433]
[176]
Wang, L.; Lee, W.; Cui, Y.R.; Ahn, G.; Jeon, Y.J. Protective effect of green tea catechin against urban fine dust particle-induced skin aging by regulation of NF-κB, AP-1, and MAPKs signaling pathways. Environ. Pollut., 2019, 252(Pt B), 1318-1324.
[http://dx.doi.org/10.1016/j.envpol.2019.06.029] [PMID: 31252129]
[177]
Fei, T.; Fei, J.; Huang, F.; Xie, T.; Xu, J.; Zhou, Y.; Yang, P. The anti-aging and anti-oxidation effects of tea water extract in Caenorhabditis elegans. Exp. Gerontol., 2017, 97, 89-96.
[http://dx.doi.org/10.1016/j.exger.2017.07.015] [PMID: 28750751]
[178]
Alishlah, T.; Mun’im, A.; Jufri, M. Optimization of urea-glycerin based nades-uae for oxyresveratrol extraction from morus alba roots for preparation of skin whitening lotion. J. Young Pharm., 2019, 11(2), 155-160.
[http://dx.doi.org/10.5530/jyp.2019.11.33]
[179]
Tanaka, Y. Ellagic Acid: A New Skin-Whitening Active Ingredient. Handb. Cosmet. Sci. Technol; CRC Press, 2020, pp. 489-494.
[180]
An, B.J.; Kwak, J.H.; Son, J.H.; Park, J.M.; Lee, J.Y.; Park, T.S.; Kim, S.Y.; Kim, Y.S.; Jo, C.; Byun, M.W. Physiological activity of irradi-ated green tea polyphenol on the human skin. Am. J. Chin. Med., 2005, 33(4), 535-546.
[http://dx.doi.org/10.1142/S0192415X05003144] [PMID: 16173528]
[181]
Qian, W.; Liu, W.; Zhu, D.; Cao, Y.; Tang, A.; Gong, G.; Su, H. Natural skin-whitening compounds for the treatment of melanogenesis. (Review). Exp. Ther. Med., 2020, 20(1), 173-185.
[http://dx.doi.org/10.3892/etm.2020.8687] [PMID: 32509007]
[182]
Fix, L.N.; Shah, M.; Efferth, T.; Farwell, M.A.; Zhang, B. MicroRNA expression profile of MCF-7 human breast cancer cells and the effect of green tea polyphenon-60. Cancer Genomics Proteomics, 2010, 7(5), 261-277.
[PMID: 20952761]
[183]
Singh, T.; Katiyar, S.K. Green tea polyphenol, (-)-epigallocatechin-3-gallate, induces toxicity in human skin cancer cells by targeting β-catenin signaling. Toxicol. Appl. Pharmacol., 2013, 273(2), 418-424.
[http://dx.doi.org/10.1016/j.taap.2013.09.021] [PMID: 24096034]
[184]
Record, I.R.; Dreosti, I.E. Protection by black tea and green tea against UVB and UVA + B induced skin cancer in hairless mice. Mutat. Res., 1998, 422(1), 191-199.
[http://dx.doi.org/10.1016/S0027-5107(98)00192-4] [PMID: 9920445]
[185]
Katiyar, S.K. Green tea prevents non-melanoma skin cancer by enhancing DNA repair. Arch. Biochem. Biophys., 2011, 508(2), 152-158.
[http://dx.doi.org/10.1016/j.abb.2010.11.015] [PMID: 21094124]
[186]
Thiers, B.H. Green tea and skin cancer: Photoimmunology, angiogenesis and DNA repair. Yearb Dermatology Dermatologic Surg., 2008, 2008, 1-12.
[http://dx.doi.org/10.1016/S0093-3619(08)70835-9]
[187]
Katiyar, S.; Elmets, C.A.; Katiyar, S.K. Green tea and skin cancer: Photoimmunology, angiogenesis and DNA repair. J. Nutr. Biochem., 2007, 18(5), 287-296.
[http://dx.doi.org/10.1016/j.jnutbio.2006.08.004] [PMID: 17049833]
[188]
Hsu, S.; Dickinson, D.; Borke, J.; Walsh, D.S.; Wood, J.; Qin, H.; Winger, J.; Pearl, H.; Schuster, G.; Bollag, W.B. Green tea polyphenol induces caspase 14 in epidermal keratinocytes via MAPK pathways and reduces psoriasiform lesions in the flaky skin mouse model. Exp. Dermatol., 2007, 16(8), 678-684.
[http://dx.doi.org/10.1111/j.1600-0625.2007.00585.x] [PMID: 17620095]
[189]
Reuter, J.; Wölfle, U.; Weckesser, S.; Schempp, C. Welchepflanzefürwelchehauterkrankung? Teil 1: Atopische dermatitis, psoriasis, akne, kondylome und herpes simplex. J. Dtsch. Dermatol. Ges., 2010, 8, 788-796.
[PMID: 20707875]
[190]
Zhang, S.; Liu, X.; Mei, L.; Wang, H.; Fang, F. Epigallocatechin-3-gallate (EGCG) inhibits imiquimod-induced psoriasis-like inflammation of BALB/c mice. BMC Complement. Altern. Med., 2016, 16(1), 334.
[http://dx.doi.org/10.1186/s12906-016-1325-4] [PMID: 27581210]
[191]
Sadri, M.; Karimi-Nazari, E.; Hosseini, H.; Emamgholi, A. New chitosan/poly(ethylene oxide)/thyme nanofiber prepared by electrospin-ning method for antimicrobial wound dressing. J Nanostructures., 2016, 6, 322-328.
[192]
Takzaree, N.; Hadjiakhondi, A.; Hassanzadeh, G.; Rouini, M.R.; Manayi, A. Synergistic effect of honey and propolis on cutaneous wound healing in rats. Acta Med. Iran., 2016, 54(4), 233-239.
[PMID: 27309263]
[193]
Liu, J.X.; Dong, W.H.; Mou, X.J.; Liu, G.S.; Huang, X.W.; Yan, X.; Zhou, C.F.; Jiang, S.; Long, Y.Z. In situ electrospun zein/thyme essen-tial oil-based membranes as an effective antibacterial wound dressing. ACS Appl. Bio Mater., 2020, 3(1), 302-307.
[http://dx.doi.org/10.1021/acsabm.9b00823] [PMID: 35019446]
[194]
Altiok, D.; Altiok, E.; Tihminlioglu, F. Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications. J. Mater. Sci. Mater. Med., 2010, 21(7), 2227-2236.
[http://dx.doi.org/10.1007/s10856-010-4065-x] [PMID: 20372985]
[195]
Takzaree, N.; Hassanzadeh, G.; Rouini, M.R.; Manayi, A.; Hadjiakhondi, A.; Majidi Zolbin, M. Evaluation of the effects of local applica-tion of thyme honey in open cutaneous wound healing. Iran. J. Public Health, 2017, 46(4), 545-551.
[PMID: 28540272]
[196]
Anitha, R.O.Y.; Subeeksha, V.S.; Lakshmi, T. The wound healing property of thyme oleoresin from Thymus vulgaris l. On hacat keratino-cytes. Asian J. Pharm. Clin. Res., 2018, 11(9), 169-171.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i9.26987]
[197]
Oliviero, M.; Romilde, I.; Beatrice, M.M.; Matteo, V.; Giovanna, N.; Consuelo, A.; Claudio, C.; Giorgio, S.; Filippo, M.; Massimo, N. Evaluations of thyme extract effects in human normal bronchial and tracheal epithelial cell lines and in human lung cancer cell line. Chem. Biol. Interact., 2016, 256, 125-133.
[http://dx.doi.org/10.1016/j.cbi.2016.06.024] [PMID: 27369807]
[198]
Mahmoodi, M.; Ayoobi, F.; Aghaei, A.; Rahmani, M.; Taghipour, Z.; Hosseini, A.; Jafarzadeh, A.; Sankian, M. Beneficial effects of Thy-mus vulgaris extract in experimental autoimmune encephalomyelitis: Clinical, histological and cytokine alterations. Biomed. Pharmacother., 2019, 109, 2100-2108.
[http://dx.doi.org/10.1016/j.biopha.2018.08.078] [PMID: 30551467]
[199]
Ocaña, A.; Reglero, G. Effects of thyme extract oils (from Thymus vulgaris, Thymus zygis, and Thymus hyemalis) on cytokine production and gene expression of oxLDL-stimulated THP-1-macrophages. J. Obes., 2012, 2012, 104706.
[http://dx.doi.org/10.1155/2012/104706] [PMID: 22577523]
[200]
Nimrouzi, M.; Abolghasemi, J.; Sharifi, M.H.; Nasiri, K.; Akbari, A. Thyme oxymel by improving of inflammation, oxidative stress, dyslipidemia and homeostasis of some trace elements ameliorates obesity induced by high-fructose/fat diet in male rat. Biomed. Pharmacother., 2020, 126, 110079.
[http://dx.doi.org/10.1016/j.biopha.2020.110079] [PMID: 32200256]
[201]
Lorenzo, J.M.; Mousavi Khaneghah, A.; Gavahian, M.; Marszałek, K.; Eş, I.; Munekata, P.E.S.; Ferreira, I.C.F.R.; Barba, F.J. Understand-ing the potential benefits of thyme and its derived products for food industry and consumer health: From extraction of value-added com-pounds to the evaluation of bioaccessibility, bioavailability, anti-inflammatory, and antimicrobial activities. Crit. Rev. Food Sci. Nutr., 2019, 59(18), 2879-2895.
[http://dx.doi.org/10.1080/10408398.2018.1477730] [PMID: 29771598]
[202]
Khouya, T.; Ramchoun, M.; Hmidani, A.; Amrani, S.; Harnafi, H.; Benlyas, M.; Zegzouti, Y.F.; Alem, C. Anti-inflammatory, anticoagulant and antioxidant effects of aqueous extracts from Moroccan thyme varieties. Asian Pac. J. Trop. Biomed., 2015, 5(8), 636-644.
[http://dx.doi.org/10.1016/j.apjtb.2015.05.011]
[203]
Juhás, Š.; Bujňáková, D.; Rehák, P.; Čikoš, Š.; Czikková, S.; Veselá, J.; Koppel, J. Anti-inflammatory effects of thyme essential oil in mice. Acta Vet. Brno, 2008, 77(3), 327-334.
[http://dx.doi.org/10.2754/avb200877030327]
[204]
Youdim, K.A.; Deans, S.G. Effect of thyme oil and thymol dietary supplementation on the antioxidant status and fatty acid composition of the ageing rat brain. Br. J. Nutr., 2000, 83(1), 87-93.
[http://dx.doi.org/10.1017/S000711450000012X] [PMID: 10703468]
[205]
Caverzan, J.; Mussi, L.; Sufi, B.; Padovani, G.; Nazato, L.; Camargo, F.B.; Magalhães, W.V.; Di Stasi, L.C. A new phytocosmetic prepa-ration from Thymus vulgaris stimulates adipogenesis and controls skin aging process: In vitro studies and topical effects in a double-blind placebo-controlled clinical trial. J. Cosmet. Dermatol., 2020, 1-13.
[206]
Sobczak, M.; Kalemba, D.; Ferenc, B.; Zylinska, L. Limited protective properties of thymol and thyme oil on differentiated PC12 cells with downregulated Mgst1. J. Appl. Biomed., 2014, 12(4), 235-243.
[http://dx.doi.org/10.1016/j.jab.2014.08.002]
[207]
Sarikhani, M.; Deylam, M.; Alizadeh, E.; Hejazy, M.; Alizadeh-Salteh, S.; Moeini, H.; Firouzamandi, M. Anti-aging effects of peppermint (Mentha piperita L.) and Shirazi thyme (Zataria multiflora Boiss.) plant extracts. Food Biosci., 2021, 41, 100930.
[http://dx.doi.org/10.1016/j.fbio.2021.100930]
[208]
Kanlayavattanakul, M.; Lourith, N. Skin hyperpigmentation treatment using herbs: A review of clinical evidences. J. Cosmet. Laser Ther., 2018, 20(2), 123-131.
[http://dx.doi.org/10.1080/14764172.2017.1368666] [PMID: 28853960]
[209]
Kubatka, P.; Uramova, S.; Kello, M.; Kajo, K.; Samec, M.; Jasek, K.; Vybohova, D.; Liskova, A.; Mojzis, J.; Adamkov, M.; Zubor, P.; Smejkal, K.; Svajdlenka, E.; Solar, P.; Samuel, S.M.; Zulli, A.; Kassayova, M.; Lasabova, Z.; Kwon, T.K.; Pec, M.; Danko, J.; Büsselberg, D. Anticancer activities of Thymus vulgaris L. in experimental breast carcinoma in vivo and in vitro. Int. J. Mol. Sci., 2019, 20(7), 1-29.
[http://dx.doi.org/10.3390/ijms20071749] [PMID: 30970626]
[210]
Yavuz, D.O.; Mavis, M.; Ateş, G.; Hanoǧlu, A.; Yiğit Hanoğlu, D.; Can Başer, K.H.; Serakıncı, N. YiǧitHanoǧlu, D.; Can Başer, K.H.; Serakinci, B. Identification of potential therapeutic role of thymus capitatus essential oil using cellular imaging. Procedia Comput. Sci., 2017, 120, 961-966.
[http://dx.doi.org/10.1016/j.procs.2017.11.332]
[211]
Shahidi, F.; Hossain, A. Bioactives in spices, and spice oleoresins: Phytochemicals and their beneficial effects in food preservation and health promotion. J. Food Bioact., 2018, 3, 8-75.
[http://dx.doi.org/10.31665/JFB.2018.3149]
[212]
Kassi, E.; Chinou, I.; Spilioti, E.; Tsiapara, A.; Graikou, K.; Karabournioti, S.; Manoussakis, M.; Moutsatsou, P. A monoterpene, unique component of thyme honeys, induces apoptosis in prostate cancer cells via inhibition of NF-κB activity and IL-6 secretion. Phytomedicine, 2014, 21(11), 1483-1489.
[http://dx.doi.org/10.1016/j.phymed.2014.04.032] [PMID: 24932974]
[213]
Salehi, B.; Abu-Darwish, M.S.; Tarawneh, A.H.; Cabral, C.; Gadetskaya, A.V.; Salgueiro, L.; Contreras, M.M. Thymus spp. plants - Food applications and phytopharmacy properties. Trends Food Sci. Technol., 2019, 85, 287-306.
[http://dx.doi.org/10.1016/j.tifs.2019.01.020]
[214]
Manukumar, H.M.; Mashwanth, B.; Umesha, S.; Venkateswara Rao, J. Biocidal mechanism of green synthesized thyme loaded silver na-noparticles (GTAgNPs) against immune evading tricky methicillin-resistant Staphylococcus aureus 090 (MRSA090) at a homeostatic envi-ronment. Arab. J. Chem., 2020, 13(1), 1179-1197.
[http://dx.doi.org/10.1016/j.arabjc.2017.09.017]
[215]
Tang, J.L.; Liu, B.Y.; Ma, K.W. Traditional Chinese medicine. Lancet, 2008, 372(9654), 1938-1940.
[http://dx.doi.org/10.1016/S0140-6736(08)61354-9] [PMID: 18930523]
[216]
Wang, C.; Ma, J.; Liu, R.; Han, W.; Tang, X. A thermoplastic elastomer patch matrix for traditional Chinese medicine: Design and evalua-tion. Drug Dev. Ind. Pharm., 2014, 40(2), 211-221.
[http://dx.doi.org/10.3109/03639045.2012.755191] [PMID: 23327358]
[217]
Ponrasu, T.; Cheng, T.H.; Wang, L.; Cheng, Y.S.; Wang, H.M.D. Natural biocompatible polymer-based polyherbal compound gel for rapid wound contraction and promote re-epithelialization: An in vivo study. Mater. Lett., 2020, 261, 126911.
[http://dx.doi.org/10.1016/j.matlet.2019.126911]
[218]
Amaldoss, M.J.; Newton, S.K. Solid lipid nanoparticles for skin and drug delivery.Nanoarchitectonics in Biomedicine; Elsevier, 2019, pp. 295-334.
[219]
Mittal, P.; Saharan, A.; Verma, R.; Altalbawy, F.M.A.; Alfaidi, M.A.; Batiha, G.E.S.; Akter, W.; Gautam, R.K.; Uddin, M.S.; Rahman, M.S. Dendrimers: A new race of pharmaceutical nanocarriers. BioMed Res. Int., 2021, 2021, 8844030.
[http://dx.doi.org/10.1155/2021/8844030] [PMID: 33644232]
[220]
Kannan, R.M.; Nance, E.; Kannan, S.; Tomalia, D.A. Emerging concepts in dendrimer-based nanomedicine: From design principles to clinical applications. J. Intern. Med., 2014, Vol. 276, 579-617.
[221]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W. Dendrimers: Synthesis, applications, and properties. Vol. 9, Nanoscale Research Letters. Springer New York, 2014, LLC, 1-10.
[222]
Tomalia, D.A.; Fréchet, J.M.J. Discovery of dendrimers and dendritic polymers: A brief historical perspective. J. Polym. Sci. A Polym. Chem., 2002, 40(16), 2719-2728.
[http://dx.doi.org/10.1002/pola.10301]
[223]
Abderrezak, A.; Bourassa, P.; Mandeville, J.S.; Sedaghat-Herati, R.; Tajmir-Riahi, H.A. Dendrimers bind antioxidant polyphenols and cisplatin drug. PLoS One, 2012, 7(3), e33102.
[http://dx.doi.org/10.1371/journal.pone.0033102] [PMID: 22427960]
[224]
Chauhan, A.S. Dendrimer nanotechnology for enhanced formulation and controlled delivery of resveratrol. Ann. N. Y. Acad. Sci., 2015, 1348(1), 134-140.
[http://dx.doi.org/10.1111/nyas.12816] [PMID: 26173478]
[225]
Kececiler-Emir, C.; Ilhan-Ayisigi, E.; Celen-Erden, C.; Nalbantsoy, A.; Yesil-Celiktas, O. Synthesis of resveratrol loaded hybrid silica-PAMAM dendrimer nanoparticles with emphases on inducible nitric oxide synthase and cytotoxicity. Plant Foods Hum. Nutr., 2021, 76(2), 219-225.
[http://dx.doi.org/10.1007/s11130-021-00897-5] [PMID: 33950366]
[226]
Shi, Y.; Ye, F.; Lu, K.; Hui, Q.; Miao, M. Characterizations and bioavailability of dendrimer-like glucan nanoparticulate system containing resveratrol. J. Agric. Food Chem., 2020, 68(23), 6420-6429.
[http://dx.doi.org/10.1021/acs.jafc.0c01315] [PMID: 32396340]
[227]
Pentek, T.; Newenhouse, E.; O’Brien, B.; Chauhan, A.S. Development of a topical resveratrol formulation for commercial applications using dendrimer nanotechnology. Molecules, 2017, 22(1), 1-16.
[http://dx.doi.org/10.3390/molecules22010137] [PMID: 28098828]
[228]
Rocha-González, H.I.; Ambriz-Tututi, M.; Granados-Soto, V. Resveratrol: A natural compound with pharmacological potential in neuro-degenerative diseases, 2008.
[229]
Dyck, G.J.B.; Raj, P.; Zieroth, S.; Dyck, J.R.B.; Ezekowitz, J.A. The effects of resveratrol in patients with cardiovascular disease and heart failure: A narrative review. Int. J. Mol. Sci., 2019, 20(4), 904.
[http://dx.doi.org/10.3390/ijms20040904] [PMID: 30791450]
[230]
Bonnefont-Rousselot, D. Resveratrol and cardiovascular diseases. Nutrients, 2016, 8(5), 1-24.
[http://dx.doi.org/10.3390/nu8050250] [PMID: 27144581]
[231]
Li, J.; Zhang, C.X.; Liu, Y.M.; Chen, K.L.; Chen, G. A comparative study of anti-aging properties and mechanism: Resveratrol and caloric restriction. Oncotarget, 2017, 8(39), 65717-65729.
[http://dx.doi.org/10.18632/oncotarget.20084] [PMID: 29029466]
[232]
Carter, L.G.; D’Orazio, J.A.; Pearson, K.J. Resveratrol and cancer: Focus on in vivo evidence. Endocr. Relat. Cancer, 2014, 21(3), R209-R225.
[http://dx.doi.org/10.1530/ERC-13-0171] [PMID: 24500760]
[233]
Baxter, R.A. Anti-aging properties of resveratrol: Review and report of a potent new antioxidant skin care formulation. J. Cosmet. Dermatol., 2008, 7(1), 2-7.
[http://dx.doi.org/10.1111/j.1473-2165.2008.00354.x] [PMID: 18254804]
[234]
Singh, C.K.; Ndiaye, M.A.; Ahmad, N. Resveratrol and cancer: Challenges for clinical translation. Biochim. Biophys. Acta, 2015, 1852(6), 1178-1185.
[http://dx.doi.org/10.1016/j.bbadis.2014.11.004] [PMID: 25446990]
[235]
Borowska, K.; Wołowiec, S.; Głowniak, K.; Sieniawska, E.; Radej, S. Transdermal delivery of 8-methoxypsoralene mediated by polyami-doamine dendrimer G2.5 and G3.5--in vitro and in vivo study. Int. J. Pharm., 2012, 436(1-2), 764-770.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.067] [PMID: 22884834]
[236]
Borowska, K.; Wołowiec, S.; Rubaj, A.; Głowniak, K.; Sieniawska, E.; Radej, S. Effect of polyamidoamine dendrimer G3 and G4 on skin permeation of 8-methoxypsoralene--in vivo study. Int. J. Pharm., 2012, 426(1-2), 280-283.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.041] [PMID: 22310461]
[237]
Bijak, M. Silybin, a Major Bioactive Component of Milk Thistle (Silybum marianum L. Gaernt.)-Chemistry, Bioavailability, and Metabo-lism. Molecules, 2017, 22(11), 1942.
[http://dx.doi.org/10.3390/molecules22111942] [PMID: 29125572]
[238]
Shetty, P.K.; Manikkath, J.; Tupally, K.; Kokil, G.; Hegde, A.R.; Raut, S.Y.; Parekh, H.S.; Mutalik, S. Skin delivery of EGCG and silibinin: Potential of peptide dendrimers for enhanced skin permeation and deposition. AAPS PharmSciTech, 2017, 18(6), 2346-2357.
[http://dx.doi.org/10.1208/s12249-017-0718-0] [PMID: 28124212]
[239]
Lombardo, D.; Kiselev, M.A.; Caccamo, M.T. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater., 2019, 2019, 1-26.
[http://dx.doi.org/10.1155/2019/3702518]
[240]
Vangijzegem, T.; Stanicki, D.; Laurent, S. Magnetic iron oxide nanoparticles for drug delivery: Applications and characteristics. Expert Opin. Drug Deliv., 2019, 16(1), 69-78.
[http://dx.doi.org/10.1080/17425247.2019.1554647] [PMID: 30496697]
[241]
Witwer, K.W.; Wolfram, J. Extracellular vesicles versus synthetic nanoparticles for drug delivery; Nat Rev Mate, 2021, pp. 1-4.
[242]
Manzano, M.; Vallet-Regí, M. Mesoporous silica nanoparticles for drug delivery. Adv. Funct. Mater., 2020, 30(2), 1902634.
[http://dx.doi.org/10.1002/adfm.201902634]
[243]
Schneider, M.; Stracke, F.; Hansen, S.; Schaefer, U.F. Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinol, 2009, 1(4), 197-206.
[http://dx.doi.org/10.4161/derm.1.4.9501] [PMID: 20592791]
[244]
Vashi, N.A.; Kundu, R.V. Facial hyperpigmentation: Causes and treatment. Br. J. Dermatol., 2013, 169(Suppl. 3), 41-56.
[http://dx.doi.org/10.1111/bjd.12536] [PMID: 24098900]
[245]
Zhao, Q.; Chen, X.Y.; Martin, C. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Sci. Bull. (Beijing), 2016, 61(18), 1391-1398.
[http://dx.doi.org/10.1007/s11434-016-1136-5] [PMID: 27730005]
[246]
Dong, W.; Ye, J.; Wang, W.; Yang, Y.; Wang, H.; Sun, T.; Gao, L.; Liu, Y. Self-assembled lecithin/chitosan nanoparticles based on phos-pholipid complex: A feasible strategy to improve entrapment efficiency and transdermal delivery of poorly lipophilic drug. Int. J. Nanomedicine, 2020, 15, 5629-5643.
[http://dx.doi.org/10.2147/IJN.S261162] [PMID: 32801706]
[247]
Peppin, J.F.; Pappagallo, M. Capsaicinoids in the treatment of neuropathic pain: A review. Ther. Adv. Neurol. Disord., 2014, 7(1), 22-32.
[http://dx.doi.org/10.1177/1756285613501576] [PMID: 24409200]
[248]
Ko, F.; Diaz, M.; Smith, P.; Emerson, E.; Kim, Y.J.; Krizek, T.J.; Robson, M.C. Toxic effects of capsaicin on keratinocytes and fibro-blasts. J. Burn Care Rehabil., 1998, 19(5), 409-413.
[http://dx.doi.org/10.1097/00004630-199809000-00010] [PMID: 9789176]
[249]
Chittasupho, C.; Thongnopkoon, T.; Burapapisut, S.; Charoensukkho, C.; Shuwisitkul, D.; Samee, W. Stability, permeation, and cytotoxi-city reduction of capsicum extract nanoparticles loaded hydrogel containing wax gourd extract. Saudi Pharm. J., 2020, 28(12), 1538-1547.
[http://dx.doi.org/10.1016/j.jsps.2020.10.001] [PMID: 33424247]
[250]
Xia, L.; Lenaghan, S.C.; Zhang, M.; Zhang, Z.; Li, Q. Naturally occurring nanoparticles from English ivy: An alternative to metal-based nanoparticles for UV protection. J. Nanobiotechnology, 2010, 8(1), 12.
[http://dx.doi.org/10.1186/1477-3155-8-12] [PMID: 20534157]
[251]
Barriga, H.M.G.; Holme, M.N.; Stevens, M.M. Cubosomes: The next generation of smart lipid nanoparticles? Angew. Chem. Int. Ed. Engl., 2019, 58(10), 2958-2978.
[http://dx.doi.org/10.1002/anie.201804067] [PMID: 29926520]
[252]
Peng, X.; Zhou, Y.; Han, K.; Qin, L.; Dian, L.; Li, G.; Pan, X.; Wu, C. Characterization of cubosomes as a targeted and sustained trans-dermal delivery system for capsaicin. Drug Des. Devel. Ther., 2015, 9, 4209-4218.
[http://dx.doi.org/10.2147/DDDT.S86370] [PMID: 26345516]
[253]
Bazylińska, U.; Kulbacka, J.; Schmidt, J.; Talmon, Y.; Murgia, S. Polymer-free cubosomes for simultaneous bioimaging and photodynam-ic action of photosensitizers in melanoma skin cancer cells. J. Colloid Interface Sci., 2018, 522, 163-173.
[http://dx.doi.org/10.1016/j.jcis.2018.03.063] [PMID: 29601958]
[254]
Seo, S.R.; Kang, G.; Ha, J.W.; Kim, J.C. In vivo hair growth-promoting efficacies of herbal extracts and their cubosomal suspensions. J. Ind. Eng. Chem., 2013, 19(4), 1331-1339.
[http://dx.doi.org/10.1016/j.jiec.2012.12.037]
[255]
Espíndola, K.M.M.; Ferreira, R.G.; Narvaez, L.E.M.; Silva Rosario, A.C.R.; da Silva, A.H.M.; Silva, A.G.B.; Vieira, A.P.O.; Monteiro, M.C. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front. Oncol., 2019, 9, 541.
[http://dx.doi.org/10.3389/fonc.2019.00541] [PMID: 31293975]
[256]
Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The potential of plant phenolics in prevention and therapy of skin disorders. Int. J. Mol. Sci., 2016, 17(2), 160.
[http://dx.doi.org/10.3390/ijms17020160] [PMID: 26901191]
[257]
Khan, F.A.; Maalik, A.; Murtaza, G. Inhibitory mechanism against oxidative stress of caffeic acid. J. Food Drug Anal., 2016, 24(4), 695-702.
[http://dx.doi.org/10.1016/j.jfda.2016.05.003] [PMID: 28911606]
[258]
Mori, H.; Iwahashi, H. Antioxidant activity of caffeic acid through a novel mechanism under UVA irradiation. J. Clin. Biochem. Nutr., 2009, 45(1), 49-55.
[http://dx.doi.org/10.3164/jcbn.08-258] [PMID: 19590707]
[259]
Spagnol, C.M.; Di Filippo, L.D.; Isaac, V.L.B.; Correa, M.A.; Salgado, H.R.N. Caffeic acid in dermatological formulations: In vitro release profile and skin absorption. Comb. Chem. High Throughput Screen., 2017, 20(8), 675-681.
[http://dx.doi.org/10.2174/1386207320666170602090448] [PMID: 28571540]
[260]
Lee, H.; Vilian, A.T.E.; Kim, J.Y.; Chun, M.H.; Suh, J.S.; Seo, H.H.; Cho, S.H.; Shin, I.S.; Kim, S.J.; Park, S.H.; Han, Y-K.; Lee, J.H.; Huh, Y.S. Design and development of caffeic acid conjugated with: Bombyx mori derived peptide biomaterials for anti-aging skin care applica-tions. RSC Advances, 2017, 7(48), 30205-30213.
[http://dx.doi.org/10.1039/C7RA04138A]
[261]
Hallan, S.S.; Sguizzato, M.; Mariani, P.; Cortesi, R.; Huang, N.; Simelière, F.; Marchetti, N.; Drechsler, M.; Ruzgas, T.; Esposito, E. Design and characterization of ethosomes for transdermal delivery of caffeic acid. Pharmaceutics, 2020, 12(8), 1-18.
[http://dx.doi.org/10.3390/pharmaceutics12080740] [PMID: 32781717]
[262]
Zhang, Y.T.; Shen, L.N.; Zhao, J.H.; Feng, N.P. Evaluation of psoralen ethosomes for topical delivery in rats by using in vivo microdialy-sis. Int. J. Nanomedicine, 2014, 9(1), 669-678.
[http://dx.doi.org/10.2147/IJN.S57314] [PMID: 24489470]
[263]
Bagchi, D.; Dutta, S.; Singh, P.; Chaudhuri, S.; Pal, S.K. Essential dynamics of an effective phototherapeutic drug in a nanoscopic delivery vehicle: Psoralen in ethosomes for biofilm treatment. ACS Omega, 2017, 2(5), 1850-1857.
[http://dx.doi.org/10.1021/acsomega.7b00187] [PMID: 30023647]
[264]
Huang, Y.X.; Wang, G.; Zhu, J.S.; Zhang, R.; Zhang, J. Traditional uses, phytochemistry, and pharmacological properties of Sophora alo-pecuroides L. Eur. J. Inflamm., 2016, 14(2), 128-132.
[http://dx.doi.org/10.1177/1721727X16642779]
[265]
Chang, A.; Cai, Z.; Wang, Z.; Sun, S. Extraction and isolation of alkaloids of Sophora alopecuroides and their anti-tumor effects in H22 tumor-bearing mice. Afr. J. Tradit. Complement. Altern. Med., 2014, 11(2), 245-248.
[http://dx.doi.org/10.4314/ajtcam.v11i2.3] [PMID: 25435603]
[266]
Li, J.C.; Dai, W.F.; Liu, D.; Zhang, Z.J.; Jiang, M.Y.; Rao, K.R.; Li, R.T.; Li, H.M. Quinolizidine alkaloids from Sophora alopecuroides with anti-inflammatory and anti-tumor properties. Bioorg. Chem., 2021, 110, 104781.
[http://dx.doi.org/10.1016/j.bioorg.2021.104781] [PMID: 33677246]
[267]
Boozari, M.; Soltani, S.; Iranshahi, M. Biologically active prenylated flavonoids from the genus Sophora and their structure-activity rela-tionship-A review. Phytother. Res., 2019, 33(3), 546-560.
[http://dx.doi.org/10.1002/ptr.6265] [PMID: 30652369]
[268]
Li, T.; Yin, X.; Liu, D.; Ma, X.; Lv, H.; Sun, S. Isolation and characterization of a novel lectin with antifungal and antiproliferative activi-ties from Sophora alopecuroides seeds. Acta Biochim. Biophys. Sin. (Shanghai), 2012, 44(7), 606-613.
[http://dx.doi.org/10.1093/abbs/gms037] [PMID: 22634632]
[269]
Zhang, Y.B.; Yang, L.; Luo, D.; Chen, N.H.; Wu, Z.N.; Ye, W.C.; Li, Y.L.; Wang, G.C. Sophalines, E-I Five quinolizidine-based alkaloids with antiviral activities against the hepatitis B virus from the seeds of Sophora alopecuroides. Org. Lett., 2018, 20(18), 5942-5946.
[http://dx.doi.org/10.1021/acs.orglett.8b02637] [PMID: 30204454]
[270]
Zhou, Y.; Wei, Y.; Liu, H.; Zhang, G.; Wu, X. Preparation and in vitro evaluation of ethosomal total alkaloids of Sophora alopecuroides loaded by a transmembrane pH-gradient method. AAPS PharmSciTech, 2010, 11(3), 1350-1358.
[http://dx.doi.org/10.1208/s12249-010-9509-6] [PMID: 20740333]
[271]
Lindqvist, U.; Phil-Lundin, I.; Engström-Laurent, A. Dermal distribution of hyaluronan in psoriatic arthritis; coexistence of CD44, MMP3 and MMP9. Acta Derm. Venereol., 2012, 92(4), 372-377.
[http://dx.doi.org/10.2340/00015555-1286] [PMID: 22278305]
[272]
Zhang, Y.; Xia, Q.; Li, Y.; He, Z.; Li, Z.; Guo, T.; Wu, Z.; Feng, N. CD44 assists the topical anti-psoriatic efficacy of curcumin-loaded hyaluronan-modified ethosomes: A new strategy for clustering drug in inflammatory skin. Theranostics, 2019, 9(1), 48-64.
[http://dx.doi.org/10.7150/thno.29715] [PMID: 30662553]
[273]
Kundu, J.K.; Liu, L.; Shin, J.W.; Surh, Y.J. Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo. Biochem. Biophys. Res. Commun., 2013, 438(4), 721-727.
[http://dx.doi.org/10.1016/j.bbrc.2013.07.110] [PMID: 23911786]
[274]
Ghorbanibirgani, A.; Khalili, A.; Rokhafrooz, D. Comparing nigella sativa oil and fish oil in treatment of vitiligo. Iran. Red Crescent Med. J., 2014, 16(6), e4515.
[http://dx.doi.org/10.5812/ircmj.4515] [PMID: 25068060]
[275]
Ali, S.A.; Meitei, K.V. Nigella sativa seed extract and its bioactive compound thymoquinone: The new melanogens causing hyperpigmen-tation in the wall lizard melanophores. J. Pharm. Pharmacol., 2011, 63(5), 741-746.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01271.x] [PMID: 21492177]
[276]
Aljabre, S.H.M.; Alakloby, O.M.; Randhawa, M.A. Dermatological effects of Nigella sativa. J Dermatology Dermatologic Surg., 2015, 19(2), 92-98.
[http://dx.doi.org/10.1016/j.jdds.2015.04.002]
[277]
Ahmad, A.; Husain, A.; Mujeeb, M.; Khan, S.A.; Najmi, A.K.; Siddique, N.A.; Damanhouri, Z.A.; Anwar, F. A review on therapeutic po-tential of Nigella sativa: A miracle herb. Asian Pac. J. Trop. Biomed., 2013, 3(5), 337-352.
[http://dx.doi.org/10.1016/S2221-1691(13)60075-1] [PMID: 23646296]
[278]
Bimonte, S.; Albino, V.; Barbieri, A.; Tamma, M.L.; Nasto, A.; Palaia, R.; Molino, C.; Bianco, P.; Vitale, A.; Schiano, R.; Giudice, A.; Cas-cella, M. Dissecting the roles of thymoquinone on the prevention and the treatment of hepatocellular carcinoma: An overview on the cur-rent state of knowledge. Infect. Agent. Cancer, 2019, 14(1), 10.
[http://dx.doi.org/10.1186/s13027-019-0226-9] [PMID: 31015860]
[279]
Badary, O.A.; Taha, R.A.; Gamal el-Din, A.M.; Abdel-Wahab, M.H. Thymoquinone is a potent superoxide anion scavenger. Drug Chem. Toxicol., 2003, 26(2), 87-98.
[http://dx.doi.org/10.1081/DCT-120020404] [PMID: 12816394]
[280]
Negi, P.; Sharma, I.; Hemrajani, C.; Rathore, C.; Bisht, A.; Raza, K.; Katare, O.P. Thymoquinone-loaded lipid vesicles: A promising nano-medicine for psoriasis. BMC Complement. Altern. Med., 2019, 19(1), 334.
[http://dx.doi.org/10.1186/s12906-019-2675-5] [PMID: 31771651]
[281]
Gharbavi, M.; Amani, J.; Kheiri-Manjili, H.; Danafar, H.; Sharafi, A. Niosome: A promising nanocarrier for natural drug delivery through blood-brain barrier. Adv. Pharmacol. Sci., 2018, 2018, 6847971.
[http://dx.doi.org/10.1155/2018/6847971] [PMID: 30651728]
[282]
Diskaeva, E.I.; Vecher, O.V.; Bazikov, I.A.; Maltsev, A.N. Dispersion analysis of niosomes different composition. J. Nanopart. Res., 2019, 21(1), 1-7.
[http://dx.doi.org/10.1007/s11051-018-4453-6]
[283]
Ge, X.; Wei, M.; He, S.; Yuan, W.E. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics, 2019, 11(2), 1-16.
[http://dx.doi.org/10.3390/pharmaceutics11020055] [PMID: 30700021]
[284]
Naderinezhad, S.; Amoabediny, G.; Haghiralsadat, F. Co-delivery of hydrophilic and hydrophobic anticancer drugs using biocompatible pH-sensitive lipid-based nano-carriers for multidrug-resistant cancers. RSC Advances, 2017, 7(48), 1-12.
[http://dx.doi.org/10.1039/C7RA01736G]
[285]
Radmard, A.; Saeedi, M.; Morteza-Semnani, K.; Hashemi, S.M.H.; Nokhodchi, A. An eco-friendly and green formulation in lipid nano-technology for delivery of a hydrophilic agent to the skin in the treatment and management of hyperpigmentation complaints: Arbutin nio-some (Arbusome). Colloids Surf. B Biointerfaces, 2021, 201, 111616.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111616] [PMID: 33618082]
[286]
Okhuarobo, A.; Ehizogie Falodun, J.; Erharuyi, O.; Imieje, V.; Falodun, A.; Langer, P. Harnessing the medicinal properties of Androgra-phis paniculata for diseases and beyond: A review of its phytochemistry and pharmacology. Asian Pac. J. Trop. Dis., 2014, 4(3), 213-222.
[http://dx.doi.org/10.1016/S2222-1808(14)60509-0]
[287]
Premendran, S.J.; Salwe, K.J.; Pathak, S.; Brahmane, R.; Manimekalai, K. Anti-cobra venom activity of plant Andrographis paniculata and its comparison with polyvalent anti-snake venom. J. Nat. Sci. Biol. Med., 2011, 2(2), 198-204.
[http://dx.doi.org/10.4103/0976-9668.92326] [PMID: 22346236]
[288]
Al-Bayaty, F.H.; Abdulla, M.A.; Abu Hassan, M.I.; Ali, H.M. Effect of Andrographis paniculata leaf extract on wound healing in rats. Nat. Prod. Res., 2012, 26(5), 423-429.
[http://dx.doi.org/10.1080/14786419.2010.496114] [PMID: 21660840]
[289]
Roy, S.; Rao, K.; Bhuvaneswari, C.; Giri, A.; Mangamoori, L.N. Phytochemical analysis of Andrographis paniculata extract and its antimi-crobial activity. World J. Microbiol. Biotechnol., 2010, 26(1), 85-91.
[http://dx.doi.org/10.1007/s11274-009-0146-8]
[290]
Mishra, U.S.; Mishra, A.; Kumari, R.; Murthy, P.N.; Naik, B.S. Antibacterial activity of ethanol extract of Andrographis paniculata. Indian J. Pharm. Sci., 2009, 71(4), 436-438.
[http://dx.doi.org/10.4103/0250-474X.57294] [PMID: 20502551]
[291]
Singha, P.K.; Roy, S.; Dey, S. Antimicrobial activity of Andrographis paniculata. Fitoterapia, 2003, 74(7-8), 692-694.
[http://dx.doi.org/10.1016/S0367-326X(03)00159-X] [PMID: 14630176]
[292]
Low, M.; Khoo, C.S.; Münch, G.; Govindaraghavan, S.; Sucher, N.J. An in vitro study of anti-inflammatory activity of standardised An-drographis paniculata extracts and pure andrographolide. BMC Complement. Altern. Med., 2015, 15(1), 18.
[http://dx.doi.org/10.1186/s12906-015-0525-7] [PMID: 25888070]
[293]
Zou, W.; Xiao, Z.; Wen, X.; Luo, J.; Chen, S.; Cheng, Z.; Xiang, D.; Hu, J.; He, J. The anti-inflammatory effect of Andrographis paniculata (Burm. f.) Nees on pelvic inflammatory disease in rats through down-regulation of the NF-κB pathway. BMC Complement. Altern. Med., 2016, 16(1), 483.
[http://dx.doi.org/10.1186/s12906-016-1466-5] [PMID: 27887650]
[294]
Jamaludin, R.; Mohd Daud, N.; Raja Sulong, R.S.; Yaakob, H.; Abdul Aziz, A.; Khamis, S.; Md Salleh, L. Andrographis paniculata-loaded niosome for wound healing application: Characterisation and in vivo analyses. J. Drug Deliv. Sci. Technol., 2021, 63, 1-9.
[http://dx.doi.org/10.1016/j.jddst.2021.102427]
[295]
Akbari, J.; Saeedi, M.; Enayatifard, R.; Morteza-Semnani, K.; Hassan Hashemi, S.M.; Babaei, A.; Rahimnia, S.M.; Rostamkalaei, S.S.; Nokhodchi, A. Curcumin Niosomes (curcusomes) as an alternative to conventional vehicles: A potential for efficient dermal delivery. J. Drug Deliv. Sci. Technol., 2020, 60, 1-10.
[http://dx.doi.org/10.1016/j.jddst.2020.102035]
[296]
Sadeghi Ghadi, Z.; Dinarvand, R.; Asemi, N.; Talebpour Amiri, F.; Ebrahimnejad, P. Preparation, characterization and in vivo evaluation of novel hyaluronan containing niosomes tailored by Box-Behnken design to co-encapsulate curcumin and quercetin. Eur. J. Pharm. Sci., 2019, 130, 234-246.
[http://dx.doi.org/10.1016/j.ejps.2019.01.035] [PMID: 30711688]
[297]
Khan, B.A.; Mahmood, T.; Menaa, F.; Shahzad, Y.; Yousaf, A.M.; Hussain, T.; Ray, S.D. New perspectives on the efficacy of gallic acid in cosmetics & nanocosmeceuticals. Curr. Pharm. Des., 2018, 24(43), 5181-5187.
[http://dx.doi.org/10.2174/1381612825666190118150614] [PMID: 30657034]
[298]
Pientaweeratch, S.; Panapisal, V.; Tansirikongkol, A. Antioxidant, anti-collagenase and anti-elastase activities of Phyllanthus emblica, Manilkara zapota and silymarin: An in vitro comparative study for anti-aging applications. Pharm. Biol., 2016, 54(9), 1865-1872.
[http://dx.doi.org/10.3109/13880209.2015.1133658] [PMID: 26912420]
[299]
Chaikul, P.; Khat-Udomkiri, N.; Iangthanarat, K.; Manosroi, J.; Manosroi, A. Characteristics and in vitro anti-skin aging activity of gallic acid loaded in cationic CTAB niosome. Eur. J. Pharm. Sci., 2019, 131, 39-49.
[http://dx.doi.org/10.1016/j.ejps.2019.02.008] [PMID: 30735821]
[300]
Gregoriadis, G. Liposomes in drug delivery: How it all happened. Pharmaceutics, 2016, 8(2), 1-5.
[http://dx.doi.org/10.3390/pharmaceutics8020019] [PMID: 27231934]
[301]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[302]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[303]
Khan, D.R.; Rezler, E.M.; Lauer-Fields, J.; Fields, G.B. Effects of drug hydrophobicity on liposomal stability. Chem. Biol. Drug Des., 2008, 71(1), 3-7.
[http://dx.doi.org/10.1111/j.1747-0285.2007.00610.x] [PMID: 18086150]
[304]
Sun, H.; Guo, X.; Zeng, S.; Wang, Y.; Hou, J.; Yang, D.; Zhou, S. A multifunctional liposomal nanoplatform co-delivering hydrophobic and hydrophilic doxorubicin for complete eradication of xenografted tumors. Nanoscale, 2019, 11(38), 17759-17772.
[http://dx.doi.org/10.1039/C9NR04669K] [PMID: 31552975]
[305]
Bylka, W.; Znajdek-Awiżeń, P.; Studzińska-Sroka, E.; Brzezińska, M. Centella asiatica in cosmetology. Postepy Dermatol. Alergol., 2013, 30(1), 46-49.
[http://dx.doi.org/10.5114/pdia.2013.33378] [PMID: 24278045]
[306]
Liu, M.; Dai, Y.; Li, Y.; Luo, Y.; Huang, F.; Gong, Z.; Meng, Q. Madecassoside isolated from Centella asiatica herbs facilitates burn wound healing in mice. Planta Med., 2008, 74(8), 809-815.
[http://dx.doi.org/10.1055/s-2008-1074533] [PMID: 18484522]
[307]
Baitee, N.A. Comparative antioxidant and anti-inflammatory activity of different extracts of Centella asiatica (L.) urban and its active compounds, asiaticoside and madecassoside. Med. Health, 2012, 7, 62-72.
[308]
Sasmita, A.O.; Ling, A.P.K.; Voon, K.G.L.; Koh, R.Y.; Wong, Y.P. Madecassoside activates anti neuroinflammatory mechanisms by in-hibiting lipopolysaccharide induced microglial inflammation. Int. J. Mol. Med., 2018, 41(5), 3033-3040.
[http://dx.doi.org/10.3892/ijmm.2018.3479] [PMID: 29436598]
[309]
Liu, M.; Dai, Y.; Yao, X.; Li, Y.; Luo, Y.; Xia, Y.; Gong, Z. Anti-rheumatoid arthritic effect of madecassoside on type II collagen-induced arthritis in mice. Int. Immunopharmacol., 2008, 8(11), 1561-1566.
[http://dx.doi.org/10.1016/j.intimp.2008.06.011] [PMID: 18652917]
[310]
Hou, Q.; Li, M.; Lu, Y.H.; Liu, D.H.; Li, C.C. Burn wound healing properties of asiaticoside and madecassoside. Exp. Ther. Med., 2016, 12(3), 1269-1274.
[http://dx.doi.org/10.3892/etm.2016.3459] [PMID: 27588048]
[311]
Li, Z.; Liu, M.; Wang, H.; Du, S. Increased cutaneous wound healing effect of biodegradable liposomes containing madecassoside: Prepa-ration optimization, in vitro dermal permeation, and in vivo bioevaluation. Int. J. Nanomedicine, 2016, 11, 2995-3007.
[http://dx.doi.org/10.2147/IJN.S105035] [PMID: 27486319]
[312]
Mahira, S.; Kommineni, N.; Doppalapudi, S.; Khan, W. Edge activated ultradeformable liposomes of psoralen and its derivatives: Devel-opment and comparative evaluation for vitiligo therapy. J. Drug Deliv. Sci. Technol., 2019, 52, 83-95.
[http://dx.doi.org/10.1016/j.jddst.2019.02.033]
[313]
Pleguezuelos-Villa, M.; Mir-Palomo, S.; Díez-Sales, O.; Buso, M.A.O.V.; Sauri, A.R.; Nácher, A. A novel ultradeformable liposomes of Naringin for anti-inflammatory therapy. Colloids Surf. B Biointerfaces, 2018, 162, 265-270.
[http://dx.doi.org/10.1016/j.colsurfb.2017.11.068] [PMID: 29216513]
[314]
Lin, C.H.; Al-Suwayeh, S.A.; Hung, C.F.; Chen, C.C.; Fang, J.Y. Camptothecin-loaded liposomes with α-melanocyte-stimulating hormone enhance cytotoxicity toward and cellular uptake by melanomas: An application of nanomedicine on natural product. J. Tradit. Complement. Med., 2013, 3(2), 102-109.
[http://dx.doi.org/10.4103/2225-4110.110423] [PMID: 24716164]
[315]
Jose, A.; Labala, S.; Venuganti, V.V. Co-delivery of curcumin and STAT3 siRNA using deformable cationic liposomes to treat skin can-cer. J. Drug Target., 2017, 25(4), 330-341.
[http://dx.doi.org/10.1080/1061186X.2016.1258567] [PMID: 27819148]
[316]
Yasumoto, K.; Yokoyama, K.; Takahashi, K.; Tomita, Y.; Shibahara, S. Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. J. Biol. Chem., 1997, 272(1), 503-509.
[http://dx.doi.org/10.1074/jbc.272.1.503] [PMID: 8995290]
[317]
Fang, D.; Tsuji, Y.; Setaluri, V. Selective down-regulation of tyrosinase family gene TYRP1 by inhibition of the activity of melanocyte transcription factor, MITF. Nucleic Acids Res., 2002, 30(14), 3096-3106.
[http://dx.doi.org/10.1093/nar/gkf424] [PMID: 12136092]
[318]
Huang, H.C.; Chang, S.J.; Wu, C.Y.; Ke, H.J.; Chang, T.M. [6]-Shogaol inhibits α-MSH-induced melanogenesis through the acceleration of ERK and PI3K/Akt-mediated MITF degradation. BioMed Res. Int., 2014, 2014, 842569.
[http://dx.doi.org/10.1155/2014/842569] [PMID: 25045707]
[319]
Zhao, P.; Alam, M.B.; An, H.; Choi, H.J.; Cha, Y.H.; Yoo, C.Y.; Kim, H.H.; Lee, S.H. Antimelanogenic effect of an oroxylum indicum seed extract by suppression of MITF expression through activation of MAPK signaling protein. Int. J. Mol. Sci., 2018, 19(3), 760.
[http://dx.doi.org/10.3390/ijms19030760] [PMID: 29518952]
[320]
Kim, J.Y.; Lee, E.J.; Ahn, Y.; Park, S.; Kim, S.H.; Oh, S.H. A chemical compound from fruit extract of Juglans mandshurica inhibits mel-anogenesis through p-ERK-associated MITF degradation. Phytomedicine, 2019, 57, 57-64.
[http://dx.doi.org/10.1016/j.phymed.2018.12.007] [PMID: 30668323]
[321]
Wu, P.Y.; You, Y.J.; Liu, Y.J.; Hou, C.W.; Wu, C.S.; Wen, K.C.; Lin, C.Y.; Chiang, H.M. Sesamol inhibited melanogenesis by regulating melanin-related signal transduction in B16F10 cells. Int. J. Mol. Sci., 2018, 19(4), 1108.
[http://dx.doi.org/10.3390/ijms19041108] [PMID: 29642438]
[322]
Truong, X.T.; Park, S.H.; Lee, Y.G.; Jeong, H.Y.; Moon, J.H.; Jeon, T.I. Protocatechuic acid from pear inhibits melanogenesis in melano-ma cells. Int. J. Mol. Sci., 2017, 18(8), 1809.
[http://dx.doi.org/10.3390/ijms18081809] [PMID: 28825660]
[323]
Wu, Q.Y.; Wong, Z.C.; Wang, C.; Fung, A.H.; Wong, E.O.; Chan, G.K.; Dong, T.T.; Chen, Y.; Tsim, K.W. Isoorientin derived from Genti-ana veitchiorum Hemsl. flowers inhibits melanogenesis by down-regulating MITF-induced tyrosinase expression. Phytomedicine, 2019, 57, 129-136.
[http://dx.doi.org/10.1016/j.phymed.2018.12.006] [PMID: 30668315]
[324]
Seong, Z.K.; Lee, S.Y.; Poudel, A.; Oh, S.R.; Lee, H.K. Constituents of cryptotaenia japonica inhibit melanogenesis via CREB-and MAPK-associated signaling pathways in murine B16 melanoma cells. Molecules, 2016, 21(10), 1296.
[http://dx.doi.org/10.3390/molecules21101296] [PMID: 27689982]
[325]
Kang, S.J.; Choi, B.R.; Lee, E.K.; Kim, S.H.; Yi, H.Y.; Park, H.R.; Song, C.H.; Lee, Y.J.; Ku, S.K. Inhibitory effect of dried pomegranate concentration powder on melanogenesis in B16F10 melanoma cells; involvement of p38 and PKA signaling pathways. Int. J. Mol. Sci., 2015, 16(10), 24219-24242.
[http://dx.doi.org/10.3390/ijms161024219] [PMID: 26473849]
[326]
Chae, J.K.; Subedi, L.; Jeong, M.; Park, Y.U.; Kim, C.Y.; Kim, H.; Kim, S.Y. Gomisin N inhibits melanogenesis through regulating the PI3K/Akt and MAPK/ERK signaling pathways in melanocytes. Int. J. Mol. Sci., 2017, 18(2), 471.
[http://dx.doi.org/10.3390/ijms18020471] [PMID: 28241436]
[327]
Chang, T.S. Natural melanogenesis inhibitors acting through the down-regulation of tyrosinase activity. Materials (Basel), 2012, 5(9), 1661-1685.
[http://dx.doi.org/10.3390/ma5091661]
[328]
Matoba, Y.; Kumagai, T.; Yamamoto, A.; Yoshitsu, H.; Sugiyama, M. Crystallographic evidence that the dinuclear copper center of tyrosi-nase is flexible during catalysis. J. Biol. Chem., 2006, 281(13), 8981-8990.
[http://dx.doi.org/10.1074/jbc.M509785200] [PMID: 16436386]
[329]
Menter, J.M.; Etemadi, A.A.; Chapman, W.; Hollins, T.D.; Willis, I. In vivo depigmentation by hydroxybenzene derivatives. Melanoma Res., 1993, 3(6), 443-449.
[http://dx.doi.org/10.1097/00008390-199311000-00007] [PMID: 8161883]
[330]
Briganti, S.; Camera, E.; Picardo, M. Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res., 2003, 16(2), 101-110.
[http://dx.doi.org/10.1034/j.1600-0749.2003.00029.x] [PMID: 12622786]
[331]
Guevara, I.L.; Pandya, A.G. Melasma treated with hydroquinone, tretinoin, and a fluorinated steroid. Int. J. Dermatol., 2001, 40(3), 212-215.
[http://dx.doi.org/10.1046/j.1365-4362.2001.01167-2.x] [PMID: 11422530]
[332]
Kang, W.H.; Chun, S.C.; Lee, S. Intermittent therapy for melasma in Asian patients with combined topical agents (retinoic acid, hydroqui-none and hydrocortisone): Clinical and histological studies. J. Dermatol., 1998, 25(9), 587-596.
[http://dx.doi.org/10.1111/j.1346-8138.1998.tb02463.x] [PMID: 9798345]
[333]
Badreshia-Bansal, S.; Draelos, Z.D. Insight into skin lightening cosmeceuticals for women of color. J. Drugs Dermatol., 2007, 6(1), 32-39.
[PMID: 17373159]
[334]
Parvez, S.; Kang, M.; Chung, H.S.; Cho, C.; Hong, M.C.; Shin, M.K.; Bae, H. Survey and mechanism of skin depigmenting and lightening agents. Phytother. Res., 2006, 20(11), 921-934.
[http://dx.doi.org/10.1002/ptr.1954] [PMID: 16841367]
[335]
Haddad, A.L.; Matos, L.F.; Brunstein, F.; Ferreira, L.M.; Silva, A.; Costa, D. Jr A clinical, prospective, randomized, double-blind trial comparing skin whitening complex with hydroquinone vs. placebo in the treatment of melasma. Int. J. Dermatol., 2003, 42(2), 153-156.
[http://dx.doi.org/10.1046/j.1365-4362.2003.01621.x] [PMID: 12709008]
[336]
Gupta, A.K.; Gover, M.D.; Nouri, K.; Taylor, S. The treatment of melasma: A review of clinical trials. J. Am. Acad. Dermatol., 2006, 55(6), 1048-1065.
[http://dx.doi.org/10.1016/j.jaad.2006.02.009] [PMID: 17097400]
[337]
Solano, F.; Briganti, S.; Picardo, M.; Ghanem, G. Hypopigmenting agents: An updated review on biological, chemical and clinical aspects. Pigment Cell Res., 2006, 19(6), 550-571.
[http://dx.doi.org/10.1111/j.1600-0749.2006.00334.x] [PMID: 17083484]
[338]
Satooka, H.; Kubo, I. Resveratrol as a kcat type inhibitor for tyrosinase: Potentiated melanogenesis inhibitor. Bioorg. Med. Chem., 2012, 20(2), 1090-1099.
[http://dx.doi.org/10.1016/j.bmc.2011.11.030] [PMID: 22189272]
[339]
Lee, T.H.; Seo, J.O.; Baek, S.H.; Kim, S.Y. Inhibitory effects of resveratrol on melanin synthesis in ultraviolet B-induced pigmentation in Guinea pig skin. Biomol. Ther. (Seoul), 2014, 22(1), 35-40.
[http://dx.doi.org/10.4062/biomolther.2013.081] [PMID: 24596619]
[340]
Chen, J.; Yu, X.; Huang, Y. Inhibitory mechanisms of glabridin on tyrosinase. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 168, 111-117.
[http://dx.doi.org/10.1016/j.saa.2016.06.008] [PMID: 27288962]
[341]
Nerya, O.; Vaya, J.; Musa, R.; Izrael, S.; Ben-Arie, R.; Tamir, S. Glabrene and isoliquiritigenin as tyrosinase inhibitors from licorice roots. J. Agric. Food Chem., 2003, 51(5), 1201-1207.
[http://dx.doi.org/10.1021/jf020935u] [PMID: 12590456]
[342]
Chang, T.S.; Chen, C.T. Inhibitory effect of homochlorcyclizine on melanogenesis in α-melanocyte stimulating hormone-stimulated mouse B16 melanoma cells. Arch. Pharm. Res., 2012, 35(1), 119-127.
[http://dx.doi.org/10.1007/s12272-012-0113-z] [PMID: 22297750]
[343]
Newton, R.A.; Cook, A.L.; Roberts, D.W.; Leonard, J.H.; Sturm, R.A. Post-transcriptional regulation of melanin biosynthetic enzymes by cAMP and resveratrol in human melanocytes. J. Invest. Dermatol., 2007, 127(9), 2216-2227.
[http://dx.doi.org/10.1038/sj.jid.5700840] [PMID: 17460731]
[344]
Ando, H.; Wen, Z.M.; Kim, H.Y.; Valencia, J.C.; Costin, G.E.; Watabe, H.; Yasumoto, K.; Niki, Y.; Kondoh, H.; Ichihashi, M.; Hearing, V.J. Intracellular composition of fatty acid affects the processing and function of tyrosinase through the ubiquitin-proteasome pathway. Biochem. J., 2006, 394(Pt 1), 43-50.
[http://dx.doi.org/10.1042/BJ20051419] [PMID: 16232122]
[345]
Park, S.H.; Kim, D.S.; Kim, W.G.; Ryoo, I.J.; Lee, D.H.; Huh, C.H.; Youn, S.W.; Yoo, I.D.; Park, K.C. Terrein: A new melanogenesis in-hibitor and its mechanism. Cell. Mol. Life Sci., 2004, 61(22), 2878-2885.
[http://dx.doi.org/10.1007/s00018-004-4341-3] [PMID: 15558216]
[346]
Cheung, F.W.; Guo, J.; Ling, Y.H.; Che, C.T.; Liu, W.K. Anti-melanogenic property of geoditin A in murine B16 melanoma cells. Mar. Drugs, 2012, 10(2), 465-476.
[http://dx.doi.org/10.3390/md10020465] [PMID: 22412813]
[347]
Anurukvorakun, O.R.; Boonruang, R.A.; Lahpun, N.A. Formulation strategy, stability issues, safety and efficacy evaluations of Acacia catechu whitening cream. Int J Appl Pharm., 2019, 11(2), 91-96.
[http://dx.doi.org/10.22159/ijap.2019v11i2.30632]
[348]
Maeda, K.; Naitou, T.; Umishio, K.; Fukuhara, T.; Motoyama, A. A novel melanin inhibitor: Hydroperoxy traxastane-type triterpene from flowers of Arnica montana. Biol. Pharm. Bull., 2007, 30(5), 873-879.
[http://dx.doi.org/10.1248/bpb.30.873] [PMID: 17473428]
[349]
Yamada, M.; Nakamura, K.; Watabe, T.; Ohno, O.; Kawagoshi, M.; Maru, N.; Uotsu, N.; Chiba, T.; Yamaguchi, K.; Uemura, D. Melanin biosynthesis inhibitors from Tarragon Artemisia dracunculus. Biosci. Biotechnol. Biochem., 2011, 75(8), 1628-1630.
[http://dx.doi.org/10.1271/bbb.110306] [PMID: 21821921]
[350]
Hwang, J.H.; Lee, B.M. Inhibitory effects of plant extracts on tyrosinase, L-DOPA oxidation, and melanin synthesis. J. Toxicol. Environ. Health A, 2007, 70(5), 393-407.
[http://dx.doi.org/10.1080/10937400600882871] [PMID: 17454565]
[351]
Vaibhav, S.; Lakshaman, K. Tyrosinase enzyme inhibitory activity of selected Indian herbs. Int. J. Res. Pharm. Biomed. Sci., 2012, 3, 977-982.
[352]
Gupta, S.K.; Gautam, A.; Kumar, S. Natural skin whitening agents: A current status. Adv. Biol. Res. (Faisalabad), 2014, 8(6), 257-259.
[353]
Di Petrillo, A.; González-Paramás, A.M.; Era, B.; Medda, R.; Pintus, F.; Santos-Buelga, C.; Fais, A. Tyrosinase inhibition and antioxidant properties of Asphodelus microcarpus extracts. BMC Complement. Altern. Med., 2016, 16(1), 453.
[http://dx.doi.org/10.1186/s12906-016-1442-0] [PMID: 27829416]
[354]
Kamagaju, L.; Morandini, R.; Bizuru, E.; Nyetera, P.; Nduwayezu, J.B.; Stévigny, C.; Ghanem, G.; Duez, P. Tyrosinase modulation by five Rwandese herbal medicines traditionally used for skin treatment. J. Ethnopharmacol., 2013, 146(3), 824-834.
[http://dx.doi.org/10.1016/j.jep.2013.02.010] [PMID: 23439030]
[355]
Calliste, C.A.; Trouillas, P.; Allais, D.P.; Simon, A.; Duroux, J.L. Free radical scavenging activities measured by electron spin resonance spectroscopy and B16 cell antiproliferative behaviors of seven plants. J. Agric. Food Chem., 2001, 49(7), 3321-3327.
[http://dx.doi.org/10.1021/jf010086v] [PMID: 11453770]
[356]
Mukherjee, P.K.; Biswas, R.; Sharma, A.; Banerjee, S.; Biswas, S.; Katiyar, C.K. Validation of medicinal herbs for anti-tyrosinase poten-tial. J. Herb. Med., 2018, 14, 1-6.
[http://dx.doi.org/10.1016/j.hermed.2018.09.002]
[357]
Koch, W.; Zagórska, J.; Marzec, Z.; Kukula-Koch, W. Applications of tea (Camellia sinensis) and its active constituents in cosmetics. Molecules, 2019, 24(23), 4277.
[http://dx.doi.org/10.3390/molecules24234277] [PMID: 31771249]
[358]
Kamagaju, L.; Bizuru, E.; Minani, V.; Morandini, R.; Stévigny, C.; Ghanem, G.; Duez, P. An ethnobotanical survey of medicinal plants used in Rwanda for voluntary depigmentation. J. Ethnopharmacol., 2013, 150(2), 708-717.
[http://dx.doi.org/10.1016/j.jep.2013.09.031] [PMID: 24095698]
[359]
Rodrigo, U.D.; Perera, B.G. Important biological activities of papaya peel extracts and their importance in formulation of a low cost fish feed to enhance the skin colour and the healthiness of guppies. Int J Sci Res Publ., 2018, 8(12), 702-708.
[http://dx.doi.org/10.29322/IJSRP.8.12.2018.p8490]
[360]
Chang, T.S.; Chao, S.Y.; Ding, H.Y. Melanogenesis inhibition by homoisoflavavone sappanone A from Caesalpinia sappan. Int. J. Mol. Sci., 2012, 13(8), 10359-10367.
[http://dx.doi.org/10.3390/ijms130810359] [PMID: 22949866]
[361]
Yamahara, M.; Sugimura, K.; Kumagai, A.; Fuchino, H.; Kuroi, A.; Kagawa, M.; Itoh, Y.; Kawahara, H.; Nagaoka, Y.; Iida, O.; Kawahara, N.; Takemori, H.; Watanabe, H. Callicarpa longissima extract, carnosol-rich, potently inhibits melanogenesis in B16F10 melanoma cells. J. Nat. Med., 2016, 70(1), 28-35.
[http://dx.doi.org/10.1007/s11418-015-0933-5] [PMID: 26267810]
[362]
Roh, J.S.; Han, J.Y.; Kim, J.H.; Hwang, J.K. Inhibitory effects of active compounds isolated from safflower (Carthamus tinctorius L.) seeds for melanogenesis. Biol. Pharm. Bull., 2004, 27(12), 1976-1978.
[http://dx.doi.org/10.1248/bpb.27.1976] [PMID: 15577216]
[363]
Kim, K.H.; Moon, E.; Kim, S.Y.; Lee, K.R. Lignans from the tuber-barks of Colocasia antiquorum var. esculenta and their antimelanogen-ic Activity. J. Agric. Food Chem., 2010, 58(8), 4779-4785.
[http://dx.doi.org/10.1021/jf100323q] [PMID: 20359228]
[364]
Mustapha, N.; Bzéouich, I.M.; Ghedira, K.; Hennebelle, T.; Chekir-Ghedira, L. Compounds isolated from the aerial part of Crataegus azarolus inhibit growth of B16F10 melanoma cells and exert a potent inhibition of the melanin synthesis. Biomed. Pharmacother., 2015, 69, 139-144.
[http://dx.doi.org/10.1016/j.biopha.2014.11.010] [PMID: 25661350]
[365]
Nam, J.H.; Nam, D.Y.; Lee, D.U. Valencene from the rhizomes of Cyperus rotundus inhibits skin photoaging-related ion channels and UV-induced melanogenesis in B16F10 melanoma cells. J. Nat. Prod., 2016, 79(4), 1091-1096.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01127] [PMID: 26967731]
[366]
Kang, Y.; Choi, J.U.; Lee, E.A.; Park, H.R. Flaniostatin, a new isoflavonoid glycoside isolated from the leaves of Cudrania tricuspidata as a tyrosinase inhibitor. Food Sci. Biotechnol., 2013, 22(5), 1-4.
[http://dx.doi.org/10.1007/s10068-013-0236-0]
[367]
Ebanks, J.P.; Wickett, R.R.; Boissy, R.E. Mechanisms regulating skin pigmentation: The rise and fall of complexion coloration. Int. J. Mol. Sci., 2009, 10(9), 4066-4087.
[http://dx.doi.org/10.3390/ijms10094066] [PMID: 19865532]
[368]
Fisk, W.A.; Agbai, O.; Lev-Tov, H.A.; Sivamani, R.K. The use of botanically derived agents for hyperpigmentation: A systematic review. J. Am. Acad. Dermatol., 2014, 70(2), 352-365.
[http://dx.doi.org/10.1016/j.jaad.2013.09.048] [PMID: 24280646]
[369]
Menaa, F.; Menaa, A.; Tréton, J. Polyphenols against Skin Aging; Polyphenols Hum; Heal. Dis, 2013, Vol. 1, .
[370]
Qiao, Z.; Koizumi, Y.; Zhang, M.; Natsui, M.; Flores, M.J.; Gao, L.; Yusa, K.; Koyota, S.; Sugiyama, T. Anti-melanogenesis effect of Glechoma hederacea L. extract on B16 murine melanoma cells. Biosci. Biotechnol. Biochem., 2012, 76(10), 1877-1883.
[http://dx.doi.org/10.1271/bbb.120341] [PMID: 23047099]
[371]
Ge, L.; Zhang, W.; Zhou, G.; Ma, B.; Mo, Q.; Chen, Y.; Wang, Y. Nine phenylethanoid glycosides from Magnolia officinalis var. biloba fruits and their protective effects against free radical-induced oxidative damage. Sci. Rep., 2017, 7(1), 45342.
[http://dx.doi.org/10.1038/srep45342] [PMID: 28349971]
[372]
Huang, B.; Zhu, L.; Liu, S.; Li, D.; Chen, Y.; Ma, B.; Wang, Y. In vitro and in vivo evaluation of inhibition activity of lotus (Nelumbo nu-cifera Gaertn.) leaves against ultraviolet B-induced phototoxicity. J. Photochem. Photobiol. B, 2013, 121, 1-5.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.02.005] [PMID: 23474526]
[373]
Azhar-Ul-Haq. Malik, A.; Khan, M.T.; Anwar-Ul-Haq; Khan, S.B.; Ahmad, A.; Choudhary, M.I. Tyrosinase inhibitory lignans from the methanol extract of the roots of Vitex negundo Linn. and their structure-activity relationship. Phytomedicine, 2006, 13(4), 255-260.
[http://dx.doi.org/10.1016/j.phymed.2004.09.001] [PMID: 16492528]
[374]
Lee, J.O.; Kim, E.; Kim, J.H.; Hong, Y.H.; Kim, H.G.; Jeong, D.; Kim, J.; Kim, S.H.; Park, C.; Seo, D.B.; Son, Y.J.; Han, S.Y.; Cho, J.Y. Antimelanogenesis and skin-protective activities of Panax ginseng calyx ethanol extract. J. Ginseng Res., 2018, 42(3), 389-399.
[http://dx.doi.org/10.1016/j.jgr.2018.02.007] [PMID: 29983620]
[375]
Jiménez-Pérez, Z.E.; Singh, P.; Kim, Y.J.; Mathiyalagan, R.; Kim, D.H.; Lee, M.H.; Yang, D.C. Applications of Panax ginseng leaves-mediated gold nanoparticles in cosmetics relation to antioxidant, moisture retention, and whitening effect on B16BL6 cells. J. Ginseng Res., 2018, 42(3), 327-333.
[http://dx.doi.org/10.1016/j.jgr.2017.04.003] [PMID: 29983614]
[376]
Moy, R.L.; Levenson, C. Sandalwood album oil as a botanical therapeutic in dermatology. J. Clin. Aesthet. Dermatol., 2017, 10(10), 34-39.
[PMID: 29344319]
[377]
Son, E.; Yoon, J.M.; An, B.J.; Lee, Y.M.; Cha, J.; Chi, G.Y.; Kim, D.S. Comparison among activities and isoflavonoids from Pueraria thunbergiana aerial parts and root. Molecules, 2019, 24(5), 912.
[http://dx.doi.org/10.3390/molecules24050912] [PMID: 30841642]
[378]
Han, E.; Chang, B.; Kim, D.; Cho, H.; Kim, S. Melanogenesis inhibitory effect of aerial part of Pueraria thunbergiana in vitro and in vivo. Arch. Dermatol. Res., 2015, 307(1), 57-72.
[http://dx.doi.org/10.1007/s00403-014-1489-z] [PMID: 25063049]
[379]
Lin, Y.S.; Chen, H.J.; Huang, J.P.; Lee, P.C.; Tsai, C.R.; Hsu, T.F.; Huang, W.Y. Kinetics of tyrosinase inhibitory activity using Vitis vinifera leaf extracts., 2017.
[http://dx.doi.org/10.1155/2017/5232680]
[380]
Amari, N.O.; Bouzouina, M.; Berkani, A.; Lotmani, B. Phytochemical screening and antioxidant capacity of the aerial parts of Thymelaea hirsuta L. Asian Pac. J. Trop. Dis., 2014, 4(2), 104-109.
[http://dx.doi.org/10.1016/S2222-1808(14)60324-8]
[381]
Rahimi, V.B.; Askari, V.R.; Emami, S.A.; Tayarani-Najaran, Z. Anti-melanogenic activity of Viola odorata different extracts on B16F10 murine melanoma cells. Iran. J. Basic Med. Sci., 2017, 20(3), 242-249.
[PMID: 28392894]
[382]
Desmedt, B.; Courselle, P.; De Beer, J.O.; Rogiers, V.; Grosber, M.; Deconinck, E.; De Paepe, K. Overview of skin whitening agents with an insight into the illegal cosmetic market in Europe. J. Eur. Acad. Dermatol. Venereol., 2016, 30(6), 943-950.
[http://dx.doi.org/10.1111/jdv.13595] [PMID: 26953335]
[383]
Zeng, P.; Chen, Y.; Zhang, L.; Xing, M. Ganoderma lucidum polysaccharide used for treating physical frailty in China. Prog. Mol. Biol. Transl. Sci., 2019, 163, 179-219.
[http://dx.doi.org/10.1016/bs.pmbts.2019.02.009] [PMID: 31030748]
[384]
González-Sabín, J.; Morán-Ramallal, R.; Rebolledo, F. Regioselective enzymatic acylation of complex natural products: Expanding mo-lecular diversity. Chem. Soc. Rev., 2011, 40(11), 5321-5335.
[http://dx.doi.org/10.1039/c1cs15081b] [PMID: 21691665]
[385]
Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 403-425.
[http://dx.doi.org/10.1080/14756366.2016.1256882] [PMID: 28097901]
[386]
Akiu, S.; Suzuki, Y.; Asahara, T.; Fujinuma, Y.; Fukuda, M. Inhibitory effect of arbutin on melanogenesis--biochemical study using cul-tured B16 melanoma cells. Nippon Hifuka Gakkai Zasshi, 1991, 101(6), 609-613.
[PMID: 1920891]
[387]
Brenner, M.; Hearing, V.J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol., 2008, 84(3), 539-549.
[http://dx.doi.org/10.1111/j.1751-1097.2007.00226.x] [PMID: 18435612]
[388]
Makrantonaki, E.; Bekou, V.; Zouboulis, C.C. Genetics and skin aging. Dermatoendocrinol, 2012, 4(3), 280-284.
[http://dx.doi.org/10.4161/derm.22372] [PMID: 23467395]
[389]
Liu, W.; Li, Y.; Liu, J.; Niu, X.; Wang, Y.; Li, D. Application and performance of 3D-printing in nanobiomaterials; J. Nanometer, 2013, p. 681050.
[390]
Ballard, M.; Shafiee, A.; Grage, E.; DeMarco, M.; Atala, A.; Ghadiri, E. Inkjet printing of synthesized melanin nanoparticles as a biocom-patible matrix for pharmacologic agents. Nanomaterials (Basel), 2020, 10(9), 1840.
[http://dx.doi.org/10.3390/nano10091840] [PMID: 32942599]
[391]
Chopra, H.; Kumar, S.; Singh, I. Bioinks for 3D printing of artificial extracellular matrices. In book: Advance 3D-printed systems and nanosystems for drug delivery and tissue engineering. Tissue Eng., 2020, (January), 1-37.
[http://dx.doi.org/10.1016/B978-0-12-818471-4.00001-7]
[392]
Chopra, H.; Kumar, S.; Singh, I. Strategies and therapies for wound healing: A review. Curr. Drug Targets, 2022, 23(1), 87-98.
[http://dx.doi.org/10.2174/1389450122666210415101218] [PMID: 33858310]
[393]
Chopra, H.; Dey, P.S.; Das, D.; Bhattacharya, T.; Shah, M.; Mubin, S.; Maishu, S.P.; Akter, R.; Rahman, M.H.; Karthika, C.; Murad, W.; Qusty, N.; Qusti, S.; Alshammari, E.M.; Batiha, G.E.; Altalbawy, F.M.A.; Albooq, M.I.M.; Alamri, B.M. Curcumin nanoparticles as prom-ising therapeutic agents for drug targets. Molecules, 2021, 26(16), 4998.
[http://dx.doi.org/10.3390/molecules26164998] [PMID: 34443593]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy