Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Phytochemical Compounds Loaded to Nanocarriers as Potential Therapeutic Substances for Alzheimer’s Disease-Could They be Effective?

Author(s): Derya Çiçek Polat, Ayşe Esra Karadağ, Rabia Edibe Parlar Köprülü, Ioannis D. Karantas, Gökçe Mutlu, Emre Şefik Çağlar, Mehmet Evren Okur, Neslihan Üstündağ Okur* and Panoraia I. Siafaka*

Volume 28, Issue 30, 2022

Published on: 27 August, 2022

Page: [2437 - 2460] Pages: 24

DOI: 10.2174/1381612828666220411104128

Price: $65

Abstract

Alzheimer’s disease accounts for a high percentage of dementia cases in elderly individuals. This type of brain disease is caused by damage to the brain cells affecting the ability of the patients to communicate, as well as their thinking, behavior, and feelings. Although numerous research laboratories focus on advancements in treating Alzheimer’s disease, the currently approved pharmacological approaches seem to only alleviate the symptoms. Consequently, there is an urgent need for alternative pharmacological options that can prevent the progressive impairment of neurons. Natural substances were used in ancient times to treat various disorders given their biological activities such as antioxidant, anti-inflammatory, and antiapoptotic properties. Besides, their cost-effectiveness and accessibility to anyone who needs them are their most significant characteristics. Therefore, the possible use of phytochemical compounds for the possible management or even prevention of Alzheimer’s disease is currently under investigation. This review article summarizes the present status of Alzheimer’s disease diagnosis and underlying mechanisms, the potential phytochemicals and their carriers, along with future perspectives. In the future, natural substances can play a role as an adjunct therapy for neurodegenerative forms of dementia, such as Alzheimer’s disease.

Keywords: Alzheimer’s disease, phytochemicals, carriers, nanotechnology, adjunct therapy, biological activities.

Next »
[1]
Jayathilaka R, Joachim S, Mallikarachchi V, Perera N, Ranawaka D. Chronic diseases: An added burden to income and expenses of chronically-ill people in Sri Lanka. PLoS One 2020; 15(10): e0239576.
[http://dx.doi.org/10.1371/journal.pone.0239576] [PMID: 33113548]
[2]
Kosaner Kließ M, Martins R, Connolly MP. Major cost drivers in assessing the economic burden of Alzheimer’s disease: A structured, rapid review. J Prev Alzheimers Dis 2021; 8(3): 362-70.
[http://dx.doi.org/10.14283/jpad.2021.17] [PMID: 34101795]
[3]
Bährer-Kohler S. Self Management of Chronic Disease. Berlin, Heidelberg: Springer Berlin Heidelberg 2009.
[http://dx.doi.org/10.1007/978-3-642-00326-4]
[4]
Zvěřová M. Clinical aspects of Alzheimer’s disease. Clin Biochem 2019; 72: 3-6.
[http://dx.doi.org/10.1016/j.clinbiochem.2019.04.015] [PMID: 31034802]
[5]
Wong W. Economic burden of Alzheimer disease and managed care considerations. Am J Manag Care 2020; 26(8): S177-83.
[http://dx.doi.org/10.37765/ajmc.2020.88482] [PMID: 32840331]
[6]
Kim HJ, Park J-C, Jung KS, et al. The clinical use of blood-test factors for Alzheimer’s disease: Improving the prediction of cerebral amyloid deposition by the QPLEXTM Alz plus assay kit. Exp Mol Med 2021; 53(6): 1046-54.
[http://dx.doi.org/10.1038/s12276-021-00638-3] [PMID: 34108650]
[7]
Ali A, Katz DL. Disease prevention and health promotion: How integrative medicine fits. Am J Prev Med 2015; 49(5)(Suppl. 3): S230-40.
[http://dx.doi.org/10.1016/j.amepre.2015.07.019] [PMID: 26477898]
[8]
Crous-Bou M, Minguillón C, Gramunt N, Molinuevo JL. Alzheimer’s disease prevention: From risk factors to early intervention. Alzheimers Res Ther 2017; 9(1): 71.
[http://dx.doi.org/10.1186/s13195-017-0297-z] [PMID: 28899416]
[9]
Yu J-T, Xu W, Tan C-C, et al. Evidence-based prevention of Alzheimer’s disease: Systematic review and meta-analysis of 243 observational prospective studies and 153 randomised controlled trials. J Neurol Neurosurg Psychiatry 2020; 91(11): 1201-9.
[http://dx.doi.org/10.1136/jnnp-2019-321913] [PMID: 32690803]
[10]
Siafaka PI, Bülbül EÖ, Mutlu G, Okur ME, Karantas ID, Okur NÜ. Transdermal drug delivery systems and their potential on Alzheimer’s disease management. CNS Neurol Disord Drug Targets 2020; 19(5): 360-73.
[http://dx.doi.org/10.2174/1871527319666200618150046] [PMID: 32552655]
[11]
Anand U, Jacobo-Herrera N, Altemimi A, Lakhssassi N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites 2019; 9(11): 258.
[http://dx.doi.org/10.3390/metabo9110258] [PMID: 31683833]
[12]
Barzkar F, Baradaran HR, Khamseh ME, Vesal Azad R, Koohpayehzadeh J, Moradi Y. Medicinal plants in the adjunctive treatment of patients with type-1 diabetes: A systematic review of randomized clinical trials. J Diabetes Metab Disord 2020; 19(2): 1917-29.
[http://dx.doi.org/10.1007/s40200-020-00633-x] [PMID: 33520869]
[13]
Mangwani N, Singh PK, Kumar V. Medicinal plants: Adjunct treatment to tuberculosis chemotherapy to prevent hepatic damage. J Ayurveda Integr Med 2020; 11(4): 522-8.
[http://dx.doi.org/10.1016/j.jaim.2019.02.004] [PMID: 31679802]
[14]
Hussain I. The safety of medicinal plants used in the treatment of vitiligo and hypermelanosis: A systematic review of use and reports of harm. Clin Cosmet Investig Dermatol 2021; 14: 261-84.
[http://dx.doi.org/10.2147/CCID.S298342] [PMID: 33790609]
[15]
Okur ME, Karantas ID, Şenyiğit Z, Üstündağ Okur N, Siafaka PI. Recent trends on wound management: New therapeutic choices based on polymeric carriers. Asian J Pharm Sci 2020; 15(6): 661-84.
[http://dx.doi.org/10.1016/j.ajps.2019.11.008] [PMID: 33363624]
[16]
Sandoval-Avila S, Diaz NF, Gómez-Pinedo U, Canales-Aguirre AA, Gutiérrez-Mercado YK, Padilla-Camberos E. Neuroprotective effects of phytochemicals on dopaminergic neuron cultures. Neurol 2019; 34(2): 114-24.
[http://dx.doi.org/10.1016/j.nrleng.2016.04.014]
[17]
Wightman EL. Potential benefits of phytochemicals against Alzheimer’s disease. Proc Nutr Soc 2017; 76(2): 106-12.
[http://dx.doi.org/10.1017/S0029665116002962] [PMID: 28143625]
[18]
Su HF, Shaker S, Kuang Y, Zhang M, Ye M, Qiao X. Phytochemistry and cardiovascular protective effects of Huang-Qi (Astragali Radix). Med Res Rev 2021; 41(4): 1999-2038.
[http://dx.doi.org/10.1002/med.21785] [PMID: 33464616]
[19]
Siafaka PI, Mutlu G, Okur NÜ. Alzheimer’s disease and its related dementia types: A review on their management via nanotechnology based therapeutic strategies. Curr Alzheimer Res 2020; 17(14): 1239-61.
[http://dx.doi.org/10.2174/1567205018666210218160812] [PMID: 33602090]
[20]
Comoglu T, Arisoy S, Akkus ZB. Nanocarriers for effective brain drug delivery. Curr Top Med Chem 2017; 17(13): 1490-506.
[http://dx.doi.org/10.2174/1568026616666161222101355] [PMID: 28017157]
[21]
Ege D. Action mechanisms of curcumin in Alzheimer’s disease and its brain targeted delivery. Materials 2021; 14(12): 3332.
[http://dx.doi.org/10.3390/ma14123332] [PMID: 34208692]
[22]
Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol 2018; 14: 450-64.
[http://dx.doi.org/10.1016/j.redox.2017.10.014] [PMID: 29080524]
[23]
Chen GF, Xu TH, Yan Y, et al. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 2017; 38(9): 1205-35.
[http://dx.doi.org/10.1038/aps.2017.28] [PMID: 28713158]
[24]
Roberts BR, Lind M, Wagen AZ, et al. Biochemically-defined pools of amyloid-β in sporadic Alzheimer’s disease: Correlation with amyloid PET. Brain 2017; 140(5): 1486-98.
[http://dx.doi.org/10.1093/brain/awx057] [PMID: 28383676]
[25]
Sun X, Chen W-D, Wang Y-D. β-Amyloid: The key peptide in the pathogenesis of Alzheimer’s disease. Front Pharmacol 2015; 6: 221.
[http://dx.doi.org/10.3389/fphar.2015.00221] [PMID: 26483691]
[26]
Kocahan S, Doğan Z. Mechanisms of Alzheimer’s disease pathogenesis and prevention: The brain, neural pathology, N-methyl-D-aspartate receptors, Tau protein and other risk factors. Clin Psychopharmacol Neurosci 2017; 15(1): 1-8.
[http://dx.doi.org/10.9758/cpn.2017.15.1.1] [PMID: 28138104]
[27]
Kametani F, Hasegawa M. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s disease. Front Neurosci 2018; 12: 25.
[http://dx.doi.org/10.3389/fnins.2018.00025] [PMID: 29440986]
[28]
Hinge NS, Kathuria H, Pandey MM. Engineering of structural and functional properties of nanotherapeutics and nanodiagnostics for intranasal brain targeting in Alzheimer’s. Appl Mater Today 2022; 26: 101303.
[http://dx.doi.org/10.1016/j.apmt.2021.101303]
[29]
Kosik KS, Joachim CL, Selkoe DJ. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci USA 1986; 83(11): 4044-8.
[http://dx.doi.org/10.1073/pnas.83.11.4044] [PMID: 2424016]
[30]
Takahashi M, Miyata H, Kametani F, et al. Extracellular association of APP and tau fibrils induces intracellular aggregate formation of tau. Acta Neuropathol 2015; 129(6): 895-907.
[http://dx.doi.org/10.1007/s00401-015-1415-2] [PMID: 25869641]
[31]
Kelleher RJ III, Shen J. Presenilin-1 mutations and Alzheimer’s disease. Proc Natl Acad Sci 2017; 114(4): 629-31.
[http://dx.doi.org/10.1073/pnas.1619574114] [PMID: 28082723]
[32]
Morimoto RI, Driessen AJM, Hegde RS, Langer T. The life of proteins: The good, the mostly good and the ugly. Nat Struct Mol Biol 2011; 18(1): 1-4.
[http://dx.doi.org/10.1038/nsmb0111-1] [PMID: 21209622]
[33]
Maiti P, Manna J. Dysregulation of autophagy lysosomal pathway in Alzheimer’s disease: Role of curcumin. JSM Alzheimers Dis Relat Dement 2016; 3(2): 1026.
[34]
Helmfors L, Boman A, Civitelli L, et al. Protective properties of lysozyme on β-amyloid pathology: Implications for Alzheimer disease. Neurobiol Dis 2015; 83: 122-33.
[http://dx.doi.org/10.1016/j.nbd.2015.08.024] [PMID: 26334479]
[35]
Calvo-Rodriguez M, Kharitonova EK, Bacskai BJ. Therapeutic strategies to target calcium dysregulation in Alzheimer’s disease. Cells 2020; 9(11): 2513.
[http://dx.doi.org/10.3390/cells9112513] [PMID: 33233678]
[36]
LaFerla FM. Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 2002; 3(11): 862-72.
[http://dx.doi.org/10.1038/nrn960] [PMID: 12415294]
[37]
Supnet C, Bezprozvanny I. The dysregulation of intracellular calcium in Alzheimer disease. Cell Calcium 2010; 47(2): 183-9.
[http://dx.doi.org/10.1016/j.ceca.2009.12.014] [PMID: 20080301]
[38]
Parnetti L, Chipi E, Salvadori N, D’Andrea K, Eusebi P. Prevalence and risk of progression of preclinical Alzheimer’s disease stages: A systematic review and meta-analysis. Alzheimers Res Ther 2019; 11(1): 7.
[http://dx.doi.org/10.1186/s13195-018-0459-7] [PMID: 30646955]
[39]
Breijyeh Z, Karaman R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules 2020; 25(24): 5789.
[http://dx.doi.org/10.3390/molecules25245789] [PMID: 33302541]
[40]
Frota NAF, Nitrini R, Damasceno BP, Forlenza OV, Dias-Tosta E, Silva AB. Criteria for the diagnosis of Alzheimer’s disease: Recommendations of the Scientific Department of Cognitive Neurology and Aging of the Brazilian Academy of Neurology. Dement Neuropsychol 2011; 5(3): 146-52.
[41]
McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 263-9.
[http://dx.doi.org/10.1016/j.jalz.2011.03.005] [PMID: 21514250]
[42]
Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 280-92.
[http://dx.doi.org/10.1016/j.jalz.2011.03.003] [PMID: 21514248]
[43]
Pais M, Martinez L, Ribeiro O, Loureiro J, Fernandez R, Valiengo L. Early diagnosis and treatment of Alzheimer’s disease: New definitions and challenges. Brazillian J Psychiatry 2020; 42(4): 431-41.
[44]
Gordon BA, Blazey TM, Su Y, et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: A longitudinal study. Lancet Neurol 2018; 17(3): 241-50.
[http://dx.doi.org/10.1016/S1474-4422(18)30028-0] [PMID: 29397305]
[45]
Turner RS, Stubbs T, Davies DA, Albensi BC. Potential new approaches for diagnosis of Alzheimer’s disease and related dementias. Front Neurol 2020; 11: 496.
[http://dx.doi.org/10.3389/fneur.2020.00496] [PMID: 32582013]
[46]
Wu J, Li L. Autoantibodies in Alzheimer’s disease: Potential biomarkers, pathogenic roles, and therapeutic implications. J Biomed Res 2016; 30(5): 361-72.
[http://dx.doi.org/10.7555/JBR.30.20150131] [PMID: 27476881]
[47]
Khoury R, Ghossoub E. Diagnostic biomarkers of Alzheimer’s disease: A state-of-the-art review. Biomarkers Neuropsychiatry 2019; 1: 100005.
[http://dx.doi.org/10.1016/j.bionps.2019.100005]
[48]
Atri A. The Alzheimer’s disease clinical spectrum: Diagnosis and management. Med Clin North Am 2019; 103(2): 263-93.
[http://dx.doi.org/10.1016/j.mcna.2018.10.009] [PMID: 30704681]
[49]
Agatonovic-Kustrin S, Kettle C, Morton DW. A molecular approach in drug development for Alzheimer’s disease. Biomed Pharmacother 2018; 106: 553-65.
[http://dx.doi.org/10.1016/j.biopha.2018.06.147] [PMID: 29990843]
[50]
Adler G, Mueller B, Articus K. The transdermal formulation of rivastigmine improves caregiver burden and treatment adherence of patients with Alzheimer’s disease under daily practice conditions. Int J Clin Pract 2014; 68(4): 465-70.
[http://dx.doi.org/10.1111/ijcp.12374] [PMID: 24588972]
[51]
Farlow MR, Grossberg GT, Sadowsky CH, Meng X, Velting DM. A 24-week, open-label extension study to investigate the long-term safety, tolerability, and efficacy of 13.3 mg/24 h rivastigmine patch in patients with severe Alzheimer disease. Alzheimer Dis Assoc Disord 2015; 29(2): 110-6.
[http://dx.doi.org/10.1097/WAD.0000000000000073] [PMID: 25437301]
[52]
Koola MM. Galantamine-Memantine combination in the treatment of Alzheimer’s disease and beyond. Psychiatry Res 2020; 293: 113409.
[http://dx.doi.org/10.1016/j.psychres.2020.113409] [PMID: 32829072]
[53]
Nisticò R, Borg JJ. Aducanumab for Alzheimer’s disease: A regulatory perspective. Pharmacol Res 2021; 171: 105754.
[http://dx.doi.org/10.1016/j.phrs.2021.105754] [PMID: 34217830]
[54]
Broom GM, Shaw IC, Rucklidge JJ. The ketogenic diet as a potential treatment and prevention strategy for Alzheimer’s disease. Nutrition 2019; 60: 118-21.
[http://dx.doi.org/10.1016/j.nut.2018.10.003] [PMID: 30554068]
[55]
Szczechowiak K, Diniz BS, Leszek J. Diet and Alzheimer’s dementia - Nutritional approach to modulate inflammation. Pharmacol Biochem Behav 2019; 184: 172743.
[http://dx.doi.org/10.1016/j.pbb.2019.172743] [PMID: 31356838]
[56]
Nagpal R, Neth BJ, Wang S, Craft S, Yadav H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine 2019; 47: 529-42.
[http://dx.doi.org/10.1016/j.ebiom.2019.08.032] [PMID: 31477562]
[57]
Ogunlade B, Fidelis OP, Afolayan OO, Agie JA. Neurotherapeutic and antioxidant response of D-ribose-L-Cysteine nutritional dietary supplements on Alzheimer-type hippocampal neurodegeneration induced by cuprizone in adult male wistar rat model. Food Chem Toxicol 2021; 147: 111862.
[http://dx.doi.org/10.1016/j.fct.2020.111862] [PMID: 33217524]
[58]
Tamtaji OR, Heidari-Soureshjani R, Mirhosseini N, et al. Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: A randomized, double-blind, controlled trial. Clin Nutr 2019; 38(6): 2569-75.
[http://dx.doi.org/10.1016/j.clnu.2018.11.034] [PMID: 30642737]
[59]
Araya-Quintanilla F, Gutiérrez-Espinoza H, Sánchez-Montoya U, Muñoz-Yañez MJ, Baeza-Vergara A, Petersen-Yanjarí M. Effectiveness of omega-3 fatty acid supplementation in patients with Alzheimer disease: A systematic review and meta-analysis. Neurol 2020; 35(2): 105-14.
[http://dx.doi.org/10.1016/j.nrleng.2017.07.014]
[60]
Asaduzzaman M, Asao T. Introductory chapter: Phytochemicals and disease prevention. In: Phytochem - Source Antioxidants Role Disease Prevention. InTech 2018.
[http://dx.doi.org/10.5772/intechopen.81877]
[61]
Bahmani M, Saki K, Shahsavari S, Rafieian-Kopaei M, Sepahvand R, Adineh A. Identification of medicinal plants effective in infectious diseases in Urmia, northwest of Iran. Asian Pac J Trop Biomed 2015; 5(10): 858-64.
[http://dx.doi.org/10.1016/j.apjtb.2015.06.004]
[62]
Mukherjee D, Banerjee S. Learning and memory promoting effects of crude garlic extract. Indian J Exp Biol 2013; 51(12): 1094-100.
[PMID: 24579375]
[63]
Zahariev D, Radeva V. Ethnobotanical research of the medicinal plants in Balchik Municipality. Acta Sci Nat 2020; 7(3): 81-95.
[http://dx.doi.org/10.2478/asn-2020-0035]
[64]
Koppula S, Kopalli SR, Sreemantula S. Adaptogenic and nootropic activities of aqueous extracts of Carum carvi Linn (caraway) fruit: An experimental study in Wistar rats. Aust J Med Herb 2009; 21(3): 72-8.
[http://dx.doi.org/10.1055/s-0029-1234468]
[65]
Singhal A, Bangar O, Naithani V. Medicinal plants with a potential to treat Alzheimer and associated symptoms. Int J Nutr Pharmacol Neurol Dis 2012; 2(2): 84.
[http://dx.doi.org/10.4103/2231-0738.95927]
[66]
Liu S, Dang M, Lei Y, et al. Ajmalicine and its analogues against AChE and BuChE for the management of Alzheimer’s disease: An in-silico study. Curr Pharm Des 2020; 26(37): 4808-14.
[http://dx.doi.org/10.2174/1381612826666200407161842] [PMID: 32264807]
[67]
Pereira DM, Ferreres F, Oliveira JMA, et al. Pharmacological effects of Catharanthus roseus root alkaloids in acetylcholinesterase inhibition and cholinergic neurotransmission. Phytomedicine 2010; 17(8-9): 646-52.
[http://dx.doi.org/10.1016/j.phymed.2009.10.008] [PMID: 19962870]
[68]
Bhat KS, Ashwin D, Bhat S, Mythri S. Arecanut (Areca catechu L) decreases Alzheimer’s disease symptoms: Compilation of research works. J Med Plants Stud 2017; 5(5): 4-9.
[69]
Akram M, Nawaz A. Effects of medicinal plants on Alzheimer’s disease and memory deficits. Neural Regen Res 2017; 12(4): 660-70.
[http://dx.doi.org/10.4103/1673-5374.205108] [PMID: 28553349]
[70]
Bora KS, Sharma A. Phytochemical and pharmacological potential of Artemisia absinthium Linn. and Artemisia asiatica Nakai : A review. J Pharm Res 2010; 3: 325-8.
[71]
Rahman IA, Camalxaman N, Rambely AS, Haron N, Mohamed E. Ananas comosus (L.) Merr.: A mini review of its therapeutic properties. Healthscope 2020; 3: 54-9.
[72]
Mooko T, Bala A, Tripathy S, et al. Cannabis sativa L. flower and bud extracts inhibited in vitro cholinesterases and β-secretase enzymes activities: possible mechanisms of cannabis use in Alzheimer disease. Endocr Metab Immune Disord Drug Targets 2022; 22(3): 297-309.
[http://dx.doi.org/10.2174/1871530321666210222124349] [PMID: 33618651]
[73]
Rabiei Z, Hojjati M, Rafieian-Kopaeia M, Alibabaei Z. Effect of Cyperus rotundus tubers ethanolic extract on learning and memory in animal model of Alzheimer. Biomed Aging Pathol 2013; 3(4): 185-91.
[http://dx.doi.org/10.1016/j.biomag.2013.08.006]
[74]
Aykac A, Ozbeyli D, Uncu M, et al. Evaluation of the protective effect of Myrtus communis in scopolamine-induced Alzheimer model through cholinergic receptors. Gene 2019; 689: 194-201.
[http://dx.doi.org/10.1016/j.gene.2018.12.007] [PMID: 30553998]
[75]
Sharififar F, Moshafi MH, Shafazand E, Koohpayeh A. Acetyl cholinesterase inhibitory, antioxidant and cytotoxic activity of three dietary medicinal plants. Food Chem 2012; 130(1): 20-3.
[http://dx.doi.org/10.1016/j.foodchem.2011.06.034]
[76]
Batiha GE-S, Alkazmi LM, Nadwa EH, Rashwan EK, Beshbishy AM, Shaheen H. Physostigmine: A Plant Alkaloid Isolated from Physostigma venenosum: A review on pharmacokinetics, pharmacological and toxicological activities. J Drug Deliv Ther 2020; 10(1-s): 187-90.
[http://dx.doi.org/10.22270/jddt.v10i1-s.3866]
[77]
Mehta M, Adem A, Sabbagh M. New acetylcholinesterase inhibitors for Alzheimer’s disease. Int J Alzheimers Dis 2012; 2012: 728983.
[http://dx.doi.org/10.1155/2012/728983] [PMID: 22216416]
[78]
Guo C, Yang L, Wan C-X, et al. Anti-neuroinflammatory effect of Sophoraflavanone G from Sophora alopecuroides in LPS-activated BV2 microglia by MAPK, JAK/STAT and Nrf2/HO-1 signaling pathways. Phytomedicine 2016; 23(13): 1629-37.
[http://dx.doi.org/10.1016/j.phymed.2016.10.007] [PMID: 27823627]
[79]
Aly SH, Elissawy AM, Fayez AM, Eldahshan OA, Elshanawany MA, Singab ANB. Neuroprotective effects of Sophora secundiflora, Sophora tomentosa leaves and formononetin on scopolamine-induced dementia. Nat Prod Res 2021; 35(24): 5848-52.
[http://dx.doi.org/10.1080/14786419.2020.1795853] [PMID: 32696670]
[80]
Arumugam R, Sarikurkcu C, Mutlu M, Tepe B. Sophora alopecuroides var. alopecuroides: Phytochemical composition, antioxidant and enzyme inhibitory activity of the methanolic extract of aerial parts, flowers, leaves, roots, and stems. S Afr J Bot 2021; 143: 282-90.
[http://dx.doi.org/10.1016/j.sajb.2020.10.009]
[81]
Jadhav RP, Kengar MD, Narule OV, Koli VW, Kumbhar SB. A review on Alzheimer’s disease (AD) and its herbal treatment of Alzheimer’s disease. Asian J Res Pharm Sci 2019; 9(2): 112.
[http://dx.doi.org/10.5958/2231-5659.2019.00017.1]
[82]
Ude C, Schubert-Zsilavecz M, Wurglics M. Ginkgo biloba extracts: A review of the pharmacokinetics of the active ingredients. Clin Pharmacokinet 2013; 52(9): 727-49.
[http://dx.doi.org/10.1007/s40262-013-0074-5] [PMID: 23703577]
[83]
Liu X, Hao W, Qin Y, et al. Long-term treatment with Ginkgo biloba extract EGb 761 improves symptoms and pathology in a transgenic mouse model of Alzheimer’s disease. Brain Behav Immun 2015; 46: 121-31.
[http://dx.doi.org/10.1016/j.bbi.2015.01.011] [PMID: 25637484]
[84]
Zirak N, Shafiee M, Soltani G, Mirzaei M, Sahebkar A. Hypericum perforatum in the treatment of psychiatric and neurodegenerative disorders: Current evidence and potential mechanisms of action. J Cell Physiol 2019; 234(6): 8496-508.
[http://dx.doi.org/10.1002/jcp.27781] [PMID: 30461013]
[85]
Zerrouki K, Djebli N, Ozkan EE, Ozsoy N, Gul O, Mat A. Hypericum perforatum improve memory and learning in Alzheimer’s model: (experimental study in mice). Int J Pharm Pharm Sci 2016; 8(8): 49-57.
[86]
Cao Z, Wang F, Xiu C, Zhang J, Li Y. Hypericum perforatum extract attenuates behavioral, biochemical, and neurochemical abnormalities in Aluminum chloride-induced Alzheimer’s disease rats. Biomed Pharmacother 2017; 91: 931-7.
[http://dx.doi.org/10.1016/j.biopha.2017.05.022] [PMID: 28514831]
[87]
Ersoy E, Ozkan EE, Boga M, Mat A. Evaluation of in vitro biological activities of three Hypericum species (H. calycinum, H. confertum, and H. perforatum) from Turkey. S Afr J Bot 2020; 130: 141-7.
[http://dx.doi.org/10.1016/j.sajb.2019.12.017]
[88]
Griffith TN, Varela-Nallar L, Dinamarca MC, Inestrosa NC. Neurobiological effects of Hyperforin and its potential in Alzheimer’s disease therapy. Curr Med Chem 2010; 17(5): 391-406.
[http://dx.doi.org/10.2174/092986710790226156] [PMID: 20015041]
[89]
Talebi M, Talebi M, Samarghandian S. Association of Crocus sativus with cognitive dysfunctions and Alzheimer’s disease: A systematic review. Biointerface Res Appl Chem 2021; 11(1): 7468-92.
[http://dx.doi.org/10.33263/BRIAC111.74687492]
[90]
Ghorbani A, Esmaeilizadeh M. Pharmacological properties of Salvia officinalis and its components. J Tradit Complement Med 2017; 7(4): 433-40.
[http://dx.doi.org/10.1016/j.jtcme.2016.12.014] [PMID: 29034191]
[91]
Lee Y-J, Choi D-Y, Han S-B, et al. A comparison between extract products of Magnolia officinalis on memory impairment and amyloidogenesis in a transgenic mouse model of Alzheimer’s disease. Biomol Ther 2012; 20(3): 332-9.
[http://dx.doi.org/10.4062/biomolther.2012.20.3.332] [PMID: 24130932]
[92]
Jiang Y, Liu M, Liu H, Liu S. A critical review: Traditional uses, phytochemistry, pharmacology and toxicology of Stephania tetrandra S. Moore (Fen Fang Ji). Phytochem Rev 2020; 19(2): 449-89.
[http://dx.doi.org/10.1007/s11101-020-09673-w] [PMID: 32336965]
[93]
Wang L, Jin GF, Yu HH, et al. Protective effects of tenuifolin isolated from Polygala tenuifolia Willd roots on neuronal apoptosis and learning and memory deficits in mice with Alzheimer’s disease. Food Funct 2019; 10(11): 7453-60.
[http://dx.doi.org/10.1039/C9FO00994A] [PMID: 31664284]
[94]
Deng X, Zhao S, Liu X, et al. Polygala tenuifolia: A source for anti-Alzheimer’s disease drugs. Pharm Biol 2020; 58(1): 410-6.
[http://dx.doi.org/10.1080/13880209.2020.1758732] [PMID: 32429787]
[95]
Essa MM, Vijayan RK, Castellano-Gonzalez G, Memon MA, Braidy N, Guillemin GJ. Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem Res 2012; 37(9): 1829-42.
[http://dx.doi.org/10.1007/s11064-012-0799-9] [PMID: 22614926]
[96]
Rosso A, Mossey J, Lippa CF. Caffeine: Neuroprotective functions in cognition and Alzheimer’s disease. Am J Alzheimers Dis Other Demen 2008; 23(5): 417-22.
[http://dx.doi.org/10.1177/1533317508320083] [PMID: 19230121]
[97]
Zang CX, Bao XQ, Li L, et al. The protective effects of Gardenia jasminoides (Fructus Gardenia) on amyloid-β-induced mouse cognitive impairment and neurotoxicity. Am J Chin Med 2018; 46(2): 389-405.
[http://dx.doi.org/10.1142/S0192415X18500192] [PMID: 29433392]
[98]
Ma WW, Tao Y, Wang YY, Peng IF. Effects of Gardenia jasminoides extracts on cognition and innate immune response in an adult Drosophila model of Alzheimer’s disease. Chin J Nat Med 2017; 15(12): 899-904.
[http://dx.doi.org/10.1016/S1875-5364(18)30005-0] [PMID: 29329646]
[99]
Liu L, Zhao YH, Zeng CQ, Zeng Y. Research progress in pharmacological effects of Uncaria Hook on Alzheimer disease models. Yao Xue Xue Bao 2016; 51(4): 536-42.
[http://dx.doi.org/10.16438/j.0513-4870.2015-0997] [PMID: 29859521]
[100]
Xian Y-F, Lin Z-X, Zhao M, Mao Q-Q, Ip S-P, Che C-T. Uncaria rhynchophylla ameliorates cognitive deficits induced by D-galactose in mice. Planta Med 2011; 77(18): 1977-83.
[http://dx.doi.org/10.1055/s-0031-1280125] [PMID: 21858756]
[101]
Loizzo MR, Tundis R, Bonesi M, et al. Evaluation of Citrus aurantifolia peel and leaves extracts for their chemical composition, antioxidant and anti-cholinesterase activities. J Sci Food Agric 2012; 92(15): 2960-7.
[http://dx.doi.org/10.1002/jsfa.5708] [PMID: 22589172]
[102]
Abirami A, Nagarani G, Siddhuraju P. In vitro antioxidant, anti-diabetic, cholinesterase and tyrosinase inhibitory potential of fresh juice from Citrus hystrix and C. maxima fruits. Food Sci Hum Wellness 2014; 3(1): 16-25.
[http://dx.doi.org/10.1016/j.fshw.2014.02.001]
[103]
Rahnama S, Rabiei Z, Alibabaei Z, Mokhtari S, Rafieian-Kopaei M, Deris F. Anti-amnesic activity of Citrus aurantium flowers extract against scopolamine-induced memory impairments in rats. Neurol Sci 2015; 36(4): 553-60.
[http://dx.doi.org/10.1007/s10072-014-1991-2] [PMID: 25367404]
[104]
Vijayalakshmi P, Radha R. In vitro anti-Alzheimer and anti oxidant activity of the peels of Citrus maxima fruits. s Res J Pharmacol Pharmacodyn 2016; 8(1): 17.
[http://dx.doi.org/10.5958/2321-5836.2016.00005.7]
[105]
Abou Baker DH, Ibrahim BMM, Hassan NS, Yousuf AF, Gengaihi SE. Exploiting Citrus aurantium seeds and their secondary metabolites in the management of Alzheimer disease. Toxicol Rep 2020; 7: 723-9.
[http://dx.doi.org/10.1016/j.toxrep.2020.06.001] [PMID: 32551234]
[106]
Senol FS, Ankli A, Reich E, Orhan IE. HPTLC fingerprinting and cholinesterase inhibitory and metal-chelating capacity of various Citrus cultivars and Olea europaea. Food Technol Biotechnol 2016; 54(3): 275-81.
[http://dx.doi.org/10.17113/ftb.54.03.16.4225] [PMID: 27956858]
[107]
Tundis R, Loizzo MR, Bonesi M, et al. Comparative study on the antioxidant capacity and cholinesterase inhibitory activity of Citrus aurantifolia Swingle, C. aurantium L., and C. bergamia Risso and Poit. peel essential oils. J Food Sci 2012; 77(1): H40-6.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02511.x] [PMID: 22260108]
[108]
Wang J-X, Zhao Y-P, Du N-N, et al. Scocycamides, a pair of macrocyclic dicaffeoylspermidines with butyrylcholinesterase inhibition and antioxidation activity from the roots of Scopolia tangutica. Org Lett 2020; 22(21): 8240-4.
[http://dx.doi.org/10.1021/acs.orglett.0c02838] [PMID: 33021797]
[109]
Du N, Liu Y, Zhang X, et al. Discovery of new muscarinic acetylcholine receptor antagonists from Scopolia tangutica. Sci Rep 2017; 7(1): 46067.
[http://dx.doi.org/10.1038/srep46067] [PMID: 28387362]
[110]
Kashyap P, Ram H, Shukla SD, Kumar S. Scopoletin: Antiamyloidogenic, anticholinesterase, and neuroprotective potential of a natural compound present in Argyreia speciosa roots by in vitro and in silico study. Neurosci Insights 2020; 15: 2633105520937693.
[http://dx.doi.org/10.1177/2633105520937693] [PMID: 32671342]
[111]
Kuboyama T, Tohda C, Komatsu K. Withanoside IV and its active metabolite, sominone, attenuate Abeta(25-35)-induced neurodegeneration. Eur J Neurosci 2006; 23(6): 1417-26.
[http://dx.doi.org/10.1111/j.1460-9568.2006.04664.x] [PMID: 16553605]
[112]
Namita P, Mukesh R, Vijay KJ. Camellia sinensis (green tea): A review. Glob J Pharmacol 2012; 6(2): 52-9.
[113]
Loureiro JA, Andrade S, Duarte A, et al. Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease. Molecules 2017; 22(2): 1-16.
[http://dx.doi.org/10.3390/molecules22020277] [PMID: 28208831]
[114]
Koushki M, Amiri-Dashatan N, Ahmadi N, Abbaszadeh HA, Rezaei-Tavirani M. Resveratrol: A miraculous natural compound for diseases treatment. Food Sci Nutr 2018; 6(8): 2473-90.
[http://dx.doi.org/10.1002/fsn3.855] [PMID: 30510749]
[115]
Rocha-González HI, Ambriz-Tututi M, Granados-Soto V. Resveratrol: A natural compound with pharmacological potential in neurodegenerative diseases. CNS Neurosci Ther 2008; 14(3): 234-47.
[http://dx.doi.org/10.1111/j.1755-5949.2008.00045.x] [PMID: 18684235]
[116]
PallÃs M. Porquet D, Vicente A, Sanfeliu C. Resveratrol: New avenues for a natural compound in neuroprotection. Curr Pharm Des 2013; 19(38): 6726-31.
[117]
Corpas R, Griñán-Ferré C, Rodríguez-Farré E, Pallàs M, Sanfeliu C. Resveratrol induces brain resilience against Alzheimer neurodegeneration through proteostasis enhancement. Mol Neurobiol 2019; 56(2): 1502-16.
[http://dx.doi.org/10.1007/s12035-018-1157-y] [PMID: 29948950]
[118]
Del Prado-Audelo ML, Caballero-Florán IH, Meza-Toledo JA, et al. Formulations of curcumin nanoparticles for brain diseases. Biomolecules 2019; 9(2): 1-28.
[http://dx.doi.org/10.3390/biom9020056] [PMID: 30743984]
[119]
Heinrich M, Lee Teoh H. Galanthamine from snowdrop--the development of a modern drug against Alzheimer’s disease from local Caucasian knowledge. J Ethnopharmacol 2004; 92(2-3): 147-62.
[http://dx.doi.org/10.1016/j.jep.2004.02.012] [PMID: 15137996]
[120]
Bores GM, Huger FP, Petko W, et al. Pharmacological evaluation of novel Alzheimer’s disease therapeutics: Acetylcholinesterase inhibitors related to galanthamine. J Pharmacol Exp Ther 1996; 277(2): 728-38.
[PMID: 8627552]
[121]
Bozkurt B, Kaya GI, Onur MA, Unver-Somer N. Chemo-profiling of some Turkish Galanthus L. (Amaryllidaceae) species and their anticholinesterase activity. S Afr J Bot 2021; 136: 65-9.
[http://dx.doi.org/10.1016/j.sajb.2020.09.012]
[122]
Kumar S. Dual inhibition of acetylcholinesterase and butyrylcholinesterase enzymes by allicin. Indian J Pharmacol 2015; 47(4): 444-6.
[http://dx.doi.org/10.4103/0253-7613.161274] [PMID: 26288480]
[123]
Liu SG, Ren PY, Wang GY, Yao SX, He XJ. Allicin protects spinal cord neurons from glutamate-induced oxidative stress through regulating the heat shock protein 70/inducible nitric oxide synthase pathway. Food Funct 2015; 6(1): 321-30.
[http://dx.doi.org/10.1039/C4FO00761A] [PMID: 25473931]
[124]
Omar SH, Scott CJ, Hamlin AS, Obied HK. The protective role of plant biophenols in mechanisms of Alzheimer’s disease. J Nutr Biochem 2017; 47: 1-20.
[http://dx.doi.org/10.1016/j.jnutbio.2017.02.016] [PMID: 28301805]
[125]
El-Saber Batiha G, Magdy Beshbishy A, G Wasef L, et al. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients 2020; 12(3): E872.
[http://dx.doi.org/10.3390/nu12030872] [PMID: 32213941]
[126]
Ajayi AM, John KA, Emmanuel IB, Chidebe EO, Adedapo ADA. High-fat diet-induced memory impairment and anxiety-like behavior in rats attenuated by peel extract of Ananas comosus fruit via atheroprotective, antioxidant and anti-inflammatory actions. Metab Open 2021; 9: 100077.
[http://dx.doi.org/10.1016/j.metop.2021.100077] [PMID: 33490944]
[127]
Sancesario GM, Nuccetelli M, Cerri A, et al. Bromelain degrades Aβ1-42 monomers and soluble aggregates: An in vitro study in cerebrospinal fluid of Alzheimer’s disease patients. Curr Alzheimer Res 2018; 15(7): 628-36.
[http://dx.doi.org/10.2174/1567205015666180123124851] [PMID: 29359669]
[128]
Kopalli SRA, Koppula S. Carum carvi linn (Umbelliferae) attenuates lipopolysaccharide-induced neuroinflammatory responses via regulation of NF-κB signaling in BV-2 microglia. Trop J Pharm Res 2015; 14(6): 1041-7.
[http://dx.doi.org/10.4314/tjpr.v14i6.15]
[129]
Hritcu L, Boiangiu RS, de Morais MC, de Sousa DP. (-)-cis-Carveol, a natural compound, improves β-Amyloid-peptide 1-42-induced memory impairment and oxidative stress in the rat hippocampus. BioMed Res Int 2020; 2020: 8082560.
[http://dx.doi.org/10.1155/2020/8082560] [PMID: 32382574]
[130]
Orhan IE. Centella asiatica (L.) urban: from traditional medicine to modern medicine with neuroprotective potential. Evid Based Complement Alternat Med 2012; 2012: 946259.
[http://dx.doi.org/10.1155/2012/946259] [PMID: 22666298]
[131]
Sabaragamuwa R, Perera CO, Fedrizzi B. Centella asiatica (Gotu kola) as a neuroprotectant and its potential role in healthy ageing. Trends Food Sci Technol 2018; 79: 88-97.
[http://dx.doi.org/10.1016/j.tifs.2018.07.024]
[132]
Soncrant TT, Raffaele KC, Asthana S, Berardi A, Morris PP, Haxby JV. Memory improvement without toxicity during chronic, low dose intravenous arecoline in Alzheimer’s disease. Psychopharmacology 1993; 112(4): 421-7.
[http://dx.doi.org/10.1007/BF02244889] [PMID: 7871052]
[133]
Meier E, Frederiksen K, Nielsen M, Pedersen H, Hyttel J. Pharmacological in vitro characterization of the arecoline bioisostere, Lu 25-109-T, a muscarinic compound with M1-agonistic and M2/M3-antagonistic properties. Drug Dev Res 1997; 40(1): 1-16.
[http://dx.doi.org/10.1002/(SICI)1098-2299(199701)40:1<1:AID-DDR1>3.0.CO;2-Q]
[134]
Bratt AM, Kelly ME, Domeney AM, Naylor RJ, Costall B. Acute and chronic arecoline: effects on a scopolamine-induced deficit in complex maze learning. Pharmacol Biochem Behav 1996; 53(3): 713-21.
[http://dx.doi.org/10.1016/0091-3057(95)02074-8] [PMID: 8866976]
[135]
Saeedi M, Babaie K, Karimpour-Razkenari E, et al. In vitro cholinesterase inhibitory activity of some plants used in Iranian traditional medicine. Nat Prod Res 2017; 31(22): 2690-4.
[http://dx.doi.org/10.1080/14786419.2017.1290620] [PMID: 28278615]
[136]
Xu Z, Adilijiang A, Wang W, et al. Arecoline attenuates memory impairment and demyelination in a cuprizone-induced mouse model of schizophrenia. Neuroreport 2019; 30(2): 134-8.
[http://dx.doi.org/10.1097/WNR.0000000000001172] [PMID: 30571667]
[137]
Fischer W, Currais A, Liang Z, Pinto A, Maher P. Old age-associated phenotypic screening for Alzheimer’s disease drug candidates identifies sterubin as a potent neuroprotective compound from Yerba santa. Redox Biol 2019; 21: 101089.
[http://dx.doi.org/10.1016/j.redox.2018.101089] [PMID: 30594901]
[138]
Schimidt HL, Garcia A, Martins A, Mello-Carpes PB, Carpes FP. Green tea supplementation produces better neuroprotective effects than red and black tea in Alzheimer-like rat model. Food Res Int 2017; 100(Pt 1): 442-8.
[http://dx.doi.org/10.1016/j.foodres.2017.07.026] [PMID: 28873707]
[139]
Lee JW, Lee YK, Ban JO, et al. Green tea (-)-epigallocatechin-3-gallate inhibits β-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice. J Nutr 2009; 139(10): 1987-93.
[http://dx.doi.org/10.3945/jn.109.109785] [PMID: 19656855]
[140]
Syarifah-Noratiqah S-B, Naina-Mohamed I, Zulfarina MS, Qodriyah HMS. Natural polyphenols in the treatment of Alzheimer’s disease. Curr Drug Targets 2018; 19(8): 927-37.
[http://dx.doi.org/10.2174/1389450118666170328122527] [PMID: 28356027]
[141]
Kim TI, Lee YK, Park SG, et al. l-Theanine, an amino acid in green tea, attenuates β-amyloid-induced cognitive dysfunction and neurotoxicity: reduction in oxidative damage and inactivation of ERK/p38 kinase and NF-kappaB pathways. Free Radic Biol Med 2009; 47(11): 1601-10.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.09.008] [PMID: 19766184]
[142]
Lee YJ, Choi IS, Park MH, et al. 4-O-Methylhonokiol attenuates memory impairment in presenilin 2 mutant mice through reduction of oxidative damage and inactivation of astrocytes and the ERK pathway. Free Radic Biol Med 2011; 50(1): 66-77.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.10.698] [PMID: 20974250]
[143]
Lee JW, Lee YK, Lee BJ, et al. Inhibitory effect of ethanol extract of Magnolia officinalis and 4-O-methylhonokiol on memory impairment and neuronal toxicity induced by beta-amyloid. Pharmacol Biochem Behav 2010; 95(1): 31-40.
[http://dx.doi.org/10.1016/j.pbb.2009.12.003] [PMID: 20004682]
[144]
Egan TM, North RA. Acetylcholine acts on m2-muscarinic receptors to excite rat locus coeruleus neurones. Br J Pharmacol 1985; 85(4): 733-5.
[http://dx.doi.org/10.1111/j.1476-5381.1985.tb11070.x] [PMID: 3840044]
[145]
Yuan N-N, Cai C-Z, Wu M-Y, Su H-X, Li M, Lu J-H. Neuroprotective effects of berberine in animal models of Alzheimer’s disease: A systematic review of pre-clinical studies. BMC Complement Altern Med 2019; 19(1): 109.
[http://dx.doi.org/10.1186/s12906-019-2510-z] [PMID: 31122236]
[146]
Ji H-F, Shen L. Berberine: A potential multipotent natural product to combat Alzheimer’s disease. Molecules 2011; 16(8): 6732-40.
[http://dx.doi.org/10.3390/molecules16086732] [PMID: 21829148]
[147]
Chen M, Li L, Liu C, Song L. Berberine attenuates Aβ-induced neuronal damage through regulating miR-188/NOS1 in Alzheimer’s disease. Mol Cell Biochem 2020; 474(1-2): 285-94.
[http://dx.doi.org/10.1007/s11010-020-03852-1] [PMID: 32779043]
[148]
Akbar M, Shabbir A, Rehman K, Akash MSH, Shah MA. Neuroprotective potential of berberine in modulating Alzheimer’s disease via multiple signaling pathways. J Food Biochem 2021; 45(10): e13936.
[http://dx.doi.org/10.1111/jfbc.13936] [PMID: 34523148]
[149]
Konar A, Kalra RS, Chaudhary A, et al. Identification of Caffeic Acid Phenethyl Ester (CAPE) as a potent neurodifferentiating natural compound that improves cognitive and physiological functions in animal models of neurodegenerative diseases. Front Aging Neurosci 2020; 12: 561925.
[http://dx.doi.org/10.3389/fnagi.2020.561925] [PMID: 33244299]
[150]
Cheng D, Wang G, Wang X, Tang J, Yu Q, Zhang X. Neuro-protection of Chlorogenic acid against Al-induced apoptosis in PC12 cells via modulation of Al metabolism and Akt/GSK-3β pathway. J Funct Foods 2020; 70: 103984.
[http://dx.doi.org/10.1016/j.jff.2020.103984]
[151]
Karakani AM, Riazi G, Mahmood Ghaffari S, et al. Inhibitory effect of corcin on aggregation of 1N/4R human tau protein in vitro. Iran J Basic Med Sci 2015; 18(5): 485-92.
[PMID: 26124935]
[152]
Morales I, Cerda-Troncoso C, Andrade V, Maccioni RB. The natural product curcumin as a potential coadjuvant in Alzheimer’s treatment. J Alzheimers Dis 2017; 60(2): 451-60.
[http://dx.doi.org/10.3233/JAD-170354] [PMID: 28854504]
[153]
Das TK, Jana P, Chakrabarti SK, Hamid MRWA. Curcumin downregulates GSK3 and Cdk5 in scopolamine-induced Alzheimer’s disease rats abrogating Aβ40/42 and Tau hyperphosphorylation. J Alzheimers Dis Rep 2019; 3(1): 257-67.
[http://dx.doi.org/10.3233/ADR-190135] [PMID: 31754658]
[154]
Tang M, Taghibiglou C. The mechanisms of action of curcumin in Alzheimer’s disease. J Alzheimers Dis 2017; 58(4): 1003-16.
[http://dx.doi.org/10.3233/JAD-170188] [PMID: 28527218]
[155]
Wan Y, Liang Y, Liang F, et al. A curcumin analog reduces levels of the Alzheimer’s disease-associated amyloid-β protein by modulating AβPP processing and autophagy. J Alzheimers Dis 2019; 72(3): 761-71.
[http://dx.doi.org/10.3233/JAD-190562] [PMID: 31640096]
[156]
Seifi-Nahavandi B, Yaghmaei P, Ahmadian S, Ghobeh M, Ebrahim-Habibi A. Cymene consumption and physical activity effect in Alzheimer’s disease model: An in vivo and in vitro study. J Diabetes Metab Disord 2020; 19(2): 1381-9.
[http://dx.doi.org/10.1007/s40200-020-00658-2] [PMID: 33520841]
[157]
Heysieattalab S, Sadeghi L. Effects of delphinidin on pathophysiological signs of nucleus basalis of meynert lesioned rats as animal model of Alzheimer disease. Neurochem Res 2020; 45(7): 1636-46.
[http://dx.doi.org/10.1007/s11064-020-03027-w] [PMID: 32297026]
[158]
Aso E, Sánchez-Pla A, Vegas-Lozano E, Maldonado R, Ferrer I. Cannabis-based medicine reduces multiple pathological processes in AβPP/PS1 mice. J Alzheimers Dis 2015; 43(3): 977-91.
[http://dx.doi.org/10.3233/JAD-141014] [PMID: 25125475]
[159]
Li H, Liu Y, Tian D, et al. Overview of cannabidiol (CBD) and its analogues: Structures, biological activities, and neuroprotective mechanisms in epilepsy and Alzheimer’s disease. Eur J Med Chem 2020; 192: 112163.
[http://dx.doi.org/10.1016/j.ejmech.2020.112163] [PMID: 32109623]
[160]
Kwak HM, Jeon SY, Sohng BH, et al. β-Secretase (BACE1) inhibitors from pomegranate (Punica granatum) husk. Arch Pharm Res 2005; 28(12): 1328-32.
[http://dx.doi.org/10.1007/BF02977896] [PMID: 16392663]
[161]
Adefegha SA, Okeke BM, Oboh G. Antioxidant properties of eugenol, butylated hydroxylanisole, and butylated hydroxyl toluene with key biomolecules relevant to Alzheimer’s diseases-in vitro. J Food Biochem 2021; 45(3): e13276.
[http://dx.doi.org/10.1111/jfbc.13276] [PMID: 32458455]
[162]
He FQ, Qiu BY, Zhang XH, et al. Tetrandrine attenuates spatial memory impairment and hippocampal neuroinflammation via inhibiting NF-κB activation in a rat model of Alzheimer’s disease induced by amyloid-β(1-42). Brain Res 2011; 1384: 89-96.
[http://dx.doi.org/10.1016/j.brainres.2011.01.103] [PMID: 21300035]
[163]
Kim M-J, Seong A-R, Yoo J-Y, et al. Gallic acid, a histone acetyltransferase inhibitor, suppresses β-amyloid neurotoxicity by inhibiting microglial-mediated neuroinflammation. Mol Nutr Food Res 2011; 55(12): 1798-808.
[http://dx.doi.org/10.1002/mnfr.201100262] [PMID: 22038937]
[164]
Gao C, Liu Y, Jiang Y, Ding J, Li L. Geniposide ameliorates learning memory deficits, reduces tau phosphorylation and decreases apoptosis via GSK3β pathway in streptozotocin-induced Alzheimer rat model. Brain Pathol 2014; 24(3): 261-9.
[http://dx.doi.org/10.1111/bpa.12116] [PMID: 24329968]
[165]
Lv C, Wang L, Liu X, et al. Multi-faced neuroprotective effects of geniposide depending on the RAGE-mediated signaling in an Alzheimer mouse model. Neuropharmacology 2015; 89: 175-84.
[http://dx.doi.org/10.1016/j.neuropharm.2014.09.019] [PMID: 25261783]
[166]
Liu W, Li G, Hölscher C, Li L. Neuroprotective effects of geniposide on Alzheimer’s disease pathology. Rev Neurosci 2015; 26(4): 371-83.
[http://dx.doi.org/10.1515/revneuro-2015-0005] [PMID: 25879319]
[167]
Zhou X, Yuan L, Zhao X, et al. Genistein antagonizes inflammatory damage induced by β-amyloid peptide in microglia through TLR4 and NF-κB. Nutrition 2014; 30(1): 90-5.
[http://dx.doi.org/10.1016/j.nut.2013.06.006] [PMID: 24290604]
[168]
Li L, Liu J, Yan X, et al. Protective effects of ginsenoside Rd against okadaic acid-induced neurotoxicity in vivo and in vitro. J Ethnopharmacol 2011; 138(1): 135-41.
[http://dx.doi.org/10.1016/j.jep.2011.08.068] [PMID: 21945003]
[169]
Bai DL, Tang XC, He XC, Huperzine A. a potential therapeutic agent for treatment of Alzheimer’s disease. Curr Med Chem 2000; 7(3): 355-74.
[http://dx.doi.org/10.2174/0929867003375281] [PMID: 10637369]
[170]
Zhou J, Zhang HY, Tang XC. Huperzine A attenuates cognitive deficits and hippocampal neuronal damage after transient global ischemia in gerbils. Neurosci Lett 2001; 313(3): 137-40.
[http://dx.doi.org/10.1016/S0304-3940(01)02265-0] [PMID: 11682146]
[171]
Zhang Z, Wang X, Chen Q, Shu L, Wang J, Shan G. Clinical efficacy and safety of huperzine Alpha in treatment of mild to moderate Alzheimer disease, a placebo-controlled, double-blind, randomized trial. Zhonghua Yi Xue Za Zhi 2002; 82(14): 941-4.
[PMID: 12181083]
[172]
Liu C-Y, Bai K, Liu X-H, Zhang L-M, Yu G-R. Hyperoside protects the blood-brain barrier from neurotoxicity of amyloid beta 1-42. Neural Regen Res 2018; 13(11): 1974-80.
[http://dx.doi.org/10.4103/1673-5374.239445] [PMID: 30233072]
[173]
Chen L, Zhou Y-P, Liu H-Y, Gu J-H, Zhou X-F, Yue-Qin Z. Long-term oral administration of hyperoside ameliorates AD-related neuropathology and improves cognitive impairment in APP/PS1 transgenic mice. Neurochem Int 2021; 151: 105196.
[http://dx.doi.org/10.1016/j.neuint.2021.105196] [PMID: 34601013]
[174]
Silva Dos Santos J, Gonçalves Cirino JP, de Oliveira Carvalho P, Ortega MM. The pharmacological action of kaempferol in central nervous system diseases: A review. Front Pharmacol 2021; 11: 565700.
[http://dx.doi.org/10.3389/fphar.2020.565700] [PMID: 33519431]
[175]
Hsiao G, Fong TH, Tzu NH, Lin KH, Chou DS, Sheu JR. A potent antioxidant, lycopene, affords neuroprotection against microglia activation and focal cerebral ischemia in rats. In Vivo 2004; 18(3): 351-6.
[176]
Sachdeva AK, Chopra K. Lycopene abrogates Aβ(1-42)-mediated neuroinflammatory cascade in an experimental model of Alzheimer’s disease. J Nutr Biochem 2015; 26(7): 736-44.
[http://dx.doi.org/10.1016/j.jnutbio.2015.01.012] [PMID: 25869595]
[177]
Airoldi C, Sironi E, Dias C, et al. Natural compounds against Alzheimer’s disease: Molecular recognition of Aβ1-42 peptide by Salvia sclareoides extract and its major component, rosmarinic acid, as investigated by NMR. Chem Asian J 2013; 8(3): 596-602.
[http://dx.doi.org/10.1002/asia.201201063] [PMID: 23303581]
[178]
Nakajima A, Aoyama Y, Shin EJ, et al. Nobiletin, a citrus flavonoid, improves cognitive impairment and reduces soluble Aβ levels in a triple transgenic mouse model of Alzheimer’s disease (3XTg-AD). Behav Brain Res 2015; 289: 69-77.
[http://dx.doi.org/10.1016/j.bbr.2015.04.028] [PMID: 25913833]
[179]
Onozuka H, Nakajima A, Matsuzaki K, et al. Nobiletin, a citrus flavonoid, improves memory impairment and Abeta pathology in a transgenic mouse model of Alzheimer’s disease. J Pharmacol Exp Ther 2008; 326(3): 739-44.
[http://dx.doi.org/10.1124/jpet.108.140293] [PMID: 18544674]
[180]
Choi D-Y, Lee JW, Peng J, et al. Obovatol improves cognitive functions in animal models for Alzheimer’s disease. J Neurochem 2012; 120(6): 1048-59.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07642.x] [PMID: 22212065]
[181]
Li X, Cui J, Yu Y, et al. Traditional Chinese nootropic medicine radix polygalae and its active constituent onjisaponin β reduce β-amyloid production and improve cognitive impairments. PLoS One 2016; 11(3): e0151147.
[http://dx.doi.org/10.1371/journal.pone.0151147] [PMID: 26954017]
[182]
Casadesus G, Shukitt-Hale B, Stellwagen HM, et al. Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats. Nutr Neurosci 2004; 7(5-6): 309-16.
[http://dx.doi.org/10.1080/10284150400020482] [PMID: 15682927]
[183]
Cichocki M, Paluszczak J, Szaefer H, Piechowiak A, Rimando AM, Baer-Dubowska W. Pterostilbene is equally potent as resveratrol in inhibiting 12-O-tetradecanoylphorbol-13-acetate activated NFkappaB, AP-1, COX-2, and iNOS in mouse epidermis. Mol Nutr Food Res 2008; 52(Suppl. 1): S62-70.
[http://dx.doi.org/10.1002/mnfr.200700466] [PMID: 18551458]
[184]
Orhan IE. Cholinesterase inhibitory potential of quercetin towards Alzheimer’s disease - a promising natural molecule or fashion of the day? - A narrowed review. Curr Neuropharmacol 2021; 19(12): 2205-13.
[http://dx.doi.org/10.2174/1570159X18666201119153807] [PMID: 33213346]
[185]
Wang R, Chen S, Liu Y, et al. All-trans-retinoic acid reduces BACE1 expression under inflammatory conditions via modulation of nuclear factor κB (NFκB) signaling. J Biol Chem 2015; 290(37): 22532-42.
[http://dx.doi.org/10.1074/jbc.M115.662908] [PMID: 26240147]
[186]
Shao H, Mi Z, Ji WG, et al. Rhynchophylline protects against the amyloid β-induced increase of spontaneous discharges in the hippocampal CA1 region of rats. Neurochem Res 2015; 40(11): 2365-73.
[http://dx.doi.org/10.1007/s11064-015-1730-y] [PMID: 26441223]
[187]
Enogieru AB, Haylett W, Hiss DC, Bardien S, Ekpo OE. Rutin as a potent antioxidant: implications for neurodegenerative disorders. Oxid Med Cell Longev 2018; 2018: 6241017.
[http://dx.doi.org/10.1155/2018/6241017] [PMID: 30050657]
[188]
Chen R, Hassan H, Rawlinson C, Morgan DM. Pharmacological properties of rutin and its potential uses for Alzheimer’s disease. J Exp Stroke Transl Med 2021; 13(2): 1-12.
[189]
Montecinos-Oliva C, Schüller A, Inestrosa NC. Tetrahydrohyperforin: A neuroprotective modified natural compound against Alzheimer’s disease. Neural Regen Res 2015; 10(4): 552-4.
[http://dx.doi.org/10.4103/1673-5374.155420] [PMID: 26170810]
[190]
Azimi A, Ghaffari SM, Riazi GH, Arab SS, Tavakol MM, Pooyan S. α-Cyperone of Cyperus rotundus is an effective candidate for reduction of inflammation by destabilization of microtubule fibers in brain. J Ethnopharmacol 2016; 194: 219-27.
[http://dx.doi.org/10.1016/j.jep.2016.06.058] [PMID: 27353867]
[191]
Fletcher SP, Geyer BC, Smith A, et al. Tissue distribution of cholinesterases and anticholinesterases in native and transgenic tomato plants. Plant Mol Biol 2004; 55(1): 33-43.
[http://dx.doi.org/10.1007/s11103-004-0394-9] [PMID: 15604663]
[192]
Hira S, Saleem U, Anwar F, Sohail MF, Raza Z, Ahmad B. β-carotene: a natural compound improves cognitive impairment and oxidative stress in a mouse model of streptozotocin-induced Alzheimer’s disease. Biomolecules 2019; 9(9): 441.
[http://dx.doi.org/10.3390/biom9090441] [PMID: 31480727]
[193]
Cassano T, Villani R, Pace L, et al. From Cannabis sativa to cannabidiol: Promising therapeutic candidate for the treatment of neurodegenerative diseases. Front Pharmacol 2020; 11: 124.
[http://dx.doi.org/10.3389/fphar.2020.00124] [PMID: 32210795]
[194]
Zhao C, Zhang H, Li H, et al. Geniposide ameliorates cognitive deficits by attenuating the cholinergic defect and amyloidosis in middle-aged Alzheimer model mice. Neuropharmacology 2017; 116: 18-29.
[http://dx.doi.org/10.1016/j.neuropharm.2016.12.002] [PMID: 27940040]
[195]
Jabir NR, Khan FR, Tabrez S. Cholinesterase targeting by polyphenols: A therapeutic approach for the treatment of Alzheimer’s disease. CNS Neurosci Ther 2018; 24(9): 753-62.
[http://dx.doi.org/10.1111/cns.12971] [PMID: 29770579]
[196]
Rabbani M, Ghannadi A, Malekian N. Evaluation of the effect of Cyperus rotundus L. in scopolamine-induced learning deficit in mice. Adv Biomed Res 2014; 3(1): 217-7.
[http://dx.doi.org/10.4103/2277-9175.143293] [PMID: 25371874]
[197]
Bazzari A, Bazzari F. Medicinal plants for Alzheimer’s disease: An updated review. J Med Plants Stud 2018; 6(2): 81-5.
[198]
Liu H, Ye M, Guo H. An updated review of randomized clinical trials testing the improvement of cognitive function of Ginkgo biloba extract in healthy people and Alzheimer’s patients. Front Pharmacol 2020; 10: 1688.
[http://dx.doi.org/10.3389/fphar.2019.01688] [PMID: 32153388]
[199]
Li J, Cheng XY, Yang H, et al. Matrine ameliorates cognitive deficits via inhibition of microglia mediated neuroinflammation in an Alzheimer’s disease mouse model. Pharmazie 2020; 75(7): 344-7.
[http://dx.doi.org/10.1691/ph.2020.0395] [PMID: 32635978]
[200]
Cui L, Cai Y, Cheng W, et al. A novel, multi-target natural drug candidate, matrine, improves cognitive deficits in Alzheimer’s disease transgenic mice by inhibiting Aβ aggregation and blocking the RAGE/Aβ axis. Mol Neurobiol 2017; 54(3): 1939-52.
[http://dx.doi.org/10.1007/s12035-016-9783-8] [PMID: 26899576]
[201]
Ferreira A, Rodrigues M, Fortuna A, Falcão A, Alves G. Huperzine A from Huperzia serrata: A review of its sources, Chemistry, pharmacology and toxicology. Phytochem Rev 2016; 15(1): 51-85.
[http://dx.doi.org/10.1007/s11101-014-9384-y]
[202]
Thu KD, Vui DT, Huyen NTN, Duyen DK, Tung TB. The use of huperzia species for the treatment of Alzheimer’s disease. J Basic Clin Physiol Pharmacol 2019; 31(3)
[http://dx.doi.org/10.1515/jbcpp-2019-0159] [PMID: 31778363]
[203]
Zhang L, Song Y, Lu C, et al. The effects of huperzine A on gastrointestinal acetylcholinesterase activity and motility after single and multiple dosing in mice. Exp Ther Med 2013; 5(3): 793-6.
[http://dx.doi.org/10.3892/etm.2013.883] [PMID: 23403922]
[204]
Szypuła WJ, Wileńska B, Misicka A, Pietrosiuk A. Huperzine A and Huperzine B production by prothallus cultures of Huperzia selago (L.) Bernh. ex Schrank et mart Molecules 2020; 25(14): 3262.
[http://dx.doi.org/10.3390/molecules25143262] [PMID: 32708929]
[205]
Cho I-H. Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res 2012; 36(4): 342-53.
[http://dx.doi.org/10.5142/jgr.2012.36.4.342] [PMID: 23717136]
[206]
Almuhayawi MS, Ramadan WS, Harakeh S, et al. The potential role of pomegranate and its nano-formulations on cerebral neurons in aluminum chloride induced Alzheimer rat model. Saudi J Biol Sci 2020; 27(7): 1710-6.
[http://dx.doi.org/10.1016/j.sjbs.2020.04.045] [PMID: 32565686]
[207]
Brewer GJ, Torricelli JR, Lindsey AL, et al. Age-related toxicity of amyloid-beta associated with increased pERK and pCREB in primary hippocampal neurons: Reversal by blueberry extract. J Nutr Biochem 2010; 21(10): 991-8.
[http://dx.doi.org/10.1016/j.jnutbio.2009.08.005] [PMID: 19954954]
[208]
Ma L, Xiao H, Wen J, Liu Z, He Y, Yuan F. Possible mechanism of Vitis vinifera L. flavones on neurotransmitters, synaptic transmission and related learning and memory in Alzheimer model rats. Lipids Health Dis 2018; 17(1): 152.
[http://dx.doi.org/10.1186/s12944-018-0708-6] [PMID: 29973282]
[209]
Rapaka D, Bitra VR, Vishala TC, Akula A. Vitis vinifera acts as anti-Alzheimer’s agent by modulating biochemical parameters implicated in cognition and memory. J Ayurveda Integr Med 2019; 10(4): 241-7.
[http://dx.doi.org/10.1016/j.jaim.2017.06.013] [PMID: 30337026]
[210]
Nanaware S, Shelar M, Sinnathambi A, Mahadik KR, Lohidasan S. Neuroprotective effect of Indian propolis in β-amyloid induced memory deficit: Impact on behavioral and biochemical parameters in rats. Biomed Pharmacother 2017; 93: 543-53.
[http://dx.doi.org/10.1016/j.biopha.2017.06.072] [PMID: 28686968]
[211]
Ayaz M, Sadiq A, Junaid M, Ullah F, Subhan F, Ahmed J. Neuroprotective and anti-aging potentials of essential oils from aromatic and medicinal plants. Front Aging Neurosci 2017; 9: 168.
[http://dx.doi.org/10.3389/fnagi.2017.00168] [PMID: 28611658]
[212]
Öztürk M. Anticholinesterase and antioxidant activities of Savoury (Satureja thymbra L.) with identified major terpenes of the essential oil. Food Chem 2012; 134(1): 48-54.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.054] [PMID: 23265454]
[213]
Ali-Shtayeh MS, Jamous RM, Abu-Zaitoun SY, Khasati AI, Kalbouneh SR. Biological properties and bioactive components of Mentha spicata L. essential oil: focus on potential benefits in the treatment of obesity, Alzheimer’s disease, dermatophytosis, and drug-resistant infections. Evid Based Complement Alternat Med 2019; 2019: 3834265.
[http://dx.doi.org/10.1155/2019/3834265] [PMID: 31772594]
[214]
Bagci E, Aydin E, Mihasan M, Maniu C, Hritcu L. Anxiolytic and antidepressant-like effects of Ferulago angulata essential oil in the scopolamine rat model of Alzheimer’s disease. Flavour Fragrance J 2016; 31(1): 70-80.
[http://dx.doi.org/10.1002/ffj.3289]
[215]
Satou T, Hanashima Y, Mizutani I, Koike K. The effect of inhalation of essential oil from Rosmarinus officinalis on scopolamine-induced Alzheimer’s type dementia model mice. Flavour Fragrance J 2018; 33(3): 230-4.
[http://dx.doi.org/10.1002/ffj.3435]
[216]
Dougnon G, Ito M. Role of ascaridole and p-cymene in the sleep-promoting effects of Dysphania ambrosioides essential oil via the GABAergic system in a ddY mouse inhalation model. J Nat Prod 2021; 84(1): 91-100.
[http://dx.doi.org/10.1021/acs.jnatprod.0c01137] [PMID: 33325703]
[217]
Postu PA, Sadiki FZ, El Idrissi M, et al. Pinus halepensis essential oil attenuates the toxic Alzheimer’s amyloid beta (1-42)-induced memory impairment and oxidative stress in the rat hippocampus. Biomed Pharmacother 2019; 112: 108673.
[http://dx.doi.org/10.1016/j.biopha.2019.108673] [PMID: 30784941]
[218]
Videira R, Castanheira P, Grãos M, Salgueiro L, Faro C, Cavaleiro C. A necrodane monoterpenoid from Lavandula luisieri essential oil as a cell-permeable inhibitor of BACE-1, the β-secretase in Alzheimer’s disease. Flavour Fragrance J 2013; 28(6): 380-8.
[http://dx.doi.org/10.1002/ffj.3156]
[219]
Karadağ AE, Demirci B, Kültür Ş, Demirci F, Başer KHC. Antimicrobial, anticholinesterase evaluation and chemical characterization of essential oil Phlomis kurdica Rech. fil. growing in Turkey. J Essent Oil Res 2020; 32(3): 242-6.
[http://dx.doi.org/10.1080/10412905.2020.1743786]
[220]
Eskandari-Roozbahani N, Shomali T, Taherianfard M. Research paper: neuroprotective effect of Zataria multiflora essential oil on rats with Alzheimer disease: A mechanistic study. Basic Clin Neurosci 2019; 10(1): 85-97.
[http://dx.doi.org/10.32598/bcn.9.10.270] [PMID: 31031896]
[221]
Chaiyana W, Okonogi S. Inhibition of cholinesterase by essential oil from food plant. Phytomedicine 2012; 19(8-9): 836-9.
[http://dx.doi.org/10.1016/j.phymed.2012.03.010] [PMID: 22510493]
[222]
Zengin G, Sarıkürkçü C, Aktümsek A, Ceylan R. Antioxidant potential and inhibition of key enzymes linked to Alzheimer’s diseases and diabetes mellitus by monoterpene-rich essential oil from Sideritis galatica Bornm. Endemic to Turkey. Rec Nat Prod 2015; 10(2): 195-206.
[223]
Sihoglu Tepe A, Ozaslan M. Anti-Alzheimer, anti-diabetic, skin-whitening, and antioxidant activities of the essential oil of Cinnamomum zeylanicum. Ind Crops Prod 2020; 145: 112069.
[http://dx.doi.org/10.1016/j.indcrop.2019.112069]
[224]
Phadke AV, Tayade AA, Khambete MP. Therapeutic potential of ferulic acid and its derivatives in Alzheimer’s disease-A systematic review. Chem Biol Drug Des 2021; 98(5): 713-21.
[http://dx.doi.org/10.1111/cbdd.13922] [PMID: 34240555]
[225]
Kwon Y. Luteolin as a potential preventive and therapeutic candidate for Alzheimer’s disease. Exp Gerontol 2017; 95: 39-43.
[http://dx.doi.org/10.1016/j.exger.2017.05.014] [PMID: 28528007]
[226]
Delgado A, Cholevas C, Theoharides TC. Neuroinflammation in Alzheimer’s disease and beneficial action of luteolin. Biofactors 2021; 47(2): 207-17.
[http://dx.doi.org/10.1002/biof.1714] [PMID: 33615581]
[227]
Lin C-H, Chen P-K, Chang Y-C, et al. Benzoate, a D-amino acid oxidase inhibitor, for the treatment of early-phase Alzheimer disease: A randomized, double-blind, placebo-controlled trial. Biol Psychiatry 2014; 75(9): 678-85.
[http://dx.doi.org/10.1016/j.biopsych.2013.08.010] [PMID: 24074637]
[228]
Lin C-H, Yang H-T, Chen P-K, Wang S-H, Lane H-Y. Precision medicine of sodium benzoate for the treatment of behavioral and psychological symptoms of dementia (BPSD). Neuropsychiatr Dis Treat 2020; 16: 509-18.
[http://dx.doi.org/10.2147/NDT.S234371] [PMID: 32110025]
[229]
Lane H-Y, Tu C-H, Lin W-C, Lin C-H. Brain activity of Benzoate, a D-amino acid oxidase inhibitor, in patients with mild cognitive impairment in a randomized, double-blind, placebo controlled clinical trial. Int J Neuropsychopharmacol 2021; 24(5): 392-9.
[http://dx.doi.org/10.1093/ijnp/pyab001] [PMID: 33406269]
[230]
Lin C-H, Chen P-K, Wang S-H, Lane H-Y. Effect of sodium benzoate on cognitive function among patients with behavioral and psychological symptoms of dementia: Secondary analysis of a randomized clinical trial. JAMA Netw Open 2021; 4(4): e216156.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.6156] [PMID: 33881530]
[231]
Siafaka PI, Üstündağ Okur N, Karavas E, Bikiaris DN. Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting: Current status and uses. Int J Mol Sci 2016; 17(9): 1440.
[http://dx.doi.org/10.3390/ijms17091440] [PMID: 27589733]
[232]
Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Blood-brain delivery methods using nanotechnology. Pharmaceutics 2018; 10(4): 269.
[http://dx.doi.org/10.3390/pharmaceutics10040269] [PMID: 30544966]
[233]
Frozza RL, Bernardi A, Paese K, et al. Characterization of trans-resveratrol-loaded lipid-core nanocapsules and tissue distribution studies in rats. J Biomed Nanotechnol 2010; 6(6): 694-703.
[http://dx.doi.org/10.1166/jbn.2010.1161] [PMID: 21361135]
[234]
Joshi MD, Müller RH. 2009; 161-72.
[http://dx.doi.org/10.1016/j.ejpb.2008.09.00]
[235]
Wen MM, El-Salamouni NS, El-Refaie WM, et al. Nanotechnology-based drug delivery systems for Alzheimer’s disease management: Technical, industrial, and clinical challenges. J Control Release 2017; 245: 95-107.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.025] [PMID: 27889394]
[236]
Ramalingam P, Yoo SW, Ko YT. Nanodelivery systems based on mucoadhesive polymer coated solid lipid nanoparticles to improve the oral intake of food curcumin. Food Res Int 2016; 84: 113-9.
[http://dx.doi.org/10.1016/j.foodres.2016.03.031]
[237]
Fereydouni N, Movaffagh J, Amiri N, et al. Synthesis of nano-fibers containing nano-curcumin in zein corn protein and its physicochemical and biological characteristics. Sci Rep 2021; 11(1): 1902.
[http://dx.doi.org/10.1038/s41598-020-73678-w] [PMID: 33479286]
[238]
Sun M, Gao Y, Guo C, Cao F, Song Z, Xi Y. Enhancement of transport of curcumin to brain in mice by poly(n-butylcyanoacrylate) nanoparticle. J Nanopart Res 2010; 12(8): 3111-22.
[http://dx.doi.org/10.1007/s11051-010-9907-4]
[239]
Balmiki R, Bisht S, Maitra A, Maitra A, Lahiri DK. Neuroprotective and Neurorescue Effects of a Novel Polymeric Nanoparticle Formulation of Curcumin (NanoCurcTM) in the Neuronal Cell Culture and Animal Model: Implications for Alzheimer’s Disease. J Alzheimer’s 2011; 23(1): 61-77.
[240]
Mathew A, Aravind A, Fukuda T, Hasumura T, Nagaoka Y, Yoshida Y. Curcumin nanoparticles- a gateway for multifaceted approach to tackle Alzheimer’s disease11th IEEE International Conference on Nanotechnology. 2011; pp. 833-6.
[http://dx.doi.org/10.1109/NANO.2011.6144336]
[241]
Cheng KK, Yeung CF, Ho SW, Chow SF, Chow AHL, Baum L. Highly stabilized curcumin nanoparticles tested in an in vitro blood-brain barrier model and in Alzheimer’s disease Tg2576 mice. AAPS J 2013; 15(2): 324-36.
[http://dx.doi.org/10.1208/s12248-012-9444-4] [PMID: 23229335]
[242]
Tiwari SK, Agarwal S, Seth B, et al. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano 2014; 8(1): 76-103.
[http://dx.doi.org/10.1021/nn405077y] [PMID: 24467380]
[243]
Fan S, Zheng Y, Liu X, et al. Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s disease. Drug Deliv 2018; 25(1): 1091-102.
[http://dx.doi.org/10.1080/10717544.2018.1461955] [PMID: 30107760]
[244]
Huo X, Zhang Y, Jin X, Li Y, Zhang L. A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer’s disease. J Photochem Photobiol B 2019; 190: 98-102.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.11.008] [PMID: 30504054]
[245]
Bagad M, Khan ZA. Poly(n-butylcyanoacrylate) nanoparticles for oral delivery of quercetin: preparation, characterization, and pharmacokinetics and biodistribution studies in Wistar rats. Int J Nanomedicine 2015; 10: 3921-35.
[http://dx.doi.org/10.2147/IJN.S80706] [PMID: 26089668]
[246]
Elnaggar YSR, Etman SM, Abdelmonsif DA, Abdallah OY. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: Optimization, biological efficacy, and potential toxicity. J Pharm Sci 2015; 104(10): 3544-56.
[http://dx.doi.org/10.1002/jps.24557]
[247]
Meng Q, Wang A, Hua H, et al. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int J Nanomedicine 2018; 13: 705-18.
[http://dx.doi.org/10.2147/IJN.S151474] [PMID: 29440896]
[248]
Psimadas D, Georgoulias P, Valotassiou V, Loudos G. Molecular nanomedicine towards cancer: ¹¹¹In-labeled nanoparticles. J Pharm Sci 2012; 101(7): 2271-80.
[http://dx.doi.org/10.1002/jps.23146] [PMID: 22488174]
[249]
Choubey A, Gilhotra R, Kumar SS, Garg G. SLN-Burden of dengue related neurosurgical emergency. Asian J Neurosurg 2018; 13(2): 29682044.
[http://dx.doi.org/10.4103/ajns.AJNS]
[250]
Vedagiri A, Thangarajan S. Mitigating effect of chrysin loaded solid lipid nanoparticles against Amyloid β25-35 induced oxidative stress in rat hippocampal region: An efficient formulation approach for Alzheimer’s disease. Neuropeptides 2016; 58: 111-25.
[http://dx.doi.org/10.1016/j.npep.2016.03.002] [PMID: 27021394]
[251]
Dhawan S, Kapil R, Singh B. Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J Pharm Pharmacol 2011; 63(3): 342-51.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01225.x] [PMID: 21749381]
[252]
Rishitha N, Muthuraman A. Therapeutic evaluation of solid lipid nanoparticle of quercetin in pentylenetetrazole induced cognitive impairment of zebrafish. Life Sci 2018; 199: 80-7.
[http://dx.doi.org/10.1016/j.lfs.2018.03.010] [PMID: 29522770]
[253]
Sathya S, Shanmuganathan B, Manirathinam G, Ruckmani K, Devi KP. α-Bisabolol loaded solid lipid nanoparticles attenuates Aβ aggregation and protects Neuro-2a cells from Aβ induced neurotoxicity. J Mol Liq 2018; 264: 431-41.
[http://dx.doi.org/10.1016/j.molliq.2018.05.075]
[254]
Pandita D, Kumar S, Poonia N, Lather V. Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res Int 2014; 62: 1165-74.
[http://dx.doi.org/10.1016/j.foodres.2014.05.059]
[255]
Ramalingam P, Ko YT. Improved oral delivery of resveratrol from N-trimethyl chitosan-g-palmitic acid surface-modified solid lipid nanoparticles. Colloids Surf B Biointerfaces 2016; 139: 52-61.
[http://dx.doi.org/10.1016/j.colsurfb.2015.11.050] [PMID: 26700233]
[256]
Neves AR, Queiroz JF, Reis S. Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E. J Nanobiotechnology 2016; 14(1): 27.
[http://dx.doi.org/10.1186/s12951-016-0177-x] [PMID: 27061902]
[257]
Sachdeva AK, Misra S, Pal Kaur I, Chopra K. Neuroprotective potential of sesamol and its loaded solid lipid nanoparticles in ICV-STZ-induced cognitive deficits: Behavioral and biochemical evidence. Eur J Pharmacol 2015; 747: 132-40.
[http://dx.doi.org/10.1016/j.ejphar.2014.11.014] [PMID: 25449035]
[258]
Santonocito D, Raciti G, Campisi A, et al. Astaxanthin-loaded stealth lipid nanoparticles (AST-SSLN) as potential carriers for the treatment of Alzheimer’s Disease: Formulation development and optimization. Nanomaterials 2021; 11(2): 1-17.
[http://dx.doi.org/10.3390/nano11020391] [PMID: 33546352]
[259]
Piazzini V, Lemmi B, D’Ambrosio M, Cinci L, Luceri C, Bilia AR. NLCs-Nanostructured lipid carriers as promising delivery systems for plant extracts: The case of silymarin. Appl Sci 2018; 8(7): 1163.
[http://dx.doi.org/10.3390/app8071163]
[260]
Zhang J, Nie S, Wang S. Nanoencapsulation enhances epigallocatechin-3-gallate stability and its antiatherogenic bioactivities in macrophages. J Agric Food Chem 2013; 61(38): 9200-9.
[http://dx.doi.org/10.1021/jf4023004] [PMID: 24020822]
[261]
National Institute for Healthcare and Clinical Excellence (NICE). Memantine for the treatment of Alzheimer’ s disease. 2011; 1-2(3): 207-12.
[http://dx.doi.org/10.1016/j.ijpharm.2010.01.012.Nanolipidic]
[262]
Meng F, Asghar S, Gao S, et al. A novel LDL-mimic nanocarrier for the targeted delivery of curcumin into the brain to treat Alzheimer’s disease. Colloids Surf B Biointerfaces 2015; 134: 88-97.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.025] [PMID: 26162977]
[263]
Guerzoni LPB, Nicolas V, Angelova A. In vitro modulation of TrkB receptor signaling upon sequential delivery of curcumin-DHA loaded carriers towards promoting neuronal survival. Pharm Res 2017; 34(2): 492-505.
[http://dx.doi.org/10.1007/s11095-016-2080-4] [PMID: 27995523]
[264]
Dolatabadi S, Karimi M, Nasirizadeh S, Hatamipour M, Golmohammadzadeh S, Jaafari MR. Preparation, characterization and in vivo pharmacokinetic evaluation of curcuminoids-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs). J Drug Deliv Sci Technol 2021; 62: 102352.
[http://dx.doi.org/10.1016/j.jddst.2021.102352]
[265]
Faralli A, Shekarforoush E, Ajalloueian F, Mendes AC, Chronakis IS. In vitro permeability enhancement of curcumin across Caco-2 cells monolayers using electrospun xanthan-chitosan nanofibers. Carbohydr Polym 2019; 206(206): 38-47.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.073] [PMID: 30553335]
[266]
Lohan S, Raza K, Mehta SK, Bhatti GK, Saini S, Singh B. Anti-Alzheimer’s potential of berberine using surface decorated multi-walled carbon nanotubes: A preclinical evidence. Int J Pharm 2017; 530(1-2): 263-78.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.080] [PMID: 28774853]
[267]
Lebda MA, Sadek KM, Tohamy HG, et al. Potential role of α-lipoic acid and Ginkgo biloba against silver nanoparticles-induced neuronal apoptosis and blood-brain barrier impairments in rats. Life Sci 2018; 212: 251-60.
[http://dx.doi.org/10.1016/j.lfs.2018.10.011] [PMID: 30304694]
[268]
Zhang X, Li Y, Hu Y. Green synthesis of silver nanoparticles and their preventive effect in deficits in recognition and spatial memory in sporadic Alzheimer’s rat model. Colloids Surf A Physicochem Eng Asp 2020; 605: 125288.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125288]
[269]
Zaid O, El-Sonbaty S, Barakat W. Ameliorative effect of selenium nanoparticles and ferulic acid on acrylamide-induced neurotoxicity in rats. Ann Med Biomed Sci 2017; 3(2): 35-45.
[270]
Sun J, Wei C, Liu Y, et al. Progressive release of mesoporous nano-selenium delivery system for the multi-channel synergistic treatment of Alzheimer’s disease. Biomaterials 2019; 197(197): 417-31.
[http://dx.doi.org/10.1016/j.biomaterials.2018.12.027] [PMID: 30638753]
[271]
Korkmaz N, Ceylan Y, Taslimi P, Karadağ A, Bülbül AS, Şen F. Biogenic nano silver: Synthesis, characterization, antibacterial, antibiofilms, and enzymatic activity. Adv Powder Technol 2020; 31(7): 2942-50.
[http://dx.doi.org/10.1016/j.apt.2020.05.020]
[272]
Kim MJ, Rehman SU, Amin FU, Kim MO. Enhanced neuroprotection of anthocyanin-loaded PEG-gold nanoparticles against Aβ1-42-induced neuroinflammation and neurodegeneration via the NF-KB/JNK/GSK3β signaling pathway. Nanomedicine 2017; 13(8): 2533-44.
[http://dx.doi.org/10.1016/j.nano.2017.06.022] [PMID: 28736294]
[273]
Liu Y, Zhou H, Yin T, et al. Quercetin-modified gold-palladium nanoparticles as a potential autophagy inducer for the treatment of Alzheimer’s disease. J Colloid Interface Sci 2019; 552: 388-400.
[http://dx.doi.org/10.1016/j.jcis.2019.05.066] [PMID: 31151017]
[274]
Amanzadeh E, Esmaeili A, Abadi REN, Kazemipour N, Pahlevanneshan Z, Beheshti S. Quercetin conjugated with superparamagnetic iron oxide nanoparticles improves learning and memory better than free quercetin via interacting with proteins involved in LTP. Sci Rep 2019; 9: 6876.
[http://dx.doi.org/10.1038/s41598-019-43345-w]
[275]
Paka DG, Doggui S, Zaghmi A, et al. Neuronal uptake and neuroprotective properties of curcumin-loaded nanoparticles on SK-N-SH cell line: Role of poly(lactide-co-glycolide) polymeric matrix composition. Mol Pharm 2016; 13(2): 391-403.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00611] [PMID: 26618861]
[276]
Huang N, Lu S, Liu X-G, Zhu J, Wang Y-J, Liu R-T. PLGA nanoparticles modified with a BBB-penetrating peptide co-delivering Aβ generation inhibitor and curcumin attenuate memory deficits and neuropathology in Alzheimer’s disease mice. Oncotarget 2017; 8(46): 81001-13.
[http://dx.doi.org/10.18632/oncotarget.20944] [PMID: 29113362]
[277]
Nazem A, Mansoori GA. Nanotechnology for Alzheimer’s disease detection and treatment. Insciences J 2011; 1(4): 169-93.
[http://dx.doi.org/10.5640/insc.0104169]
[278]
Sgarbossa A, Giacomazza D, di Carlo M. Ferulic acid: A hope for Alzheimer’s disease therapy from plants. Nutrients 2015; 7(7): 5764-82.
[http://dx.doi.org/10.3390/nu7075246] [PMID: 26184304]
[279]
Esposito E, Ravani L, Drechsler M, et al. Cannabinoid antagonist in nanostructured lipid carriers (NLCs): Design, characterization and in vivo study. Mater Sci Eng C 2015; 48: 328-36.
[http://dx.doi.org/10.1016/j.msec.2014.12.012] [PMID: 25579930]
[280]
Kakkar V, Kaur IP. Evaluating potential of curcumin loaded solid lipid nanoparticles in aluminium induced behavioural, biochemical and histopathological alterations in mice brain. Food Chem Toxicol 2011; 49(11): 2906-13.
[http://dx.doi.org/10.1016/j.fct.2011.08.006] [PMID: 21889563]
[281]
Bondi M, Montana G, Craparo E, Picone P, Capuano G, Carlo M. Ferulic acid-loaded lipid nanostructures as drug delivery systems for Alzheimers disease: Preparation, characterization and cytotoxicity studies. Curr Nanosci 2009; 5(1): 26-32.
[http://dx.doi.org/10.2174/157341309787314656]
[282]
Maiti P, Dunbar GL. Comparative neuroprotective effects of dietary curcumin and solid lipid curcumin particles in cultured mouse neuroblastoma cells after exposure to Aβ42. Int J Alzheimers Dis 2017; 2017: 4164872.
[http://dx.doi.org/10.1155/2017/4164872] [PMID: 28567323]
[283]
Maiti P, Paladugu L, Dunbar GL. Solid lipid curcumin particles provide greater anti-amyloid, anti-inflammatory and neuroprotective effects than curcumin in the 5xFAD mouse model of Alzheimer’s disease. BMC Neurosci 2018; 19(1): 7.
[http://dx.doi.org/10.1186/s12868-018-0406-3] [PMID: 29471781]
[284]
Sathya S, Shanmuganathan B, Devi KP. Deciphering the anti-apoptotic potential of α-bisabolol loaded solid lipid nanoparticles against Aβ induced neurotoxicity in Neuro-2a cells. Colloids Surf B Biointerfaces 2020; 190: 110948.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110948]
[285]
Ramalingam P, Ko YT. Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: Pharmacokinetic and brain distribution evaluations. Pharm Res 2015; 32(2): 389-402.
[http://dx.doi.org/10.1007/s11095-014-1469-1] [PMID: 25082210]
[286]
Graverini G, Piazzini V, Landucci E, et al. Solid lipid nanoparticles for delivery of andrographolide across the blood-brain barrier: In vitro and in vivo evaluation. Colloids Surf B Biointerfaces 2018; 161: 302-13.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.062] [PMID: 29096375]
[287]
Serrano FG, Tapia-Rojas C, Carvajal FJ, Hancke J, Cerpa W, Inestrosa NC. Andrographolide reduces cognitive impairment in young and mature AβPPswe/PS-1 mice. Mol Neurodegener 2014; 9(1): 61.
[http://dx.doi.org/10.1186/1750-1326-9-61] [PMID: 25524173]
[288]
Gaba B, Fazil M, Ali A, Baboota S, Sahni JK, Ali J. Nanostructured lipid (NLCs) carriers as a bioavailability enhancement tool for oral administration. Drug Deliv 2015; 22(6): 691-700.
[http://dx.doi.org/10.3109/10717544.2014.898110] [PMID: 24670099]
[289]
Vaiserman A, Koliada A, Lushchak O. Neuroinflammation in pathogenesis of Alzheimer’s disease: Phytochemicals as potential therapeutics. Mech Ageing Dev 2020; 189: 111259.
[http://dx.doi.org/10.1016/j.mad.2020.111259] [PMID: 32450086]
[290]
Sridhar R, Lakshminarayanan R, Madhaiyan K, Barathi VA, Hsiu K, Lim C. Nanofibers-Chem Soc Rev nanofibers based on natural materials : Applications in tissue regeneration, drug delivery. Chem Soc Rev 2015; 44: 790-814.
[http://dx.doi.org/10.1039/C4CS00226A] [PMID: 25408245]
[291]
Zhang Y, Lim CT, Ramakrishna S, Huang ZM. Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci Mater Med 2005; 16(10): 933-46.
[http://dx.doi.org/10.1007/s10856-005-4428-x] [PMID: 16167102]
[292]
Othman AM, Shehata EM, Elnaggar YS. Multifaceted implementation of nanotechnology in ameliorating therapeutic efficacy of soy phytoestrogens: Comprehensive review on the state of art. J Drug Deliv Sci Technol 2021; 61: 102269.
[http://dx.doi.org/10.1016/j.jddst.2020.102269]
[293]
AnjiReddy K. Karpagam S. In vitro and in vivo evaluation of oral disintegrating nanofiber and thin-film contains hyperbranched chitosan/donepezil for active drug delivery. J Polym Environ 2021; 29(3): 922-36.
[http://dx.doi.org/10.1007/s10924-020-01937-y]
[294]
Chaudhary V, Jangra S, Yadav NR. Nanotechnology based approaches for detection and delivery of microRNA in healthcare and crop protection. J Nanobiotechnology 2018; 16(1): 40.
[http://dx.doi.org/10.1186/s12951-018-0368-8] [PMID: 29653577]
[295]
Loh XJ, Lee TC, Dou Q, Deen GR. Utilising inorganic nanocarriers for gene delivery. Biomater Sci 2016; 4(1): 70-86.
[http://dx.doi.org/10.1039/C5BM00277J] [PMID: 26484365]
[296]
Kumar A, Tan A, Wong J, et al. Nanotechnology for neuroscience: promising approaches for diagnostics, therapeutics and brain activity mapping. Adv Funct Mater 2017; 27(39): 1-30.
[http://dx.doi.org/10.1002/adfm.201700489] [PMID: 30853878]
[297]
Bilal M, Barani M, Sabir F, Rahdar A, Kyzas GZ. Nanomaterials for the treatment and diagnosis of Alzheimer’s disease: An overview. NanoImpact 2020; 20: 100251.
[http://dx.doi.org/10.1016/j.impact.2020.100251]
[298]
De Matteis V, Rizzello L. Noble metals and soft bio-inspired nanoparticles in retinal diseases treatment: A perspective. Cells 2020; 9(3): 679.
[http://dx.doi.org/10.3390/cells9030679] [PMID: 32164376]
[299]
Wahle T, Sofranko A, Dekkers S, et al. Evaluation of neurological effects of cerium dioxide nanoparticles doped with different amounts of zirconium following inhalation exposure in mouse models of Alzheimer’s and vascular disease. Neurochem Int 2020; 138: 104755.
[http://dx.doi.org/10.1016/j.neuint.2020.104755] [PMID: 32422323]
[300]
Sikorska K, Grądzka I, Sochanowicz B, et al. Diminished amyloid-β uptake by mouse microglia upon treatment with quantum dots, silver or cerium oxide nanoparticles: Nanoparticles and amyloid-β uptake by microglia. Hum Exp Toxicol 2020; 39(2): 147-58.
[http://dx.doi.org/10.1177/0960327119880586] [PMID: 31601117]
[301]
Shah S, Yin PT, Uehara TM, Chueng S-TD, Yang L, Lee K-B. Guiding stem cell differentiation into oligodendrocytes using graphene-nanofiber hybrid scaffolds. Adv Mater 2014; 26(22): 3673-80.
[http://dx.doi.org/10.1002/adma.201400523] [PMID: 24668911]
[302]
Wu T, Zhang T, Chen Y, Tang M. Research advances on potential neurotoxicity of quantum dots. J Appl Toxicol 2016; 36(3): 345-51.
[http://dx.doi.org/10.1002/jat.3229] [PMID: 26364743]
[303]
Amin FU, Hoshiar AK, Do TD, et al. Osmotin-loaded magnetic nanoparticles with electromagnetic guidance for the treatment of Alzheimer’s disease. Nanoscale 2017; 9(30): 10619-32.
[http://dx.doi.org/10.1039/C7NR00772H] [PMID: 28534925]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy