Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Review Article

Herd Immunity Against Coronavirus: A Review

Author(s): Shreeja Datta and Arpita Roy*

Volume 16, Issue 3, 2022

Published on: 23 May, 2022

Page: [256 - 265] Pages: 10

DOI: 10.2174/1872208316666220408113002

Price: $65

Abstract

The severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has spread exponentially, leading to an alarming number of deaths worldwide. A devastating effect has been observed in susceptible populations. Our body’s immune system plays a very important role in fighting against diseases. The principle of herd immunity (also known as population immunity), which has found its way into science and has been in the limelight, is the most widely recognised among all. It is an indirect defence against infectious diseases when a community gained immunity, either through vaccines or through prior infection. Herd immunity against COVID-19 must be achieved to reduce the transmission of disease and save lives. Therefore, this review provides a comprehension of the role of immunity, with a special emphasis on herd immunity against COVID-19, and the ways to attain herd immunity in India have also been discussed.

Keywords: COVID-19, pandemic, immunity, herd immunity, vaccine, limitation.

Graphical Abstract

[1]
Li X, Zai J, Zhao Q, et al. Evolutionary history, potential intermediate animal host, and cross-species analyses of SARS-CoV-2. J Med Virol 2020; 92(6): 602-11.
[http://dx.doi.org/10.1002/jmv.25731] [PMID: 32104911]
[2]
Garg S, Roy A. In silico analysis of selected alkaloids against main protease (Mpro) of SARS-CoV-2. Chem Biol Interact 2020; 332: 109309.
[http://dx.doi.org/10.1016/j.cbi.2020.109309] [PMID: 33181114]
[3]
Garg S, Anand A, Lamba Y, Roy A. Molecular docking analysis of selected phytochemicals against SARS-CoV-2 Mpro receptor. Vegetos 2020; 33(4): 1-16.
[http://dx.doi.org/10.1007/s42535-020-00162-1] [PMID: 33100613]
[4]
Raoult D, Zumla A, Locatelli F, Ippolito G, Kroemer G. Coronavirus infections: Epidemiological, clinical and immunolog-ical features and hypotheses. Cell Stress 2020; 4(4): 66-75.
[http://dx.doi.org/10.15698/cst2020.04.216] [PMID: 32292881]
[5]
Jin JM, Bai P, He W, et al. Gender differences in patients with COVID-19: Focus on severity and mortality. Front Public Health 2020; 8: 152.
[http://dx.doi.org/10.3389/fpubh.2020.00152] [PMID: 32411652]
[6]
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan. China: Jama 2020.
[7]
Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germa-ny. N Engl J Med 2020; 382(10): 970-1.
[http://dx.doi.org/10.1056/NEJMc2001468] [PMID: 32003551]
[8]
Salje H, Tran Kiem C, Lefrancq N, et al. Estimating the burden of SARS-CoV-2 in France. Science 2020; 369(6500): 208-11.
[http://dx.doi.org/10.1126/science.abc3517] [PMID: 32404476]
[9]
Flaxman S, Mishra S, Gandy A, et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Eu-rope. Nature 2020; 584(7820): 257-61.
[http://dx.doi.org/10.1038/s41586-020-2405-7] [PMID: 32512579]
[10]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[11]
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579(7798): 19.
[http://dx.doi.org/10.1038/s41586-020-2008-3]
[12]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[13]
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[14]
Perlman S, Dandekar AA. Immunopathogenesis of coronavirus infections: Implications for SARS. Nat Rev Immunol 2005; 5(12): 917-27.
[http://dx.doi.org/10.1038/nri1732] [PMID: 16322745]
[15]
Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 2020; 181(5): 1036-1045.e9.
[http://dx.doi.org/10.1016/j.cell.2020.04.026] [PMID: 32416070]
[16]
Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol 2020; 92(4): 424-32.
[http://dx.doi.org/10.1002/jmv.25685] [PMID: 31981224]
[17]
Clay C, Donart N, Fomukong N, et al. Primary severe acute respiratory syndrome coronavirus infection limits replication but not lung inflammation upon homologous rechallenge. J Virol 2012; 86(8): 4234-44.
[http://dx.doi.org/10.1128/JVI.06791-11] [PMID: 22345460]
[18]
Huang AT, Garcia-Carreras B, Hitchings TDM, et al. A systematic review of antibody mediated immunity to corona-viruses: Antibody kinetics, correlates of protection, and association of antibody responses with severity of disease. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.04.14.20065771]
[19]
Vankadari N, Wilce JA. Emerging Wuhan (COVID-19) coronavirus: Glycan shield and structure prediction of spike glyco-protein and its interaction with human CD26. Emerg Microbes Infect 2020; 9(1): 601-4.
[http://dx.doi.org/10.1080/22221751.2020.1739565] [PMID: 32178593]
[20]
Wang K, Chen W, Zhou SY, et al. SARSCoV- 2 invades host cells via a novel route: CD147-spike protein. bioRxiv 2020.
[21]
Wang X, Xu W, Hu G, et al. SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion. Cell Mol Immunol 2020; 17(8): 894.
[http://dx.doi.org/10.1038/s41423-020-0498-4]
[22]
Sekine T, Perez-Potti A, Rivera-Ballesteros O, et al. Robust T cell immunity in convalescent individuals with asymptomat-ic or mild COVID-19. Cell 2020; 183(1): 158-168.e14.
[http://dx.doi.org/10.1016/j.cell.2020.08.017] [PMID: 32979941]
[23]
Juno JA, Tan HX, Lee WS, et al. Humoral and circulating follicular helper T cell responses in recovered patients with COVID-19. Nat Med 2020; 26(9): 1428-34.
[http://dx.doi.org/10.1038/s41591-020-0995-0] [PMID: 32661393]
[24]
Jones D, Helmreich S. A history of herd immunity. Lancet 2020; 396(10254): 810-1.
[http://dx.doi.org/10.1016/S0140-6736(20)31924-3] [PMID: 32950081]
[25]
Eckerle I, Meyer B. SARS-CoV-2 seroprevalence in COVID-19 hotspots. Lancet 2020; 396(10250): 514-5.
[http://dx.doi.org/10.1016/S0140-6736(20)31482-3] [PMID: 32645348]
[26]
Britton T, Ball F, Trapman P. A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2. Science 2020; 369(6505): 846-9.
[http://dx.doi.org/10.1126/science.abc6810] [PMID: 32576668]
[27]
Goldstein E, Lipsitch M, Cevik M. On the effect of age on the transmission of SARS-CoV-2 in households, schools and the community. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.07.19.20157362]
[28]
Delamater PL, Street EJ, Leslie TF, Yang YT, Jacobsen KH. Complexity of the basic reproduction number (R0). Emerg Infect Dis 2019; 25(1): 1-4.
[http://dx.doi.org/10.3201/eid2501.171901] [PMID: 30560777]
[29]
Randolph HE, Barreiro LB. Herd immunity: Understanding COVID-19. Immunity 2020; 52(5): 737-41.
[http://dx.doi.org/10.1016/j.immuni.2020.04.012] [PMID: 32433946]
[30]
Brett TS, Rohani P. Transmission dynamics reveal the impracticality of COVID-19 herd immunity strategies. Proc Natl Acad Sci USA 2020; 117(41): 25897-903.
[http://dx.doi.org/10.1073/pnas.2008087117] [PMID: 32963094]
[31]
Hunter DJ. COVID-19 and the stiff upper lip-The pandemic response in the United Kingdom. N Engl J Med 2020; 382(16): e31.
[http://dx.doi.org/10.1056/NEJMp2005755] [PMID: 32197002]
[32]
Horton R. Offline: COVID-19-a reckoning. Lancet 2020; 395(10228): 935.
[http://dx.doi.org/10.1016/S0140-6736(20)30669-3] [PMID: 32199478]
[33]
Murhekar MV, Bhatnagar T, Selvaraju S, et al. SARS-CoV-2 antibody seroprevalence in India, August-September, 2020: Findings from the second nationwide household serosurvey. Lancet Glob Health 2021; 9(3): e257-66.
[http://dx.doi.org/10.1016/S2214-109X(20)30544-1] [PMID: 33515512]
[34]
Aschwanden C. Five reasons why COVID herd immunity is probably impossible. Nature 2021; 591(7851): 520-2.
[http://dx.doi.org/10.1038/d41586-021-00728-2] [PMID: 33737753]
[35]
Aguas R, Corder RM, King JG, Gonçalves G, Ferreira MU, Gomes MGM. Herd immunity thresholds for SARS-CoV-2 es-timated from unfolding epidemics. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.07.23.20160762]
[36]
Lourenço J, Pinotti F, Thompson C, Gupta S. The impact of host resistance on cumulative mortality and the threshold of herd immunity for SARS-CoV-2. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.07.15.20154294]
[37]
Simoneaux R, Shafer SL. Can herd immunity save us from COVID-19? ASA Monitor 2020; 84(10): 18-9.
[http://dx.doi.org/10.1097/01.ASM.0000718812.88829.39]
[38]
Kshatri JS, Bhattacharya D, Kanungo S, et al. Serological surveys to inform SARS-CoV-2 epidemic curve: A cross-sectional study from Odisha, India. Sci Rep 2021; 11(1): 10551.
[http://dx.doi.org/10.1038/s41598-021-89877-y] [PMID: 34006960]
[39]
Sisay T, Tolessa T. COVID-19 pandemic: A compressive review on gender, herd immunity, and physiological mecha-nisms. Risk Manag Healthc Policy 2020; 13: 2963-74.
[http://dx.doi.org/10.2147/RMHP.S276342] [PMID: 33363420]
[40]
Chen RE, Zhang X, Case JB, et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat Med 2021; 27(4): 717-26.
[http://dx.doi.org/10.1038/s41591-021-01294-w] [PMID: 33664494]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy