Review Article

电压门控钙通道α2δ亚基配体治疗慢性神经性疼痛的研究进展及药效模拟对结构-活性关系(SAR)的见解

卷 29, 期 30, 2022

发表于: 15 June, 2022

页: [5097 - 5112] 页: 16

弟呕挨: 10.2174/0929867329666220407093727

价格: $65

摘要

背景:神经性疼痛(NP)是与神经损伤有关的复杂症状。治疗慢性NP的新药的发现已经持续了几十年,而由于目前可用药物的疗效和副作用,仍需要更多的进展。在所有已批准的慢性NP药物中,电压门控钙通道(VGCC)α2δ亚基配体(也称为加巴喷丁类药物)是一线治疗药物之一,代表了一类有效且相对安全的治疗药物。然而,由于答复率不尽如人意,仍需探索新的战略。 目的:本研究旨在通过涵盖上市和临床前/临床研究,综述加巴喷丁类药物治疗慢性NP的发现和开发的最新进展。此外,它旨在分析加巴喷丁类化合物的结构 - 活性关系(SAR),以促进未来设计靶向VGCC α2δ亚基的结构新型治疗剂。 方法:检索PubMed Central、Embase、Cochrane图书馆、科学网、Scopus和Espacenet,寻找从早期到2021年6月10日糖尿病周围神经性疼痛、带状疱疹后神经痛、纤维肌痛、电压门控钙通道α2δ亚基和相关治疗药物的文献和专利。加巴喷丁类化合物的SAR通过使用薛定谔套件中的相模块通过药效团建模进行分析。 结果:多种加巴喷丁类化合物被鉴定为VGCC α2δ配体,这些配体一直在开发中以治疗慢性NP。其中,四种加巴喷丁类药物上市,一种处于活跃的晚期临床试验中,八种已经停产。使用薛定谔套件中的相模块生成药效团模型,并根据药效特征预测常见药效团并进行分析。 结论:综述了加巴喷丁类药物治疗慢性NP的最新进展。此外,通过药效团建模分析了加巴喷丁类药物的结构-活性关系(SAR),这对于未来设计靶向VGCC α2δ亚基的结构新型治疗剂具有重要意义。

关键词: 电压门控钙通道,α2δ亚基,神经性疼痛,结构 - 活性关系(SAR),药效团建模,加巴喷丁类化合物。

[1]
Gilron, I.; Baron, R.; Jensen, T. Neuropathic pain: Principles of diagnosis and treatment. Mayo Clin. Proc., 2015, 90(4), 532-545.
[http://dx.doi.org/10.1016/j.mayocp.2015.01.018] [PMID: 25841257]
[2]
Lauria, G.; Ziegler, D.; Malik, R.; Merkies, I.S.; Waxman, S.G.; Faber, C.G.; Group, P.S. The role of sodium channels in painful diabetic and idiopathic neuropathy. Curr. Diab. Rep., 2014, 14(10), 538.
[http://dx.doi.org/10.1007/s11892-014-0538-5] [PMID: 25142720]
[3]
Murnion, B.P. Neuropathic pain: Current definition and review of drug treatment. Aust. Prescr., 2018, 41(3), 60-63.
[http://dx.doi.org/10.18773/austprescr.2018.022] [PMID: 29921999]
[4]
Cherif, F.; Zouari, H.G.; Cherif, W.; Hadded, M.; Cheour, M.; Damak, R. Depression prevalence in neuropathic pain and its impact on the quality of life. Pain Res. Manag., 2020, 2020, 7408508.
[http://dx.doi.org/10.1155/2020/7408508] [PMID: 32617124]
[5]
Deeks, E.D. Mirogabalin: First global approval. Drugs, 2019, 79(4), 463-468.
[http://dx.doi.org/10.1007/s40265-019-01070-8] [PMID: 30778848]
[6]
Snedecor, S.J.; Sudharshan, L.; Cappelleri, J.C.; Sadosky, A.; Desai, P.; Jalundhwala, Y.J.; Botteman, M. Systematic review and comparison of pharmacologic therapies for neuropathic pain associated with spinal cord injury. J. Pain Res., 2013, 6, 539-547.
[http://dx.doi.org/10.2147/JPR.S45966] [PMID: 23874121]
[7]
Butera, J.A. Current and emerging targets to treat neuropathic pain. J. Med. Chem., 2007, 50(11), 2543-2546.
[http://dx.doi.org/10.1021/jm061015w] [PMID: 17489576]
[8]
DiBonaventura, M.D.; Sadosky, A.; Concialdi, K.; Hopps, M.; Kudel, I.; Parsons, B.; Cappelleri, J.C.; Hlavacek, P.; Alexander, A.H.; Stacey, B.R.; Markman, J.D.; Farrar, J.T. The prevalence of probable neuropathic pain in the US: Results from a multimodal general-population health survey. J. Pain Res., 2017, 10, 2525-2538.
[http://dx.doi.org/10.2147/JPR.S127014] [PMID: 29138590]
[9]
Yawn, B.P.; Wollan, P.C.; Weingarten, T.N.; Watson, J.C.; Hooten, W.M.; Melton, L.J., III The prevalence of neuropathic pain: Clinical evaluation compared with screening tools in a community population. Pain Med., 2009, 10(3), 586-593.
[http://dx.doi.org/10.1111/j.1526-4637.2009.00588.x] [PMID: 20849570]
[10]
Gylfadottir, S.S.; Christensen, D.H.; Nicolaisen, S.K.; Andersen, H.; Callaghan, B.C.; Itani, M.; Khan, K.S.; Kristensen, A.G.; Nielsen, J.S.; Sindrup, S.H.; Andersen, N.T.; Jensen, T.S.; Thomsen, R.W.; Finnerup, N.B. Diabetic polyneuropathy and pain, prevalence, and patient characteristics: A cross-sectional questionnaire study of 5,514 patients with recently diagnosed type 2 diabetes. Pain, 2020, 161(3), 574-583.
[http://dx.doi.org/10.1097/j.pain.0000000000001744] [PMID: 31693539]
[11]
Yu, S.Y.; Fan, B.F.; Yang, F.; DiBonaventura, M.; Chen, Y.X.; Li, R.Y.; King-Concialdi, K.; Kudel, I.; Hlavacek, P.; Hopps, M.; Udall, M.; Sadosky, A.; Cappelleri, J.C. Patient and economic burdens of postherpetic neuralgia in China. Clinicoecon. Outcomes Res., 2019, 11, 539-550.
[http://dx.doi.org/10.2147/CEOR.S203920] [PMID: 31564930]
[12]
Yang, F.; Yu, S.; Fan, B.; Liu, Y.; Chen, Y.X.; Kudel, I.; Concialdi, K.; DiBonaventura, M.; Hopps, M.; Hlavacek, P.; Cappelleri, J.C.; Sadosky, A.; Parsons, B.; Udall, M. The epidemiology of herpes zoster and postherpetic neuralgia in China: Results from a cross-sectional study. Pain Ther., 2019, 8(2), 249-259.
[http://dx.doi.org/10.1007/s40122-019-0127-z] [PMID: 31218562]
[13]
Lawson, K. Potential drug therapies for the treatment of fibromyalgia. Expert Opin. Investig. Drugs, 2016, 25(9), 1071-1081.
[http://dx.doi.org/10.1080/13543784.2016.1197906] [PMID: 27269389]
[14]
Sadosky, A.; Schaefer, C.; Mann, R.; Bergstrom, F.; Baik, R.; Parsons, B.; Nalamachu, S.; Nieshoff, E.; Stacey, B.R.; Anschel, A.; Tuchman, M. Burden of illness associated with painful diabetic peripheral neuropathy among adults seeking treatment in the US: Results from a retrospective chart review and cross-sectional survey. Diabetes Metab. Syndr. Obes., 2013, 6, 79-92.
[http://dx.doi.org/10.2147/DMSO.S37415] [PMID: 23403729]
[15]
Schaefer, C.; Mann, R.; Sadosky, A.; Daniel, S.; Parsons, B.; Nieshoff, E.; Tuchman, M.; Nalamachu, S.; Anschel, A.; Stacey, B.R. Burden of illness associated with peripheral and central neuropathic pain among adults seeking treatment in the United States: A patient-centered evaluation. Pain Med., 2014, 15(12), 2105-2119.
[http://dx.doi.org/10.1111/pme.12502] [PMID: 25039856]
[16]
Geisler, S.; Schöpf, C.L.; Obermair, G.J. Emerging evidence for specific neuronal functions of auxiliary calcium channel α2δ subunits. Gen. Physiol. Biophys., 2015, 34(2), 105-118.
[http://dx.doi.org/10.4149/gpb_2014037] [PMID: 25504062]
[17]
Dolphin, A.C. Voltage-gated calcium channels and their auxiliary subunits: Physiology and pathophysiology and pharmacology. J. Physiol., 2016, 594(19), 5369-5390.
[http://dx.doi.org/10.1113/JP272262] [PMID: 27273705]
[18]
Xiang, B.; Liu, Y.; Xie, L.; Zhao, Q.; Zhang, L.; Gan, X.; Yu, H. The osteoclasts attach to the bone surface where the extracellular calcium concentration decreases. Cell Biochem. Biophys., 2016, 74(4), 553-558.
[http://dx.doi.org/10.1007/s12013-016-0757-2] [PMID: 27718044]
[19]
Risher, W.C.; Eroglu, C. Emerging roles for α2δ subunits in calcium channel function and synaptic connectivity. Curr. Opin. Neurobiol., 2020, 63, 162-169.
[http://dx.doi.org/10.1016/j.conb.2020.04.007] [PMID: 32521436]
[20]
Davies, A.; Hendrich, J.; Van Minh, A.T.; Wratten, J.; Douglas, L.; Dolphin, A.C. Functional biology of the α(2)δ subunits of voltage-gated calcium channels. Trends Pharmacol. Sci., 2007, 28(5), 220-228.
[http://dx.doi.org/10.1016/j.tips.2007.03.005] [PMID: 17403543]
[21]
Burgess, G.; Williams, D. The discovery and development of analgesics: New mechanisms, new modalities. J. Clin. Invest., 2010, 120(11), 3753-3759.
[http://dx.doi.org/10.1172/JCI43195] [PMID: 21041957]
[22]
Bauer, C.S.; Tran-Van-Minh, A.; Kadurin, I.; Dolphin, A.C. A new look at calcium channel α2δ subunits. Curr. Opin. Neurobiol., 2010, 20(5), 563-571.
[http://dx.doi.org/10.1016/j.conb.2010.05.007] [PMID: 20579869]
[23]
Patel, R.; Bauer, C.S.; Nieto-Rostro, M.; Margas, W.; Ferron, L.; Chaggar, K.; Crews, K.; Ramirez, J.D.; Bennett, D.L.; Schwartz, A.; Dickenson, A.H.; Dolphin, A.C. α2δ-1 gene deletion affects somatosensory neuron function and delays mechanical hypersensitivity in response to peripheral nerve damage. J. Neurosci., 2013, 33(42), 16412-16426.
[http://dx.doi.org/10.1523/JNEUROSCI.1026-13.2013] [PMID: 24133248]
[24]
Zamponi, G.W.; Striessnig, J.; Koschak, A.; Dolphin, A.C. The Physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol. Rev., 2015, 67(4), 821-870.
[http://dx.doi.org/10.1124/pr.114.009654] [PMID: 26362469]
[25]
Fuller-Bicer, G.A.; Varadi, G.; Koch, S.E.; Ishii, M.; Bodi, I.; Kadeer, N.; Muth, J.N.; Mikala, G.; Petrashevskaya, N.N.; Jordan, M.A.; Zhang, S.P.; Qin, N.; Flores, C.M.; Isaacsohn, I.; Varadi, M.; Mori, Y.; Jones, W.K.; Schwartz, A. Targeted disruption of the voltage-dependent calcium channel α2/δ-1-subunit. Am. J. Physiol. Heart Circ. Physiol., 2009, 297(1), H117-H124.
[http://dx.doi.org/10.1152/ajpheart.00122.2009] [PMID: 19429829]
[26]
Dolphin, A.C. Voltage-gated calcium channels: Their discovery, function and importance as drug targets. Brain Neurosci. Adv., 2018, 2, 1-8.
[http://dx.doi.org/10.1177/2398212818794805] [PMID: 30320224]
[27]
Caroleo, M.C.; Brizzi, A.; De Rosa, M.; Pandey, A.; Gallelli, L.; Badolato, M.; Carullo, G.; Cione, E. Targeting neuropathic pain: Pathobiology, current treatment and peptidomimetics as a new therapeutic opportunity. Curr. Med. Chem., 2020, 27(9), 1469-1500.
[http://dx.doi.org/10.2174/0929867326666190530121133] [PMID: 31142248]
[28]
Kremer, M.; Salvat, E.; Muller, A.; Yalcin, I.; Barrot, M. Antidepressants and gabapentinoids in neuropathic pain: Mechanistic insights. Neuroscience, 2016, 338, 183-206.
[http://dx.doi.org/10.1016/j.neuroscience.2016.06.057] [PMID: 27401055]
[29]
Fornasari, D. Pharmacotherapy for neuropathic pain: A review. Pain Ther., 2017, 6(S1)(Suppl. 1), 25-33.
[http://dx.doi.org/10.1007/s40122-017-0091-4] [PMID: 29178034]
[30]
Khdour, M.R. Treatment of diabetic peripheral neuropathy: A review. J. Pharm. Pharmacol., 2020, 72(7), 863-872.
[http://dx.doi.org/10.1111/jphp.13241] [PMID: 32067247]
[31]
Stahl, S.M.; Porreca, F.; Taylor, C.P.; Cheung, R.; Thorpe, A.J.; Clair, A. The diverse therapeutic actions of pregabalin: Is a single mechanism responsible for several pharmacological activities? Trends Pharmacol. Sci., 2013, 34(6), 332-339.
[http://dx.doi.org/10.1016/j.tips.2013.04.001] [PMID: 23642658]
[32]
Widerström-Noga, E. Neuropathic pain and spinal cord injury: Phenotypes and pharmacological management. Drugs, 2017, 77(9), 967-984.
[http://dx.doi.org/10.1007/s40265-017-0747-8] [PMID: 28451808]
[33]
Tauben, D. Nonopioid medications for pain. Phys. Med. Rehabil. Clin. N. Am., 2015, 26(2), 219-248.
[http://dx.doi.org/10.1016/j.pmr.2015.01.005] [PMID: 25952062]
[34]
Alam, U.; Sloan, G.; Tesfaye, S. Treating pain in diabetic neuropathy: Current and developmental drugs. Drugs, 2020, 80(4), 363-384.
[http://dx.doi.org/10.1007/s40265-020-01259-2] [PMID: 32040849]
[35]
Chivukula, S.; Tempel, Z.J.; Chen, C.J.; Shin, S.S.; Gande, A.V.; Moossy, J.J. Spinal and nucleus caudalis dorsal root entry zone lesioning for chronic pain: Efficacy and outcomes. World Neurosurg., 2015, 84(2), 494-504.
[http://dx.doi.org/10.1016/j.wneu.2015.04.025] [PMID: 25900792]
[36]
Arnold, L.M. Biology and therapy of fibromyalgia. New therapies in fibromyalgia. Arthritis Res. Ther., 2006, 8(4), 212.
[http://dx.doi.org/10.1186/ar1971] [PMID: 16762044]
[37]
Stemkowski, P.L.; Biggs, J.E.; Chen, Y.; Bukhanova, N.; Kumar, N.; Smith, P.A. Understanding and treating neuropathic pain. Neurophysiology, 2013, 45(1), 67-78.
[http://dx.doi.org/10.1007/s11062-013-9338-9]
[38]
Schaller, D.; Sribar, D.; Noonan, T.; Deng, L.; Nguyen, T.N.; Pach, S.; Machalz, D.; Bermudez, M.; Wolber, G. Next generation 3D pharmacophore modeling. WIREs Comput. Mol. Sci., 2020, 10(4), e1468.
[39]
Chincholkar, M. Gabapentinoids: Pharmacokinetics, pharmacodynamics and considerations for clinical practice. Br. J. Pain, 2020, 14(2), 104-114.
[http://dx.doi.org/10.1177/2049463720912496] [PMID: 32537149]
[40]
İlhanlı, İ.; Güder, N.; Gül, M. Gabapentinoids in penitentiaries: An abuse and addiction research. Turk. J. Phys. Med. Rehabil., 2017, 63(4), 318-328.
[http://dx.doi.org/10.5606/tftrd.2017.651] [PMID: 31453474]
[41]
Oyama, M.; Watanabe, S.; Iwai, T.; Tanabe, M. Mirogabalin activates the descending noradrenergic system by binding to the α2δ-1 subunit of voltage-gated Ca2+ channels to generate analgesic effects. J. Pharmacol. Sci., 2021, 146(1), 33-39.
[http://dx.doi.org/10.1016/j.jphs.2021.01.002] [PMID: 33858653]
[42]
Taylor, C.P. Mechanisms of analgesia by gabapentin and pregabalin--calcium channel α2-δ [Cavalpha2-δ] ligands. Pain, 2009, 142(1-2), 13-16.
[http://dx.doi.org/10.1016/j.pain.2008.11.019] [PMID: 19128880]
[43]
Chincholkar, M. Analgesic mechanisms of gabapentinoids and effects in experimental pain models: A narrative review. Br. J. Anaesth., 2018, 120(6), 1315-1334.
[http://dx.doi.org/10.1016/j.bja.2018.02.066] [PMID: 29793598]
[44]
Bán, E.G.; Brassai, A.; Vizi, E.S. The role of the endogenous neurotransmitters associated with neuropathic pain and in the opioid crisis: The innate pain-relieving system. Brain Res. Bull., 2020, 155, 129-136.
[http://dx.doi.org/10.1016/j.brainresbull.2019.12.001] [PMID: 31816407]
[45]
Kukkar, A.; Bali, A.; Singh, N.; Jaggi, A.S. Implications and mechanism of action of gabapentin in neuropathic pain. Arch. Pharm. Res., 2013, 36(3), 237-251.
[http://dx.doi.org/10.1007/s12272-013-0057-y] [PMID: 23435945]
[46]
Sills, G.J. The mechanisms of action of gabapentin and pregabalin. Curr. Opin. Pharmacol., 2006, 6(1), 108-113.
[http://dx.doi.org/10.1016/j.coph.2005.11.003] [PMID: 16376147]
[47]
Blakemore, D.C.; Bryans, J.S.; Carnell, P.; Chessum, N.E.; Field, M.J.; Kinsella, N.; Kinsora, J.K.; Osborne, S.A.; Williams, S.C. Synthesis and in vivo evaluation of 3-substituted gababutins. Bioorg. Med. Chem. Lett., 2010, 20(1), 362-365.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.089] [PMID: 19897364]
[48]
Beal, B.; Moeller-Bertram, T.; Schilling, J.M.; Wallace, M.S. Gabapentin for once-daily treatment of post-herpetic neuralgia: A review. Clin. Interv. Aging, 2012, 7, 249-255.
[PMID: 22866002]
[49]
Calandre, E.P.; Rico-Villademoros, F.; Slim, M. Alpha2delta ligands, gabapentin, pregabalin and mirogabalin: A review of their clinical pharmacology and therapeutic use. Expert Rev. Neurother., 2016, 16(11), 1263-1277.
[http://dx.doi.org/10.1080/14737175.2016.1202764] [PMID: 27345098]
[50]
Wang, J.; Zhu, Y. Different doses of gabapentin formulations for postherpetic neuralgia: A systematical review and meta-analysis of randomized controlled trials. J. Dermatolog. Treat., 2017, 28(1), 65-77.
[http://dx.doi.org/10.3109/09546634.2016.1163315] [PMID: 27798973]
[51]
Cundy, K.C.; Annamalai, T.; Bu, L.; De Vera, J.; Estrela, J.; Luo, W.; Shirsat, P.; Torneros, A.; Yao, F.; Zou, J.; Barrett, R.W.; Gallop, M.A. XP13512 [(+/-)-1-([(α-isobutanoyloxyethoxy)carbonyl] aminomethyl)-1-cyclohexane acetic acid], a novel gabapentin prodrug: II. Improved oral bioavailability, dose proportionality, and colonic absorption compared with gabapentin in rats and monkeys. J. Pharmacol. Exp. Ther., 2004, 311(1), 324-333.
[http://dx.doi.org/10.1124/jpet.104.067959] [PMID: 15146029]
[52]
Cundy, K.C.; Branch, R.; Chernov-Rogan, T.; Dias, T.; Estrada, T.; Hold, K.; Koller, K.; Liu, X.; Mann, A.; Panuwat, M.; Raillard, S.P.; Upadhyay, S.; Wu, Q.Q.; Xiang, J.N.; Yan, H.; Zerangue, N.; Zhou, C.X.; Barrett, R.W.; Gallop, M.A. XP13512 [(+/-)-1-([(α-isobutanoyloxyethoxy)carbonyl] aminomethyl)-1-cyclohexane acetic acid], a novel gabapentin prodrug: I. Design, synthesis, enzymatic conversion to gabapentin, and transport by intestinal solute transporters. J. Pharmacol. Exp. Ther., 2004, 311(1), 315-323.
[http://dx.doi.org/10.1124/jpet.104.067934] [PMID: 15146028]
[53]
Cundy, K.C.; Sastry, S.; Luo, W.; Zou, J.; Moors, T.L.; Canafax, D.M. Clinical pharmacokinetics of XP13512, a novel transported prodrug of gabapentin. J. Clin. Pharmacol., 2008, 48(12), 1378-1388.
[http://dx.doi.org/10.1177/0091270008322909] [PMID: 18827074]
[54]
Lal, R.; Sukbuntherng, J.; Luo, W.; Chen, D.; Blumenthal, R.; Ho, J.; Cundy, K.C. Clinical pharmacokinetics of gabapentin after administration of gabapentin enacarbil extended-release tablets in patients with varying degrees of renal function using data from an open-label, single-dose pharmacokinetic study. Clin. Ther., 2012, 34(1), 201-213.
[http://dx.doi.org/10.1016/j.clinthera.2011.12.004] [PMID: 22206794]
[55]
Schifano, F. Misuse and abuse of pregabalin and gabapentin: Cause for concern? CNS Drugs, 2014, 28(6), 491-496.
[http://dx.doi.org/10.1007/s40263-014-0164-4] [PMID: 24760436]
[56]
Dworkin, R.H.; O’Connor, A.B.; Audette, J.; Baron, R.; Gourlay, G.K.; Haanpää, M.L.; Kent, J.L.; Krane, E.J.; Lebel, A.A.; Levy, R.M.; Mackey, S.C.; Mayer, J.; Miaskowski, C.; Raja, S.N.; Rice, A.S.; Schmader, K.E.; Stacey, B.; Stanos, S.; Treede, R.D.; Turk, D.C.; Walco, G.A.; Wells, C.D. Recommendations for the pharmacological management of neuropathic pain: An overview and literature update. Mayo Clin. Proc., 2010, 85(3)(Suppl.), S3-S14.
[http://dx.doi.org/10.4065/mcp.2009.0649] [PMID: 20194146]
[57]
Zajączkowska, R.; Mika, J.; Leppert, W.; Kocot-Kępska, M.; Malec-Milewska, M.; Wordliczek, J. Mirogabalin-a novel selective ligand for the alpha2delta calcium channel subunit. Pharmaceuticals (Basel), 2021, 14(2), 112.
[http://dx.doi.org/10.3390/ph14020112] [PMID: 33572689]
[58]
Domon, Y.; Arakawa, N.; Inoue, T.; Matsuda, F.; Takahashi, M.; Yamamura, N.; Kai, K.; Kitano, Y. Binding characteristics and analgesic effects of mirogabalin, a novel ligand for the α2δ subunit of voltage-gated calcium channels. J. Pharmacol. Exp. Ther., 2018, 365(3), 573-582.
[http://dx.doi.org/10.1124/jpet.117.247551] [PMID: 29563324]
[59]
Baba, M.; Matsui, N.; Kuroha, M.; Wasaki, Y.; Ohwada, S. Long-term safety and efficacy of mirogabalin in Asian patients with diabetic peripheral neuropathic pain. J. Diabetes Investig., 2020, 11(3), 693-698.
[http://dx.doi.org/10.1111/jdi.13178] [PMID: 31722446]
[60]
Kato, J.; Baba, M.; Kuroha, M.; Kakehi, Y.; Murayama, E.; Wasaki, Y.; Ohwada, S. Safety and efficacy of mirogabalin for peripheral neuropathic pain: Pooled analysis of two pivotal phase III studies. Clin. Ther., 2021, 43(5), 822-835.e16.
[http://dx.doi.org/10.1016/j.clinthera.2021.03.015] [PMID: 34059327]
[61]
Domon, Y.; Kitano, Y.; Makino, M. Analgesic effects of the novel α2 δ ligand mirogabalin in a rat model of spinal cord injury. Pharmazie, 2018, 73(11), 659-661.
[PMID: 30396385]
[62]
Hutmacher, M.M.; Frame, B.; Miller, R.; Truitt, K.; Merante, D. Exposure-response modeling of average daily pain score, and dizziness and somnolence, for mirogabalin (DS-5565) in patients with diabetic peripheral neuropathic pain. J. Clin. Pharmacol., 2016, 56(1), 67-77.
[http://dx.doi.org/10.1002/jcph.567] [PMID: 26073181]
[63]
Duchin, K.; Senaldi, G.; Warren, V.; Marbury, T.; Lasseter, K.; Zahir, H. Open-label single-dose study to assess the effect of mild and moderate hepatic impairment on the pharmacokinetics of mirogabalin. Clin. Drug Investig., 2018, 38(11), 1001-1009.
[http://dx.doi.org/10.1007/s40261-018-0692-7] [PMID: 30171457]
[64]
Baba, M.; Takatsuna, H.; Matsui, N.; Ohwada, S. Mirogabalin in Japanese patients with renal impairment and pain associated with diabetic peripheral neuropathy or post-herpetic neuralgia: A phase III, open-label, 14-week study. J. Pain Res., 2020, 13, 1811-1821.
[http://dx.doi.org/10.2147/JPR.S255345] [PMID: 32765056]
[65]
Gou, X.; Yu, X.; Bai, D.; Tan, B.; Cao, P.; Qian, M.; Zheng, X.; Chen, L.; Shi, Z.; Li, Y.; Ye, F.; Liang, Y.; Ni, J. Pharmacology and mechanism of action of HSK16149, a selective ligand of α2δ subunit of voltage-gated calcium channel with analgesic activity in animal models of chronic pain. J. Pharmacol. Exp. Ther., 2021, 376(3), 330-337.
[http://dx.doi.org/10.1124/jpet.120.000315] [PMID: 33293377]
[66]
Maghani, P.; Kricek, F. Gamma-aminobutyric acid (GABA) analogues for the treatment of pain and other diseases. Patent No. WO2015/091461A1, 2015.
[67]
Schwarz, J.B.; Colbry, N.L.; Zhu, Z.; Nichelson, B.; Barta, N.S.; Lin, K.; Hudack, R.A.; Gibbons, S.E.; Galatsis, P.; DeOrazio, R.J.; Manning, D.D.; Vartanian, M.G.; Kinsora, J.J.; Lotarski, S.M.; Li, Z.; Dickerson, M.R.; El-Kattan, A.; Thorpe, A.J.; Donevan, S.D.; Taylor, C.P.; Wustrow, D.J. Carboxylate bioisosteres of pregabalin. Bioorg. Med. Chem. Lett., 2006, 16(13), 3559-3563.
[http://dx.doi.org/10.1016/j.bmcl.2006.03.083] [PMID: 16621528]
[68]
Nickel, J.C.; Crossland, A.; Davis, E.; Haab, F.; Mills, I.W.; Rovner, E.; Scholfield, D.; Crook, T. Investigation of a Ca2+ channel α2δ ligand for the treatment of interstitial cystitis: Results of a randomized, double-blind, placebo controlled phase II trial. J. Urol., 2012, 188(3), 817-823.
[http://dx.doi.org/10.1016/j.juro.2012.05.010] [PMID: 22818144]
[69]
Chuang, Y.C.; Chermansky, C.; Kashyap, M.; Tyagi, P. Investigational drugs for bladder pain syndrome (BPS) / interstitial cystitis (IC). Expert Opin. Investig. Drugs, 2016, 25(5), 521-529.
[http://dx.doi.org/10.1517/13543784.2016.1162290] [PMID: 26940379]
[70]
Blakemore, D.C.; Bryans, J.S.; Carnell, P.; Carr, C.L.; Chessum, N.E.; Field, M.J.; Kinsella, N.; Osborne, S.A.; Warren, A.N.; Williams, S.C. Synthesis and in vivo evaluation of bicyclic gababutins. Bioorg. Med. Chem. Lett., 2010, 20(2), 461-464.
[http://dx.doi.org/10.1016/j.bmcl.2009.11.118] [PMID: 20005103]
[71]
Blakemore, D.C.; Bryans, J.S.; Carnell, P.; Field, M.J.; Kinsella, N.; Kinsora, J.K.; Meltzer, L.T.; Osborne, S.A.; Thompson, L.R.; Williams, S.C. Synthesis and in vivo evaluation of 3,4-disubstituted gababutins. Bioorg. Med. Chem. Lett., 2010, 20(1), 248-251.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.121] [PMID: 19910190]
[72]
Corrigan, B.; Feltner, D.E.; Ouellet, D.; Werth, J.L.; Moton, A.E.; Gibson, G. Effect of renal impairment on the pharmacokinetics of PD 0200390, a novel ligand for the voltage-gated calcium channel alpha-2-delta subunit. Br. J. Clin. Pharmacol., 2009, 68(2), 174-180.
[http://dx.doi.org/10.1111/j.1365-2125.2009.03444.x] [PMID: 19694735]
[73]
Kjellsson, M.C.; Ouellet, D.; Corrigan, B.; Karlsson, M.O. Modeling sleep data for a new drug in development using markov mixed-effects models. Pharm. Res., 2011, 28(10), 2610-2627.
[http://dx.doi.org/10.1007/s11095-011-0490-x] [PMID: 21681607]
[74]
Ohashi, K.; Kawai, M.; Ninomiya, N.; Taylor, C.; Kurebayashi, Y. Effect of a new α 2 δ ligand PD-217014 on visceral hypersensitivity induced by 2,4,6-trinitrobenzene sulfonic acid in rats. Pharmacology, 2008, 81(2), 144-150.
[http://dx.doi.org/10.1159/000110737] [PMID: 17989503]
[75]
Wustrow, D.J.; Belliotti, T.R.; Capiris, T.; Kneen, C.O.; Bryans, J.S.; Field, M.J.; Williams, D.; El-Kattan, A.; Buchholz, L.; Kinsora, J.J.; Lotarski, S.M.; Vartanian, M.G.; Taylor, C.P.; Donevan, S.D.; Thorpe, A.J.; Schwarz, J.B. Oxadiazolone bioisosteres of pregabalin and gabapentin. Bioorg. Med. Chem. Lett., 2009, 19(1), 247-250.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.101] [PMID: 19010672]
[76]
Boileau, C.; Martel-Pelletier, J.; Brunet, J.; Schrier, D.; Flory, C.; Boily, M.; Pelletier, J.P. PD-0200347, an α2δ ligand of the voltage gated calcium channel, inhibits in vivo activation of the Erk1/2 pathway in osteoarthritic chondrocytes: A PKCalpha dependent effect. Ann. Rheum. Dis., 2006, 65(5), 573-580.
[http://dx.doi.org/10.1136/ard.2005.041855] [PMID: 16249226]
[77]
Boileau, C.; Martel-Pelletier, J.; Brunet, J.; Tardif, G.; Schrier, D.; Flory, C.; El-Kattan, A.; Boily, M.; Pelletier, J.P. Oral treatment with PD-0200347, an α2δ ligand, reduces the development of experimental osteoarthritis by inhibiting metalloproteinases and inducible nitric oxide synthase gene expression and synthesis in cartilage chondrocytes. Arthritis Rheum., 2005, 52(2), 488-500.
[http://dx.doi.org/10.1002/art.20809] [PMID: 15693013]
[78]
Dixon, S.L.; Smondyrev, A.M.; Rao, S.N. PHASE: A novel approach to pharmacophore modeling and 3D database searching. Chem. Biol. Drug Des., 2006, 67(5), 370-372.
[http://dx.doi.org/10.1111/j.1747-0285.2006.00384.x] [PMID: 16784462]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy