Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Proteomic Analysis of Tumor-specific Biomarkers in Colon Cancer

Author(s): Yu-An Chien, Hsiu-Chuan Chou, Chu-Chun Yang, Yi-Shiuan Wang, Yu-Shan Wei and Hong-Lin Chan*

Volume 19, Issue 4, 2022

Published on: 30 June, 2022

Page: [323 - 343] Pages: 21

DOI: 10.2174/1570164619666220406115339

Price: $65

Abstract

Background: With the development of medicine and technological advancement, the concept of precision medicine is becoming popular, and the traditional principle of all-in-one therapy has been gradually fading. Utilizing the detection of genome, transcriptome, proteome, and metabolome, combined with big data analysis to discover new pathogenic mechanisms, provides more effective prescriptions with fewer side effects and even shifts the emphasis of medicine from disease treatment to disease prevention.

Methods: Proteomics is one of the potential tools for monitoring the alternations of protein expression. This study analyzed the proteomic alternations between normal colon tissue and cancerous colon tissue via two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) to select the potential target proteins.

Results: The experimental results demonstrated that a total of 90 proteins were identified, which were significantly expressed. These proteins were classified according to their functions. They were found to be mainly associated with cytoskeleton regulation, glycolysis, and protein folding. Furthermore, immunoblotting was used to verify the differentially expressed proteins, and the results were in line with the trends in the proteomic analysis.

Conclusion: To sum up, these differentially expressed proteins could be used as potential and precise biomarkers in the diagnosis or treatment of colorectal cancer.

Keywords: Proteomic, biomarkers, colon cancer, DIGE, mass spectrometry, tumor.

Graphical Abstract

[1]
Ginsburg, G.S.; Phillips, K.A. Precision medicine: From science to value. Health Aff. (Millwood), 2018, 37(5), 694-701.
[http://dx.doi.org/10.1377/hlthaff.2017.1624] [PMID: 29733705]
[2]
Krzyszczyk, P.; Acevedo, A.; Davidoff, E.J.; Timmins, L.M.; Marrero-Berrios, I.; Patel, M.; White, C.; Lowe, C.; Sherba, J.J.; Hartmanshenn, C.; O’Neill, K.M.; Balter, M.L.; Fritz, Z.R.; Androulakis, I.P.; Schloss, R.S.; Yarmush, M.L. The growing role of precision and personalized medicine for cancer treatment. Technology (Singap.), 2018, 6(3-4), 79-100.
[http://dx.doi.org/10.1142/S2339547818300020] [PMID: 30713991]
[3]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[4]
Tran, N.H.; Cavalcante, L.L.; Lubner, S.J.; Mulkerin, D.L.; LoConte, N.K.; Clipson, L.; Matkowskyj, K.A.; Deming, D.A. Precision medicine in colorectal cancer: The molecular profile alters treatment strategies. Ther. Adv. Med. Oncol., 2015, 7(5), 252-262.
[http://dx.doi.org/10.1177/1758834015591952] [PMID: 26327923]
[5]
Guler, I.; Askan, G.; Klostergaard, J.; Sahin, I.H. Precision medicine for metastatic colorectal cancer: An evolving era. Expert Rev. Gastroenterol. Hepatol., 2019, 13(10), 919-931.
[http://dx.doi.org/10.1080/17474124.2019.1663174] [PMID: 31475851]
[6]
Martin, P.; Noonan, S.; Mullen, M.P.; Scaife, C.; Tosetto, M.; Nolan, B.; Wynne, K.; Hyland, J.; Sheahan, K.; Elia, G.; O’Donoghue, D.; Fennelly, D.; O’Sullivan, J. Predicting response to vascular endothelial growth factor inhibitor and chemotherapy in metastatic colorectal cancer. BMC Cancer, 2014, 14(1), 887.
[http://dx.doi.org/10.1186/1471-2407-14-887] [PMID: 25428203]
[7]
Croner, R.S.; Sevim, M.; Metodiev, M.V.; Jo, P.; Ghadimi, M.; Schellerer, V.; Brunner, M.; Geppert, C.; Rau, T.; Stürzl, M.; Naschberger, E.; Matzel, K.E.; Hohenberger, W.; Lottspeich, F.; Kellermann, J. Identification of predictive markers for response to neoadjuvant chemoradiation in rectal carcinomas by proteomic Isotope Coded Protein Label (ICPL) analysis. Int. J. Mol. Sci., 2016, 17(2), 209.
[http://dx.doi.org/10.3390/ijms17020209] [PMID: 26861291]
[8]
Marouga, R.; David, S.; Hawkins, E. The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal. Bioanal. Chem., 2005, 382(3), 669-678.
[http://dx.doi.org/10.1007/s00216-005-3126-3] [PMID: 15900442]
[9]
Fife, C.M.; McCarroll, J.A.; Kavallaris, M. Movers and shakers: Cell cytoskeleton in cancer metastasis. Br. J. Pharmacol., 2014, 171(24), 5507-5523.
[http://dx.doi.org/10.1111/bph.12704] [PMID: 24665826]
[10]
Thauvin-Robinet, C.; Lee, J.S.; Lopez, E.; Herranz-Pérez, V.; Shida, T.; Franco, B.; Jego, L.; Ye, F.; Pasquier, L.; Loget, P.; Gigot, N.; Aral, B.; Lopes, C.A.; St-Onge, J.; Bruel, A.L.; Thevenon, J.; González-Granero, S.; Alby, C.; Munnich, A.; Vekemans, M.; Huet, F.; Fry, A.M.; Saunier, S.; Rivière, J.B.; Attié-Bitach, T.; Garcia-Verdugo, J.M.; Faivre, L.; Mégarbané, A.; Nachury, M.V. The oral-facial-digital syndrome gene C2CD3 encodes a positive regulator of centriole elongation. Nat. Genet., 2014, 46(8), 905-911.
[http://dx.doi.org/10.1038/ng.3031] [PMID: 24997988]
[11]
Meng, Y.; Lu, Z.; Yu, S.; Zhang, Q.; Ma, Y.; Chen, J. Ezrin promotes invasion and metastasis of pancreatic cancer cells. J. Transl. Med., 2010, 8(1), 61.
[http://dx.doi.org/10.1186/1479-5876-8-61] [PMID: 20569470]
[12]
Richardson, A.M.; Havel, L.S.; Koyen, A.E.; Konen, J.M.; Shupe, J.; Wiles, W.G., IV; Martin, W.D.; Grossniklaus, H.E.; Sica, G.; Gilbert-Ross, M.; Marcus, A.I. Vimentin is required for lung adenocarcinoma metastasis via heterotypic tumor cell-cancer-associated fibroblast interactions during collective invasion. Clin. Cancer Res., 2018, 24(2), 420-432.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1776] [PMID: 29208669]
[13]
Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the warburg effect: The metabolic requirements of cell proliferation. Science, 2009, 324(5930), 1029-1033.
[http://dx.doi.org/10.1126/science.1160809] [PMID: 19460998]
[14]
Dong, G.; Mao, Q.; Xia, W.; Xu, Y.; Wang, J.; Xu, L.; Jiang, F. PKM2 and cancer: The function of PKM2 beyond glycolysis. Oncol. Lett., 2016, 11(3), 1980-1986.
[http://dx.doi.org/10.3892/ol.2016.4168] [PMID: 26998110]
[15]
Song, Y.; Luo, Q.; Long, H.; Hu, Z.; Que, T.; Zhang, X.; Li, Z.; Wang, G.; Yi, L.; Liu, Z.; Fang, W.; Qi, S. Alpha-enolase as a potential cancer prognostic marker promotes cell growth, migration, and invasion in glioma. Mol. Cancer, 2014, 13(1), 65.
[http://dx.doi.org/10.1186/1476-4598-13-65] [PMID: 24650096]
[16]
Sun, L.; Guo, C.; Cao, J.; Burnett, J.; Yang, Z.; Ran, Y.; Sun, D. Over-expression of alpha-enolase as a prognostic biomarker in patients with pancreatic cancer. Int. J. Med. Sci., 2017, 14(7), 655-661.
[http://dx.doi.org/10.7150/ijms.18736] [PMID: 28824297]
[17]
Rigi, F.; Jannatabad, A.; Izanloo, A.; Roshanravan, R.; Hashemian, H.R.; Kerachian, M.A. Expression of tumor pyruvate kinase M2 isoform in plasma and stool of patients with colorectal cancer or adenomatous polyps. BMC Gastroenterol., 2020, 20(1), 241.
[http://dx.doi.org/10.1186/s12876-020-01377-x] [PMID: 32727566]
[18]
Wu, J.; Liu, T.; Rios, Z.; Mei, Q.; Lin, X.; Cao, S. Heat shock proteins and cancer. Trends Pharmacol. Sci., 2017, 38(3), 226-256.
[http://dx.doi.org/10.1016/j.tips.2016.11.009] [PMID: 28012700]
[19]
Lee, E.; Lee, D.H. Emerging roles of protein disulfide isomerase in cancer. BMB Rep., 2017, 50(8), 401-410.
[http://dx.doi.org/10.5483/BMBRep.2017.50.8.107] [PMID: 28648146]
[20]
Freund, A.; Zhong, F.L.; Venteicher, A.S.; Meng, Z.; Veenstra, T.D.; Frydman, J.; Artandi, S.E. Proteostatic control of telomerase function through TRiC-mediated folding of TCAB1. Cell, 2014, 159(6), 1389-1403.
[http://dx.doi.org/10.1016/j.cell.2014.10.059] [PMID: 25467444]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy