Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Temozolomide Resistance: A Multifarious Review on Mechanisms Beyond O-6-Methylguanine-DNA Methyltransferase

Author(s): Vanishree Rao, Gautam Kumar, R.J.A. Vibhavari, Krishnadas Nandakumar, Nanasaheb D. Thorat, Mallikarjuna Rao Chamallamudi and Nitesh Kumar*

Volume 22, Issue 6, 2023

Published on: 13 July, 2022

Page: [817 - 831] Pages: 15

DOI: 10.2174/1871527321666220404180944

open access plus

Abstract

Background: Chemotherapy with the oral alkylating agent temozolomide still prevails as a linchpin in the therapeutic regimen of glioblastoma alongside radiotherapy. Because of the impoverished prognosis and sparse chemotherapeutic medicaments associated with glioblastoma, the burgeoning resistance to temozolomide has made the whole condition almost irremediable.

Objective: The present review highlights the possible mechanisms of drug resistance following chemotherapy with temozolomide.

Methods: The review summarizes the recent developments, as published in articles from Scopus, PubMed, and Web of Science search engines.

Description: One of the prime resistance mediators, O-6-methylguanine-DNA methyltransferase, upon activation, removes temozolomide-induced methyl adducts bound to DNA and reinstates genomic integrity. In the bargain, neoteric advances in the conception of temozolomide resistance have opened the door to explore several potential mediators like indirect DNA repair systems, efflux mechanisms, epigenetic modulation, microenvironmental influences, and autophagy-apoptosis processes that constantly lead to the failure of chemotherapy.

Conclusion: This review sheds light on recent discoveries, proposed theories, and clinical developments in the field of temozolomide resistance to summarize the complex and intriguing involvement of oncobiological pathways.

Keywords: Glioblastoma, temozolomide resistance, O-6‑methylguanine‑DNA methyltransferase, epigenetics, tumor microenvironment, DNA repair systems.

Graphical Abstract

[1]
Patel AP, Fisher JL, Nichols E, et al. GBD 2016 Brain and Other CNS Cancer Collaborators. Global, regional, and national burden of brain and other CNS cancer, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019; 18(4): 376-93.
[http://dx.doi.org/10.1016/S1474-4422(18)30468-X] [PMID: 30797715]
[2]
Liang J, Lv X, Lu C, et al. Prognostic factors of patients with Gliomas–an analysis on 335 patients with glioblastoma and other forms of gliomas. BMC Cancer 2020; 20(1): 1-7.
[http://dx.doi.org/10.1186/s12885-019-6511-6]
[3]
Bahadur S, Sahu AK, Baghel P, Saha S. Current promising treatment strategy for glioblastoma multiform: A review. Oncol Rev 2019; 13(2): 417.
[http://dx.doi.org/10.4081/oncol.2019.417] [PMID: 31410248]
[4]
Stupp R, Mason WP, van den Bent MJ, et al. European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352(10): 987-96.
[http://dx.doi.org/10.1056/NEJMoa043330] [PMID: 15758009]
[5]
Liu EK, Sulman EP, Wen PY, Kurz SC. Novel therapies for glioblastoma. Curr Neurol Neurosci Rep 2020; 20(7): 19.
[http://dx.doi.org/10.1007/s11910-020-01042-6] [PMID: 32445058]
[6]
Lee CY. Strategies of temozolomide in future glioblastoma treatment. OncoTargets Ther 2017; 10: 265-70.
[http://dx.doi.org/10.2147/OTT.S120662] [PMID: 28123308]
[7]
Fernandes C, Costa A, Osório L, et al. Current standards of care in glioblastoma therapy. Exon Publications 2017; pp. 197-241.
[http://dx.doi.org/10.15586/codon.glioblastoma.2017.ch11]
[8]
Mallick S, Gandhi AK, Rath GK. Therapeutic approach beyond conventional temozolomide for newly diagnosed glioblastoma: Review of the present evidence and future direction. Indian J Med Paediatr Oncol 2015; 36(4): 229-37.
[http://dx.doi.org/10.4103/0971-5851.171543] [PMID: 26811592]
[9]
Seystahl K, Wick W, Weller M. Therapeutic options in recurrent glioblastoma--An update. Crit Rev Oncol Hematol 2016; 99: 389-408.
[http://dx.doi.org/10.1016/j.critrevonc.2016.01.018] [PMID: 26830009]
[10]
Wenger KJ, Wagner M, You SJ, et al. Bevacizumab as a last-line treatment for glioblastoma following failure of radiotherapy, temozolomide and lomustine. Oncol Lett 2017; 14(1): 1141-6.
[http://dx.doi.org/10.3892/ol.2017.6251] [PMID: 28693286]
[11]
Bae SH, Park M-J, Lee MM, et al. Toxicity profile of temozolomide in the treatment of 300 malignant glioma patients in Korea. J Korean Med Sci 2014; 29(7): 980-4.
[http://dx.doi.org/10.3346/jkms.2014.29.7.980] [PMID: 25045231]
[12]
Dinnes J, Cave C, Huang S, Milne R. A rapid and systematic review of the effectiveness of temozolomide for the treatment of recurrent malignant glioma. Br J Cancer 2002; 86(4): 501-5.
[http://dx.doi.org/10.1038/sj.bjc.6600135] [PMID: 11870527]
[13]
Koukourakis GV, Kouloulias V, Zacharias G, et al. Temozolomide with radiation therapy in high grade brain gliomas: Pharmaceuticals considerations and efficacy; a review article. Molecules 2009; 14(4): 1561-77.
[http://dx.doi.org/10.3390/molecules14041561] [PMID: 19384285]
[14]
Rabé M, Dumont S, Álvarez-Arenas A, et al. Identification of a transient state during the acquisition of temozolomide resistance in glioblastoma. Cell Death Dis 2020; 11(1): 19.
[http://dx.doi.org/10.1038/s41419-019-2200-2] [PMID: 31907355]
[15]
Nie E, Miao F, Jin X, et al. Fstl1/DIP2A/MGMT signaling pathway plays important roles in temozolomide resistance in glioblastoma. Oncogene 2019; 38(15): 2706-21.
[http://dx.doi.org/10.1038/s41388-018-0596-2] [PMID: 30542120]
[16]
Hiddingh L, Raktoe RS, Jeuken J, et al. Identification of temozolomide resistance factors in glioblastoma via integrative miRNA/mRNA regulatory network analysis. Sci Rep 2014; 4(1): 5260.
[http://dx.doi.org/10.1038/srep05260] [PMID: 24919120]
[17]
Finch A, Solomou G, Wykes V, Pohl U, Bardella C, Watts C. Advances in research of adult gliomas. Int J Mol Sci 2021; 22(2): 924.
[http://dx.doi.org/10.3390/ijms22020924] [PMID: 33477674]
[18]
Ledur PF, Onzi GR, Zong H, Lenz G. Culture conditions defining glioblastoma cells behavior: What is the impact for novel discoveries? Oncotarget 2017; 8(40): 69185-97.
[http://dx.doi.org/10.18632/oncotarget.20193] [PMID: 28978189]
[19]
Zhai Y, Li G, Li R, et al. Single-cell RNA-sequencing shift in the interaction pattern between glioma stem cells and immune cells during tumorigenesis. Front Immunol 2020; 11: 581209.
[http://dx.doi.org/10.3389/fimmu.2020.581209] [PMID: 33133100]
[20]
Zhang J, Stevens MF, Bradshaw TD. Temozolomide: Mechanisms of action, repair and resistance. Curr Mol Pharmacol 2012; 5(1): 102-14.
[http://dx.doi.org/10.2174/1874467211205010102] [PMID: 22122467]
[21]
Drabløs F, Feyzi E, Aas PA, et al. Alkylation damage in DNA and RNA--repair mechanisms and medical significance. DNA Repair (Amst) 2004; 3(11): 1389-407.
[http://dx.doi.org/10.1016/j.dnarep.2004.05.004] [PMID: 15380096]
[22]
Denny BJ, Wheelhouse RT, Stevens MF, Tsang LL, Slack JA. NMR and molecular modeling investigation of the mechanism of activation of the antitumor drug temozolomide and its interaction with DNA. Biochemistry 1994; 33(31): 9045-51.
[http://dx.doi.org/10.1021/bi00197a003] [PMID: 8049205]
[23]
Erasimus H, Gobin M, Niclou S, Van Dyck E. DNA repair mechanisms and their clinical impact in glioblastoma. Mutat Res Rev Mutat Res 2016; 769: 19-35.
[http://dx.doi.org/10.1016/j.mrrev.2016.05.005] [PMID: 27543314]
[24]
Woo PY, Li Y, Chan AH, Ng SC, Loong HH, Chan DT, et al. A multifaceted review of temozolomide resistance mechanisms in glioblastoma beyond O-6-methylguanine-DNA methyltransferase. Glioma 2019; 2(2): 68.
[http://dx.doi.org/10.4103/glioma.glioma_3_19]
[25]
Singh N, Miner A, Hennis L, Mittal S. Mechanisms of temozolomide resistance in glioblastoma - a comprehensive review. Cancer Drug Resist 2021; 4: 17-43.
[PMID: 34337348]
[26]
Donson AM, Addo-Yobo SO, Handler MH, Gore L, Foreman NK. MGMT promoter methylation correlates with survival benefit and sensitivity to temozolomide in pediatric glioblastoma. Pediatr Blood Cancer 2007; 48(4): 403-7.
[http://dx.doi.org/10.1002/pbc.20803] [PMID: 16609952]
[27]
Lee SY. Temozolomide resistance in glioblastoma multiforme. Genes Dis 2016; 3(3): 198-210.
[http://dx.doi.org/10.1016/j.gendis.2016.04.007] [PMID: 30258889]
[28]
Kitange GJ, Carlson BL, Schroeder MA, et al. Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts. Neuro-oncol 2009; 11(3): 281-91.
[http://dx.doi.org/10.1215/15228517-2008-090] [PMID: 18952979]
[29]
Xu-Welliver M, Pegg AE. Degradation of the alkylated form of the DNA repair protein, O(6)-alkylguanine-DNA alkyltransferase. Carcinogenesis 2002; 23(5): 823-30.
[http://dx.doi.org/10.1093/carcin/23.5.823] [PMID: 12016156]
[30]
Hermisson M, Klumpp A, Wick W, et al. O6-methylguanine DNA methyltransferase and p53 status predict temozolomide sensitivity in human malignant glioma cells. J Neurochem 2006; 96(3): 766-76.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03583.x] [PMID: 16405512]
[31]
Hegde ML, Hazra TK, Mitra S. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res 2008; 18(1): 27-47.
[http://dx.doi.org/10.1038/cr.2008.8] [PMID: 18166975]
[32]
Kitange GJ, Carlson BL, Mladek AC, et al. Evaluation of MGMT promoter methylation status and correlation with temozolomide response in orthotopic glioblastoma xenograft model. J Neurooncol 2009; 92(1): 23-31.
[http://dx.doi.org/10.1007/s11060-008-9737-8] [PMID: 19011762]
[33]
Sharma S, Salehi F, Scheithauer BW, Rotondo F, Syro LV, Kovacs K. Role of MGMT in tumor development, progression, diagnosis, treatment and prognosis. Anticancer Res 2009; 29(10): 3759-68.
[PMID: 19846906]
[34]
Esteller M, Garcia-Foncillas J, Andion E, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 2000; 343(19): 1350-4.
[http://dx.doi.org/10.1056/NEJM200011093431901] [PMID: 11070098]
[35]
Fujisawa H, Reis RM, Nakamura M, et al. Loss of heterozygosity on chromosome 10 is more extensive in primary (de novo) than in secondary glioblastomas. Lab Invest 2000; 80(1): 65-72.
[http://dx.doi.org/10.1038/labinvest.3780009] [PMID: 10653004]
[36]
Margison GP, Santibáñez-Koref MF. O6-alkylguanine-DNA alkyltransferase: Role in carcinogenesis and chemotherapy. BioEssays 2002; 24(3): 255-66.
[http://dx.doi.org/10.1002/bies.10063] [PMID: 11891762]
[37]
Sanchez-Perez Y, Soto-Reyes E, Garcia-Cuellar CM, Cacho-Diaz B, Santamaria A, Rangel-Lopez E. Role of epigenetics and oxidative stress in gliomagenesis. CNS Neurol Disord Drug Targets 2017; 16(10): 1090-8.
[38]
Parkinson JF, Wheeler HR, Clarkson A, et al. Variation of O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation in serial samples in glioblastoma. J Neurooncol 2008; 87(1): 71-8.
[http://dx.doi.org/10.1007/s11060-007-9486-0] [PMID: 18004504]
[39]
Dolan ME, Moschel RC, Pegg AE. Depletion of mammalian O6-alkylguanine-DNA alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents. Proc Natl Acad Sci USA 1990; 87(14): 5368-72.
[http://dx.doi.org/10.1073/pnas.87.14.5368] [PMID: 2164681]
[40]
Friedman HS, Kokkinakis DM, Pluda J, et al. Phase I trial of O6-benzylguanine for patients undergoing surgery for malignant glioma. J Clin Oncol 1998; 16(11): 3570-5.
[http://dx.doi.org/10.1200/JCO.1998.16.11.3570] [PMID: 9817277]
[41]
Pegg AE, Boosalis M, Samson L, et al. Mechanism of inactivation of human O6-alkylguanine-DNA alkyltransferase by O6-benzylguanine. Biochemistry 1993; 32(45): 11998-2006.
[http://dx.doi.org/10.1021/bi00096a009] [PMID: 8218276]
[42]
Dolan ME, Mitchell RB, Mummert C, Moschel RC, Pegg AE. Effect of O6-benzylguanine analogues on sensitivity of human tumor cells to the cytotoxic effects of alkylating agents. Cancer Res 1991; 51(13): 3367-72.
[PMID: 1647266]
[43]
Clemons M, Kelly J, Watson AJ, et al. O6-(4-bromothenyl)-guanine reverses temozolomide resistance in human breast tumour MCF-7 cells and xenografts. Br J Cancer 2005; 93(10): 1152-6.
[http://dx.doi.org/10.1038/sj.bjc.6602833] [PMID: 16278661]
[44]
Turriziani M, Caporaso P, Bonmassar L, et al. O6-(4-bromothenyl)guanine (PaTrin-2), a novel inhibitor of O6-alkylguanine DNA alkyl-transferase, increases the inhibitory activity of temozolomide against human acute leukaemia cells in vitro. Pharmacol Res 2006; 53(4): 317-23.
[http://dx.doi.org/10.1016/j.phrs.2005.12.001] [PMID: 16412662]
[45]
Kato T, Natsume A, Toda H, et al. Efficient delivery of liposome-mediated MGMT-siRNA reinforces the cytotoxity of temozolomide in GBM-initiating cells. Gene Ther 2010; 17(11): 1363-71.
[http://dx.doi.org/10.1038/gt.2010.88] [PMID: 20520650]
[46]
Khalil S, Fabbri E, Santangelo A, et al. miRNA array screening reveals cooperative MGMT-regulation between miR-181d-5p and miR-409-3p in glioblastoma. Oncotarget 2016; 7(19): 28195-206.
[http://dx.doi.org/10.18632/oncotarget.8618] [PMID: 27057640]
[47]
Zhang W, Zhang J, Hoadley K, et al. miR-181d: A predictive glioblastoma biomarker that downregulates MGMT expression. Neuro-oncol 2012; 14(6): 712-9.
[http://dx.doi.org/10.1093/neuonc/nos089] [PMID: 22570426]
[48]
Nie E, Jin X, Wu W, et al. MiR-198 enhances temozolomide sensitivity in glioblastoma by targeting MGMT. J Neurooncol 2017; 133(1): 59-68.
[http://dx.doi.org/10.1007/s11060-017-2425-9] [PMID: 28425046]
[49]
Jiang H, Gomez-Manzano C, Lang FF, Alemany R, Fueyo J. Oncolytic adenovirus: Preclinical and clinical studies in patients with human malignant gliomas. Curr Gene Ther 2009; 9(5): 422-7.
[http://dx.doi.org/10.2174/156652309789753356] [PMID: 19860656]
[50]
Almeida KH, Sobol RW. A unified view of base excision repair: Lesion-dependent protein complexes regulated by post-translational modification. DNA Repair (Amst) 2007; 6(6): 695-711.
[http://dx.doi.org/10.1016/j.dnarep.2007.01.009] [PMID: 17337257]
[51]
Liu C, Vyas A, Kassab MA, Singh AK, Yu X. The role of poly ADP-ribosylation in the first wave of DNA damage response. Nucleic Acids Res 2017; 45(14): 8129-41.
[http://dx.doi.org/10.1093/nar/gkx565] [PMID: 28854736]
[52]
Trivedi RN, Almeida KH, Fornsaglio JL, Schamus S, Sobol RW. The role of base excision repair in the sensitivity and resistance to temozolomide-mediated cell death. Cancer Res 2005; 65(14): 6394-400.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0715] [PMID: 16024643]
[53]
Gupta SK, Smith EJ, Mladek AC, et al. PARP inhibitors for sensitization of alkylation chemotherapy in glioblastoma: Impact of blood-brain barrier and molecular heterogeneity. Front Oncol 2019; 8: 670.
[http://dx.doi.org/10.3389/fonc.2018.00670] [PMID: 30723695]
[54]
Gill SJ, Travers J, Pshenichnaya I, et al. Combinations of PARP inhibitors with temozolomide drive PARP1 trapping and apoptosis in Ewing’s sarcoma. PLoS One 2015; 10(10): e0140988.
[http://dx.doi.org/10.1371/journal.pone.0140988] [PMID: 26505995]
[55]
Agnihotri S, Gajadhar AS, Ternamian C, et al. Alkylpurine-DNA-N-glycosylase confers resistance to temozolomide in xenograft models of glioblastoma multiforme and is associated with poor survival in patients. J Clin Invest 2012; 122(1): 253-66.
[http://dx.doi.org/10.1172/JCI59334] [PMID: 22156195]
[56]
Arun B, Akar U, Gutierrez-Barrera AM, Hortobagyi GN, Ozpolat B. The PARP inhibitor AZD2281 (Olaparib) induces autophagy/mitophagy in BRCA1 and BRCA2 mutant breast cancer cells. Int J Oncol 2015; 47(1): 262-8.
[http://dx.doi.org/10.3892/ijo.2015.3003] [PMID: 25975349]
[57]
Ha K, Fiskus W, Choi DS, et al. Histone deacetylase inhibitor treatment induces ‘BRCAness’ and synergistic lethality with PARP inhibitor and cisplatin against human triple negative breast cancer cells. Oncotarget 2014; 5(14): 5637-50.
[http://dx.doi.org/10.18632/oncotarget.2154] [PMID: 25026298]
[58]
Schreiber V, Amé J-C, Dollé P, et al. Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J Biol Chem 2002; 277(25): 23028-36.
[http://dx.doi.org/10.1074/jbc.M202390200] [PMID: 11948190]
[59]
Gunderson CC, Moore KN. Olaparib: An oral PARP-1 and PARP-2 inhibitor with promising activity in ovarian cancer. Future Oncol 2015; 11(5): 747-57.
[http://dx.doi.org/10.2217/fon.14.313] [PMID: 25757679]
[60]
Fogelman DR, Wolff RA, Kopetz S, et al. Evidence for the efficacy of Iniparib, a PARP-1 inhibitor, in BRCA2-associated pancreatic cancer. Anticancer Res 2011; 31(4): 1417-20.
[PMID: 21508395]
[61]
Cepeda V, Fuertes MA, Castilla J, et al. Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors in cancer chemotherapy. Rec Pat Anticancer Drug Discov 2006; 1(1): 39-53.
[http://dx.doi.org/10.2174/157489206775246430] [PMID: 18221025]
[62]
Wang Y-Q, Wang P-Y, Wang Y-T, Yang G-F, Zhang A, Miao Z-H. An update on poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors: Opportunities and challenges in cancer therapy. J Med Chem 2016; 59(21): 9575-98.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00055] [PMID: 27416328]
[63]
Johannessen T-CA, Bjerkvig R. Molecular mechanisms of temozolomide resistance in glioblastoma multiforme. Expert Rev Anticancer Ther 2012; 12(5): 635-42.
[http://dx.doi.org/10.1586/era.12.37] [PMID: 22594898]
[64]
Reyes GX, Schmidt TT, Kolodner RD, Hombauer H. New insights into the mechanism of DNA mismatch repair. Chromosoma 2015; 124(4): 443-62.
[http://dx.doi.org/10.1007/s00412-015-0514-0] [PMID: 25862369]
[65]
Cahill DP, Levine KK, Betensky RA, et al. Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin Cancer Res 2007; 13(7): 2038-45.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2149] [PMID: 17404084]
[66]
Sun Q, Pei C, Li Q, et al. Up-regulation of MSH6 is associated with temozolomide resistance in human glioblastoma. Biochem Biophys Res Commun 2018; 496(4): 1040-6.
[http://dx.doi.org/10.1016/j.bbrc.2018.01.093] [PMID: 29366782]
[67]
Reardon DA, Kim T-M, Frenel J-S, Santoro A, Lopez J, Subramaniam DS, et al. ATIM-35 Results of the phase IB KEYNOTE-028 multi-cohort trial of pembrolizumab monotherapy in patients with recurrent PD-L1-positive glioblastoma multiforme (GBM). Oxford University Press US 2016.
[http://dx.doi.org/10.1093/neuonc/now212.100]
[68]
Omuro A, Vlahovic G, Lim M, et al. Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: Results from exploratory phase I cohorts of CheckMate 143. Neuro-oncol 2018; 20(5): 674-86.
[http://dx.doi.org/10.1093/neuonc/nox208] [PMID: 29106665]
[69]
Soubannier V, Stifani S. NF-κB signalling in glioblastoma. Biomedicines 2017; 5(2): 29.
[http://dx.doi.org/10.3390/biomedicines5020029] [PMID: 28598356]
[70]
Cahill KE, Morshed RA, Yamini B. Nuclear factor-κB in glioblastoma: Insights into regulators and targeted therapy. Neuro-oncol 2016; 18(3): 329-39.
[http://dx.doi.org/10.1093/neuonc/nov265] [PMID: 26534766]
[71]
Wang X, Jia L, Jin X, et al. NF-κB inhibitor reverses temozolomide resistance in human glioma TR/U251 cells. Oncol Lett 2015; 9(6): 2586-90.
[http://dx.doi.org/10.3892/ol.2015.3130] [PMID: 26137111]
[72]
Avci NG, Ebrahimzadeh-Pustchi S, Akay YM, et al. NF-κB inhibitor with Temozolomide results in significant apoptosis in glioblastoma via the NF-κB (p65) and actin cytoskeleton regulatory pathways. Sci Rep 2020; 10(1): 1-14.
[http://dx.doi.org/10.1038/s41598-020-70392-5] [PMID: 31913322]
[73]
Friedmann-Morvinski D, Narasimamurthy R, Xia Y, Myskiw C, Soda Y, Verma IM. Targeting NF-κB in glioblastoma: A therapeutic approach. Sci Adv 2016; 2(1): e1501292.
[http://dx.doi.org/10.1126/sciadv.1501292] [PMID: 26824076]
[74]
Xia H, Avci NG, Akay Y, et al. Temozolomide in combination with NF-κB inhibitor significantly disrupts the glioblastoma multiforme spheroid formation. IEEE Open J Eng Med Biol 2019; 1: 9-16.
[http://dx.doi.org/10.1109/OJEMB.2019.2962801]
[75]
Karunaweera N, Raju R, Gyengesi E, Münch G. Plant polyphenols as inhibitors of NF-κB induced cytokine production-a potential anti-inflammatory treatment for Alzheimer’s disease? Front Mol Neurosci 2015; 8: 24.
[http://dx.doi.org/10.3389/fnmol.2015.00024] [PMID: 26136655]
[76]
Ryskalin L, Biagioni F, Busceti CL, Lazzeri G, Frati A, Fornai F. The multi-faceted effect of curcumin in glioblastoma from rescuing cell clearance to autophagy-independent effects. Molecules 2020; 25(20): 4839.
[http://dx.doi.org/10.3390/molecules25204839] [PMID: 33092261]
[77]
Miyata H, Ashizawa T, Iizuka A, et al. Combination of a STAT3 inhibitor and an mTOR inhibitor against a temozolomide-resistant glioblastoma cell line. Cancer Genomics Proteomics 2017; 14(1): 83-91.
[http://dx.doi.org/10.21873/cgp.20021] [PMID: 28031240]
[78]
Ashizawa T, Akiyama Y, Miyata H, et al. Effect of the STAT3 inhibitor STX-0119 on the proliferation of a temozolomide-resistant glioblastoma cell line. Int J Oncol 2014; 45(1): 411-8.
[http://dx.doi.org/10.3892/ijo.2014.2439] [PMID: 24820265]
[79]
Lo H-W. EGFR-targeted therapy in malignant glioma: Novel aspects and mechanisms of drug resistance. Curr Mol Pharmacol 2010; 3(1): 37-52.
[http://dx.doi.org/10.2174/1874467211003010037] [PMID: 20030624]
[80]
Low SYY, Ho YK, Too H-P, Yap CT, Ng WH. MicroRNA as potential modulators in chemoresistant high-grade gliomas. J Clin Neurosci 2014; 21(3): 395-400.
[http://dx.doi.org/10.1016/j.jocn.2013.07.033] [PMID: 24411131]
[81]
Banelli B, Forlani A, Allemanni G, Morabito A, Pistillo MP, Romani M. MicroRNA in glioblastoma: An overview. Int J Genom 2017; 2017.
[http://dx.doi.org/10.1155/2017/7639084]
[82]
Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010; 11(9): 597-610.
[http://dx.doi.org/10.1038/nrg2843] [PMID: 20661255]
[83]
Shi L, Chen J, Yang J, Pan T, Zhang S, Wang Z. MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Res 2010; 1352: 255-64.
[http://dx.doi.org/10.1016/j.brainres.2010.07.009] [PMID: 20633539]
[84]
Costa PM, Cardoso AL, Nóbrega C, et al. MicroRNA-21 silencing enhances the cytotoxic effect of the antiangiogenic drug sunitinib in glioblastoma. Hum Mol Genet 2013; 22(5): 904-18.
[http://dx.doi.org/10.1093/hmg/dds496] [PMID: 23201752]
[85]
Ren Y, Zhou X, Mei M, et al. MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol. BMC Cancer 2010; 10(1): 27.
[http://dx.doi.org/10.1186/1471-2407-10-27] [PMID: 20113523]
[86]
Ujifuku K, Mitsutake N, Takakura S, et al. miR-195, miR-455-3p and miR-10a(*) are implicated in acquired temozolomide resistance in glioblastoma multiforme cells. Cancer Lett 2010; 296(2): 241-8.
[http://dx.doi.org/10.1016/j.canlet.2010.04.013] [PMID: 20444541]
[87]
Li S, Zeng A, Hu Q, Yan W, Liu Y, You Y. miR-423-5p contributes to a malignant phenotype and temozolomide chemoresistance in glioblastomas. Neuro-oncol 2017; 19(1): 55-65.
[http://dx.doi.org/10.1093/neuonc/now129] [PMID: 27471108]
[88]
Tian T, Mingyi M, Qiu X, Qiu Y. MicroRNA-101 reverses temozolomide resistance by inhibition of GSK3β in glioblastoma. Oncotarget 2016; 7(48): 79584-95.
[http://dx.doi.org/10.18632/oncotarget.12861] [PMID: 27792996]
[89]
Zhao C, Guo R, Guan F, et al. MicroRNA-128-3p Enhances the Chemosensitivity of temozolomide in glioblastoma by targeting c-Met and EMT. Sci Rep 2020; 10(1): 9471.
[http://dx.doi.org/10.1038/s41598-020-65331-3] [PMID: 32528036]
[90]
Xiao S, Yang Z, Qiu X, et al. miR-29c contribute to glioma cells temozolomide sensitivity by targeting O6-methylguanine-DNA methyltransferases indirectely. Oncotarget 2016; 7(31): 50229-38.
[http://dx.doi.org/10.18632/oncotarget.10357] [PMID: 27384876]
[91]
Shea A, Harish V, Afzal Z, et al. MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics. Cancer Med 2016; 5(8): 1917-46.
[http://dx.doi.org/10.1002/cam4.775] [PMID: 27282910]
[92]
Ahir BK, Ozer H, Engelhard HH, Lakka SS. MicroRNAs in glioblastoma pathogenesis and therapy: A comprehensive review. Crit Rev Oncol Hematol 2017; 120: 22-33.
[http://dx.doi.org/10.1016/j.critrevonc.2017.10.003] [PMID: 29198335]
[93]
Greer EL, Shi Y. Histone methylation: A dynamic mark in health, disease and inheritance. Nat Rev Genet 2012; 13(5): 343-57.
[http://dx.doi.org/10.1038/nrg3173] [PMID: 22473383]
[94]
Xi G, Mania-Farnell B, Lei T, Tomita T. Histone modification as a drug resistance driver in brain tumors 2016; 216-6.
[95]
Banelli B, Carra E, Barbieri F, et al. The histone demethylase KDM5A is a key factor for the resistance to temozolomide in glioblastoma. Cell Cycle 2015; 14(21): 3418-29.
[http://dx.doi.org/10.1080/15384101.2015.1090063] [PMID: 26566863]
[96]
Kitange GJ, Mladek AC, Carlson BL, et al. Inhibition of histone deacetylation potentiates the evolution of acquired temozolomide resistance linked to MGMT upregulation in glioblastoma xenografts. Clin Cancer Res 2012; 18(15): 4070-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0560] [PMID: 22675172]
[97]
Munoz JL, Walker ND, Scotto KW, Rameshwar P. Temozolomide competes for P-glycoprotein and contributes to chemoresistance in glioblastoma cells. Cancer Lett 2015; 367(1): 69-75.
[http://dx.doi.org/10.1016/j.canlet.2015.07.013] [PMID: 26208431]
[98]
Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat Rev Cancer 2002; 2(1): 48-58.
[http://dx.doi.org/10.1038/nrc706] [PMID: 11902585]
[99]
Schaich M, Kestel L, Pfirrmann M, et al. A MDR1 (ABCB1) gene single nucleotide polymorphism predicts outcome of temozolomide treatment in glioblastoma patients. Ann Oncol 2009; 20(1): 175-81.
[http://dx.doi.org/10.1093/annonc/mdn548] [PMID: 18687982]
[100]
Wijaya J, Fukuda Y, Schuetz JD. Obstacles to brain tumor therapy: Key ABC transporters. Int J Mol Sci 2017; 18(12): 2544.
[http://dx.doi.org/10.3390/ijms18122544] [PMID: 29186899]
[101]
Declèves X, Fajac A, Lehmann-Che J, et al. Molecular and functional MDR1-Pgp and MRPs expression in human glioblastoma multiforme cell lines. Int J Cancer 2002; 98(2): 173-80.
[http://dx.doi.org/10.1002/ijc.10135] [PMID: 11857404]
[102]
Munoz JL, Rodriguez-Cruz V, Ramkissoon SH, Ligon KL, Greco SJ, Rameshwar P. Temozolomide resistance in glioblastoma occurs by miRNA-9-targeted PTCH1, independent of sonic hedgehog level. Oncotarget 2015; 6(2): 1190-201.
[http://dx.doi.org/10.18632/oncotarget.2778] [PMID: 25595896]
[103]
Tivnan A, Zakaria Z, O’Leary C, et al. Inhibition of Multidrug Resistance Protein 1 (MRP1) improves chemotherapy drug response in primary and recurrent glioblastoma multiforme. Front Neurosci 2015; 9: 218.
[http://dx.doi.org/10.3389/fnins.2015.00218] [PMID: 26136652]
[104]
Roos WP, Batista LF, Naumann SC, et al. Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene 2007; 26(2): 186-97.
[http://dx.doi.org/10.1038/sj.onc.1209785] [PMID: 16819506]
[105]
Hombach-Klonisch S, Mehrpour M, Shojaei S, et al. Glioblastoma and chemoresistance to alkylating agents: Involvement of apoptosis, autophagy, and unfolded protein response. Pharmacol Ther 2018; 184: 13-41.
[http://dx.doi.org/10.1016/j.pharmthera.2017.10.017] [PMID: 29080702]
[106]
Strik H, Deininger M, Streffer J, et al. BCL-2 family protein expression in initial and recurrent glioblastomas: Modulation by radiochemotherapy. J Neurol Neurosurg Psychiatry 1999; 67(6): 763-8.
[http://dx.doi.org/10.1136/jnnp.67.6.763] [PMID: 10567494]
[107]
Kouri FM, Jensen SA, Stegh AH. The role of Bcl-2 family proteins in therapy responses of malignant astrocytic gliomas: Bcl2L12 and beyond. Sci World J 2012; 2012: 838916.
[108]
Shi L, Zhang S, Feng K, et al. MicroRNA-125b-2 confers human glioblastoma stem cells resistance to temozolomide through the mitochondrial pathway of apoptosis. Int J Oncol 2012; 40(1): 119-29.
[PMID: 21879257]
[109]
Codogno P, Meijer AJ. Autophagy and signaling: Their role in cell survival and cell death. Cell Death Differ 2005; 12(2) (Suppl. 2): 1509-18.
[http://dx.doi.org/10.1038/sj.cdd.4401751] [PMID: 16247498]
[110]
Knizhnik AV, Roos WP, Nikolova T, et al. Survival and death strategies in glioma cells: Autophagy, senescence and apoptosis triggered by a single type of temozolomide-induced DNA damage. PLoS One 2013; 8(1): e55665.
[http://dx.doi.org/10.1371/journal.pone.0055665] [PMID: 23383259]
[111]
Carmo A, Carvalheiro H, Crespo I, Nunes I, Lopes MC. Effect of temozolomide on the U-118 glioma cell line. Oncol Lett 2011; 2(6): 1165-70.
[http://dx.doi.org/10.3892/ol.2011.406] [PMID: 22848283]
[112]
Yan Y, Xu Z, Dai S, Qian L, Sun L, Gong Z. Targeting autophagy to sensitive glioma to temozolomide treatment. J Exp Clin Cancer Res 2016; 35(1): 23.
[http://dx.doi.org/10.1186/s13046-016-0303-5] [PMID: 26830677]
[113]
Brown JM. Tumor microenvironment and the response to anticancer therapy. Cancer Biol Ther 2002; 1(5): 453-8.
[http://dx.doi.org/10.4161/cbt.1.5.157] [PMID: 12496469]
[114]
Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro-oncol 2005; 7(2): 134-53.
[http://dx.doi.org/10.1215/S1152851704001115] [PMID: 15831232]
[115]
Chen C, Pore N, Behrooz A, Ismail-Beigi F, Maity A. Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J Biol Chem 2001; 276(12): 9519-25.
[http://dx.doi.org/10.1074/jbc.M010144200] [PMID: 11120745]
[116]
Feldser D, Agani F, Iyer NV, Pak B, Ferreira G, Semenza GL. Reciprocal positive regulation of hypoxia-inducible factor 1α and insulin-like growth factor 2. Cancer Res 1999; 59(16): 3915-8.
[PMID: 10463582]
[117]
Jensen RL. Brain tumor hypoxia: Tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target. J Neurooncol 2009; 92(3): 317-35.
[http://dx.doi.org/10.1007/s11060-009-9827-2] [PMID: 19357959]
[118]
Ben-Yosef Y, Lahat N, Shapiro S, Bitterman H, Miller A. Regulation of endothelial matrix metalloproteinase-2 by hypoxia/reoxygenation. Circ Res 2002; 90(7): 784-91.
[http://dx.doi.org/10.1161/01.RES.0000015588.70132.DC] [PMID: 11964371]
[119]
Reardon DA, Wen PY, Desjardins A, Batchelor TT, Vredenburgh JJ. Glioblastoma multiforme: An emerging paradigm of anti-VEGF therapy. Expert Opin Biol Ther 2008; 8(4): 541-53.
[http://dx.doi.org/10.1517/14712598.8.4.541] [PMID: 18352856]
[120]
Soeda A, Park M, Lee D, et al. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1α. Oncogene 2009; 28(45): 3949-59.
[http://dx.doi.org/10.1038/onc.2009.252] [PMID: 19718046]
[121]
Chou C-W, Wang C-C, Wu C-P, et al. Tumor cycling hypoxia induces chemoresistance in glioblastoma multiforme by upregulating the expression and function of ABCB1. Neuro-oncol 2012; 14(10): 1227-38.
[http://dx.doi.org/10.1093/neuonc/nos195] [PMID: 22946104]
[122]
Hsieh C-H, Lin Y-J, Wu C-P, Lee H-T, Shyu W-C, Wang C-C. Livin contributes to tumor hypoxia-induced resistance to cytotoxic therapies in glioblastoma multiforme. Clin Cancer Res 2015; 21(2): 460-70.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0618] [PMID: 25370472]
[123]
Grek CL, Sheng Z, Naus CC, Sin WC, Gourdie RG, Ghatnekar GG. Novel approach to temozolomide resistance in malignant glioma: Connexin43-directed therapeutics. Curr Opin Pharmacol 2018; 41: 79-88.
[http://dx.doi.org/10.1016/j.coph.2018.05.002] [PMID: 29803991]
[124]
Murphy SF, Varghese RT, Lamouille S, et al. Connexin 43 inhibition sensitizes chemoresistant glioblastoma cells to temozolomide. Cancer Res 2016; 76(1): 139-49.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1286] [PMID: 26542214]
[125]
Munoz J, Rodriguez-Cruz V, Greco S, Ramkissoon S, Ligon K, Rameshwar P. Temozolomide resistance in glioblastoma cells occurs partly through epidermal growth factor receptor-mediated induction of connexin 43. Cell Death Dis 2014; 5(3): e1145-e.
[126]
Sin WC, Aftab Q, Bechberger JF, Leung JH, Chen H, Naus CC. Astrocytes promote glioma invasion via the gap junction protein connexin43. Oncogene 2016; 35(12): 1504-16.
[http://dx.doi.org/10.1038/onc.2015.210] [PMID: 26165844]
[127]
Katakowski M, Buller B, Wang X, Rogers T, Chopp M. Functional microRNA is transferred between glioma cells. Cancer Res 2010; 70(21): 8259-63.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0604] [PMID: 20841486]
[128]
Gangemi RMR, Griffero F, Marubbi D, et al. SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells 2009; 27(1): 40-8.
[http://dx.doi.org/10.1634/stemcells.2008-0493] [PMID: 18948646]
[129]
Ogden AT, Waziri AE, Lochhead RA, et al. Identification of A2B5+CD133- tumor-initiating cells in adult human gliomas. Neurosurgery 2008; 62(2): 505-14.
[http://dx.doi.org/10.1227/01.neu.0000316019.28421.95] [PMID: 18382330]
[130]
Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature 2004; 432(7015): 396-401.
[131]
Cheng Z-X, Yin W-B, Wang Z-Y. MicroRNA-132 induces temozolomide resistance and promotes the formation of cancer stem cell phenotypes by targeting tumor suppressor candidate 3 in glioblastoma. Int J Mol Med 2017; 40(5): 1307-14.
[http://dx.doi.org/10.3892/ijmm.2017.3124] [PMID: 28901390]
[132]
Chen J, Li Y, Yu T-S, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 2012; 488(7412): 522-6.
[http://dx.doi.org/10.1038/nature11287] [PMID: 22854781]
[133]
Liu G, Yuan X, Zeng Z, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 2006; 5(1): 67.
[http://dx.doi.org/10.1186/1476-4598-5-67] [PMID: 17140455]
[134]
Folkins C, Shaked Y, Man S, et al. Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1. Cancer Res 2009; 69(18): 7243-51.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0167] [PMID: 19738068]
[135]
Fleurence J, Bahri M, Fougeray S, et al. Impairing temozolomide resistance driven by glioma stem-like cells with adjuvant immunotherapy targeting O-acetyl GD2 ganglioside. Int J Cancer 2020; 146(2): 424-38.
[http://dx.doi.org/10.1002/ijc.32533] [PMID: 31241171]
[136]
Zwick E, Bange J, Ullrich A. Receptor tyrosine kinase signalling as a target for cancer intervention strategies. Endocr Relat Cancer 2001; 8(3): 161-73.
[http://dx.doi.org/10.1677/erc.0.0080161] [PMID: 11566607]
[137]
Chen X-C, Wei X-T, Guan J-H, Shu H, Chen D. EGF stimulates glioblastoma metastasis by induction of matrix metalloproteinase-9 in an EGFR-dependent mechanism. Oncotarget 2017; 8(39): 65969-82.
[http://dx.doi.org/10.18632/oncotarget.19622] [PMID: 29029486]
[138]
An Z, Aksoy O, Zheng T, Fan Q-W, Weiss WA. Epidermal growth factor receptor and EGFRvIII in glioblastoma: Signaling pathways and targeted therapies. Oncogene 2018; 37(12): 1561-75.
[http://dx.doi.org/10.1038/s41388-017-0045-7] [PMID: 29321659]
[139]
Westphal M, Maire CL, Lamszus K. EGFR as a target for glioblastoma treatment: An unfulfilled promise. CNS Drugs 2017; 31(9): 723-35.
[http://dx.doi.org/10.1007/s40263-017-0456-6] [PMID: 28791656]
[140]
Taylor TE, Furnari FB, Cavenee WK. Targeting EGFR for treatment of glioblastoma: Molecular basis to overcome resistance. Curr Cancer Drug Targets 2012; 12(3): 197-209.
[http://dx.doi.org/10.2174/156800912799277557] [PMID: 22268382]
[141]
Messaoudi K, Clavreul A, Lagarce F. Toward an effective strategy in glioblastoma treatment. Part II: RNA interference as a promising way to sensitize glioblastomas to temozolomide. Drug Discov Today 2015; 20(6): 772-9.
[http://dx.doi.org/10.1016/j.drudis.2015.02.014] [PMID: 25892456]
[142]
Liffers K, Lamszus K, Schulte A. EGFR amplification and glioblastoma stem-like cells. Stem Cells Int 2015; 2015: 427518.

© 2024 Bentham Science Publishers | Privacy Policy