Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Mini-Review Article

Potential Role of Exercise in Regulating YAP and TAZ During Cardiomyocytes Aging

Author(s): Yenni Limyati*, Ardo Sanjaya, Teresa Lucretia, Julia Windi Gunadi, Vitriana Biben, Diana Krisanti Jasaputra and Ronny Lesmana

Volume 18, Issue 5, 2022

Published on: 27 May, 2022

Article ID: e040422203084 Pages: 10

DOI: 10.2174/1573403X18666220404152924

Price: $65

Abstract

Adaptation of cardiac muscle to regular exercise results in morphological and structural changes known as physiological cardiac hypertrophy, to which the Hippo signaling pathway might have contributed. Two major terminal effectors in the Hippo signaling pathway are Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ). The latest studies have reported the role of YAP and TAZ in different life stages, such as in fetal, neonatal, and adult hearts. Their regulation might involve several mechanisms and effectors. One of the possible coregulators is exercise. Exercise plays a role in cardiomyocyte hypertrophic changes during different stages of life, including in aged hearts. YAP/TAZ signaling pathway has a role in physiological cardiac hypertrophy induced by exercise and is associated with cardiac remodelling. Thus, it can be believed that exercise has roles in activating the signaling pathway of YAP and TAZ in aged cardiomyocytes. However, the studies regarding the roles of YAP and TAZ during cardiomyocyte aging are limited. The primary purpose of this review is to explore the response of cardiovascular aging to exercise via signaling pathway of YAP and TAZ.

Keywords: Aging, cardiomyocyte, cardiac hypertrophy, exercise, YAP, TAZ.

Graphical Abstract

[1]
Riehle C, Wende AR, Zhu Y, et al. Insulin receptor substrates are essential for the bioenergetic and hypertrophic response of the heart to exercise training. Mol Cell Biol 2014; 34(18): 3450-60.
[http://dx.doi.org/10.1128/MCB.00426-14] [PMID: 25002528]
[2]
Ikeda S, Mizushima W, Sciarretta S, et al. Hippo deficiency leads to cardiac dysfunction accompanied by cardiomyocyte dedifferentiation during pressure overload. Circ Res 2019; 124(2): 292-305.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.314048] [PMID: 30582455]
[3]
Gateff E. Malignant neoplasms of genetic origin in Drosophila melanogaster. Science 1978; 200(4349): 1448-59.
[http://dx.doi.org/10.1126/science.96525] [PMID: 96525]
[4]
Harvey K, Tapon N. The salvador-warts-hippo pathway - an emerging tumour-suppressor network. Nat Rev Cancer 2007; 7(3): 182-91.
[http://dx.doi.org/10.1038/nrc2070] [PMID: 17318211]
[5]
Hilman D, Gat U. The evolutionary history of YAP and the hippo/YAP pathway. Mol Biol Evol 2011; 28(8): 2403-17.
[http://dx.doi.org/10.1093/molbev/msr065] [PMID: 21415026]
[6]
Ikeda S, Sadoshima J. Regulation of myocardial cell growth and death by the hippo pathway. Circ J 2016; 80(7): 1511-9.
[http://dx.doi.org/10.1253/circj.CJ-16-0476] [PMID: 27302848]
[7]
Gabriel BM, Hamilton DL, Tremblay AM, Wackerhage H. The Hippo signal transduction network for exercise physiologists. J Appl Physiol (1985 2016; 120(10): 1105-7.
[PMID: 26940657]
[8]
Kashihara T, Sadoshima J. The role of YAP/TAZ in energy metabolism in the heart. J Cardiovasc Pharmacol 2019; 74(6): 483-90.
[http://dx.doi.org/10.1097/FJC.0000000000000736] [PMID: 31815864]
[9]
(a) Li Q, Li S, Mana-Capelli S, Roth Flach Rachel J, et al. The conserved misshapen-warts-yorkie pathway acts in enteroblasts to regulate intestinal stem cells in drosophila. Dev Cell 2014; 31(3): 291-304.
[PMID: 25453828] ; (b) Zheng Y, Wang W, Liu B, Deng H, Uster E, Pan D. Identification of happyhour/MAP4K as alternative Hpo/Mst-like kinases in the hip-po kinase cascade. Dev Cell 2015; 34(6): 642-55.
[PMID: 26364751]
[10]
Meng Z, Moroishi T, Mottier-Pavie V, et al. MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat Commun 2015; 6(1): 8357.
[http://dx.doi.org/10.1038/ncomms9357] [PMID: 26437443]
[11]
(a) Liu C-Y, Zha Z-Y, Zhou X, et al. The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCFβ-TrCPE3 ligase. J Biol Chem 2010; 285(48): 37159-69.; (b) Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF -TRCP. Genes Dev 2010; 24(1): 72-85.
[PMID: 20048001]
[12]
Ardestani A, Lupse B, Maedler K. Hippo signaling: Key emerging pathway in cellular and whole-body metabolism. Trends Endocrinol Metab 2018; 29(7): 492-509.
[http://dx.doi.org/10.1016/j.tem.2018.04.006] [PMID: 29739703]
[13]
Watt KI, Goodman CA, Hornberger TA, Gregorevic P. The hippo signaling pathway in the regulation of skeletal muscle mass and function. Exerc Sport Sci Rev 2018; 46(2): 92-6.
[http://dx.doi.org/10.1249/JES.0000000000000142] [PMID: 29346163]
[14]
(a) Zhao B, Li L, Guan K-L. Hippo signaling at a glance. J Cell Sci 2010; 123(23): 4001-6.
[PMID: 21084559] ; (b) Kodaka M, Hata Y. The mammalian Hippo pathway: Regulation and function of YAP1 and TAZ. Cell Mol Life Sci 2014; 72(2): 285-306.
[PMID: 25266986]
[15]
Meng Z, Moroishi T, Guan K-L. Mechanisms of Hippo pathway regulation. Genes Dev 2016; 30(1): 1-17.
[http://dx.doi.org/10.1101/gad.274027.115] [PMID: 26728553]
[16]
Gray GA, Gray NK. A tail of translational regulation. eLife 2017; 6: 6.
[http://dx.doi.org/10.7554/eLife.29104] [PMID: 28653621]
[17]
(a) Bergmann O, Zdunek S, Felker A, et al. Dynamics of cell generation and turnover in the human heart. Cell 2015; 161(7): 1566-75.
[PMID: 26073943] ; (b) Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol Heart Circ Physiol 1996; 271(5): H2183-9.
[PMID: 8945939]
[18]
Xin M, Kim Y, Sutherland LB, et al. Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal 2011; 4(196): ra70.
[http://dx.doi.org/10.1126/scisignal.2002278] [PMID: 22028467]
[19]
von Gise A, Lin Z, Schlegelmilch K, et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci USA 2012; 109(7): 2394-9.
[http://dx.doi.org/10.1073/pnas.1116136109] [PMID: 22308401]
[20]
Heallen T, Zhang M, Wang J, et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 2011; 332(6028): 458-61.
[http://dx.doi.org/10.1126/science.1199010] [PMID: 21512031]
[21]
Mia MM, Singh MK. The hippo signaling pathway in cardiac development and diseases. Front Cell Dev Biol 2019; 7: 211.
[http://dx.doi.org/10.3389/fcell.2019.00211] [PMID: 31632964]
[22]
Windmueller R, Morrisey EE. Hippo and cardiac hypertrophy: A complex interaction. Circ Res 2015; 117(10): 832-4.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.307546] [PMID: 26494924]
[23]
Del Re DP, Yang Y, Nakano N, et al. Yes-associated protein isoform 1 (Yap1) promotes cardiomyocyte survival and growth to protect against myocardial ischemic injury. J Biol Chem 2013; 288(6): 3977-88.
[http://dx.doi.org/10.1074/jbc.M112.436311] [PMID: 23275380]
[24]
Lin Z, von Gise A, Zhou P, et al. Cardiac-specific YAP activation improves cardiac function and survival in an experimental murine MI model. Circ Res 2014; 115(3): 354-63.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.303632] [PMID: 24833660]
[25]
Yang Y, Del Re DP, Nakano N, et al. miR-206 mediates YAP-induced cardiac hypertrophy and survival. Circ Res 2015; 117(10): 891-904.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306624] [PMID: 26333362]
[26]
Monroe TO, Hill MC, Morikawa Y, et al. YAP partially reprograms chromatin accessibility to directly induce adult cardiogenesis in vivo. Dev Cell 2019; 48(6): 765-779.e7.
[http://dx.doi.org/10.1016/j.devcel.2019.01.017] [PMID: 30773489]
[27]
Tabrizi A, Soori R, Choobineh S, Gholipour M. Aerobic training-induced upregulation of YAP1 and prevention of cardiac pathological hypertrophy in male rats. Int J Prev Med 2020; 11(1): 119.
[http://dx.doi.org/10.4103/ijpvm.IJPVM_356_19] [PMID: 33088447]
[28]
Gholipour M, Tabrizi A. The role of Hippo signaling pathway in physiological cardiac hypertrophy. Bioimpacts 2020; 10(4): 251-7.
[http://dx.doi.org/10.34172/bi.2020.32] [PMID: 32983941]
[29]
Chen Z, Friedrich GA, Soriano P. Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embry-onic lethality in mice. Genes Dev 1994; 8(19): 2293-301.
[http://dx.doi.org/10.1101/gad.8.19.2293] [PMID: 7958896]
[30]
Murakami M, Nakagawa M, Olson EN, Nakagawa O. A WW domain protein TAZ is a critical coactivator for TBX5, a transcription factor implicated in Holt-Oram syndrome. Proc Natl Acad Sci USA 2005; 102(50): 18034-9.
[http://dx.doi.org/10.1073/pnas.0509109102] [PMID: 16332960]
[31]
Tabrizi A, Soori R, Choobineh S, Gholipour M. Role of endurance training in preventing pathological hypertrophy via large tumor sup-pressor (LATS). Changes Iranian Heart J 2019; 20(3): 52-9.
[32]
Tsika RW, Ma L, Kehat I, et al. TEAD-1 overexpression in the mouse heart promotes an age-dependent heart dysfunction. J Biol Chem 2010; 285(18): 13721-35.
[http://dx.doi.org/10.1074/jbc.M109.063057] [PMID: 20194497]
[33]
Maillet M, van Berlo JH, Molkentin JD. Molecular basis of physiological heart growth: fundamental concepts and new players. Nat Rev Mol Cell Biol 2013; 14(1): 38-48.
[http://dx.doi.org/10.1038/nrm3495] [PMID: 23258295]
[34]
Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 2006; 7(8): 589-600.
[http://dx.doi.org/10.1038/nrm1983] [PMID: 16936699]
[35]
Xin M, Kim Y, Sutherland LB, et al. Hippo pathway effector Yap promotes cardiac regeneration. Proc Natl Acad Sci USA 2013; 110(34): 13839-44.
[http://dx.doi.org/10.1073/pnas.1313192110] [PMID: 23918388]
[36]
(a) Blomqvist CG, Saltin B. Cardiovascular adaptations to physical training. Annu Rev Physiol 1983; 45(1): 169-89.
[PMID: 6221687] ; (b) Fenning A, Harrison G, Dwyer D, Rose’Meyer R, Brown L. Cardiac adaptation to endurance exercise in rats 2003; 45: 51-1.
[PMID: 14575304]
[37]
Shimizu I, Minamino T. Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol 2016; 97: 245-62.
[http://dx.doi.org/10.1016/j.yjmcc.2016.06.001] [PMID: 27262674]
[38]
Silva JA Jr, Santana ET, Manchini MT, et al. Exercise training can prevent cardiac hypertrophy induced by sympathetic hyperactivity with modulation of kallikrein-kinin pathway and angiogenesis. PLoS One 2014; 9(3)e91017
[http://dx.doi.org/10.1371/journal.pone.0091017] [PMID: 24614810]
[39]
Powers SK, Lennon SL, Quindry J, Mehta JL. Exercise and cardioprotection. Curr Opin Cardiol 2002; 17(5): 495-502.
[http://dx.doi.org/10.1097/00001573-200209000-00009] [PMID: 12357126]
[40]
Tao L, Bei Y, Zhang H, Xiao J, Li X. Exercise for the heart: signaling pathways. Oncotarget 2015; 6(25): 20773-84.
[http://dx.doi.org/10.18632/oncotarget.4770] [PMID: 26318584]
[41]
Xiao F, Kimura W, Sadek HAA. A hippo “AKT” regulates cardiomyocyte proliferation. Circ Res 2015; 116(1): 3-5.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.305325] [PMID: 25552685]
[42]
Santinon G, Pocaterra A, Dupont S. Control of YAP/TAZ activity by metabolic and nutrient-sensing pathways. Trends Cell Biol 2016; 26(4): 289-99.
[http://dx.doi.org/10.1016/j.tcb.2015.11.004] [PMID: 26750334]
[43]
DeRan M, Yang J, Shen C-H, et al. Energy stress regulates hippo-YAP signaling involving AMPK-mediated regulation of angiomotin-like 1 protein. Cell Rep 2014; 9(2): 495-503.
[http://dx.doi.org/10.1016/j.celrep.2014.09.036] [PMID: 25373897]
[44]
Elster D, von Eyss B. Hippo signaling in regeneration and aging. Mech Ageing Dev 2020; 189111280
[http://dx.doi.org/10.1016/j.mad.2020.111280] [PMID: 32512018]
[45]
Mo J-S, Meng Z, Kim YC, et al. Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nat Cell Biol 2015; 17(4): 500-10.
[http://dx.doi.org/10.1038/ncb3111] [PMID: 25751140]
[46]
Wang W, Xiao Z-D, Li X, et al. AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat Cell Biol 2015; 17(4): 490-9.
[http://dx.doi.org/10.1038/ncb3113] [PMID: 25751139]
[47]
Zhao M-T, Ye S, Su J, Garg V. Cardiomyocyte proliferation and maturation: Two sides of the same coin for heart regeneration. Front Cell Dev Biol 2020; 8594226
[http://dx.doi.org/10.3389/fcell.2020.594226] [PMID: 33178704]
[48]
Chen X, Li Y, Luo J, Hou N. Molecular mechanism of Hippo-YAP1/TAZ pathway in heart development, disease, and regeneration. Front Physiol 2020; 11: 389.
[http://dx.doi.org/10.3389/fphys.2020.00389] [PMID: 32390875]
[49]
Li S, Cho YS, Yue T, Ip YT, Jiang J. Overlapping functions of the MAP4K family kinases Hppy and Msn in Hippo signaling. Cell Discov 2015; 1(1): 15038.
[http://dx.doi.org/10.1038/celldisc.2015.38] [PMID: 27462435]
[50]
Lim S, Hermance N, Mudianto T, et al. Identification of the kinase STK25 as an upstream activator of LATS signaling. Nat Commun 2019; 10(1): 1547.
[http://dx.doi.org/10.1038/s41467-019-09597-w] [PMID: 30948712]
[51]
Visser S, Yang X. LATS tumor suppressor: a new governor of cellular homeostasis. Cell Cycle 2010; 9(19): 3892-903.
[http://dx.doi.org/10.4161/cc.9.19.13386] [PMID: 20935475]
[52]
Lin Z, Pu WT. Harnessing Hippo in the heart: Hippo/Yap signaling and applications to heart regeneration and rejuvenation. Stem Cell Res 2014; 13(3 Pt B): 571-81.
[http://dx.doi.org/10.1016/j.scr.2014.04.010] [PMID: 24881775]
[53]
Byun J, Del Re DP, Zhai P, et al. Yes-associated protein (YAP) mediates adaptive cardiac hypertrophy in response to pressure overload. J Biol Chem 2019; 294(10): 3603-17.
[http://dx.doi.org/10.1074/jbc.RA118.006123] [PMID: 30635403]
[54]
Del Re DP. The hippo signaling pathway: Implications for heart regeneration and disease. Clin Transl Med 2014; 3(1): 27.
[http://dx.doi.org/10.1186/s40169-014-0027-0] [PMID: 26932373]
[55]
Lee YI, Cho JY, Kim MH, Kim KB, Lee DJ, Lee KS. Effects of exercise training on pathological cardiac hypertrophy related gene expres-sion and apoptosis. Eur J Appl Physiol 2006; 97(2): 216-24.
[http://dx.doi.org/10.1007/s00421-006-0161-5] [PMID: 16583233]
[56]
Del Re DP. Hippo signaling in the heart-non-canonical pathways impact growth, survival and function. Circ J 2016; 80(7): 1504-10.
[http://dx.doi.org/10.1253/circj.CJ-16-0426] [PMID: 27296131]
[57]
Domenighetti AA, Wang Q, Egger M, Richards SM, Pedrazzini T, Delbridge LMD. Angiotensin II-mediated phenotypic cardiomyocyte remodeling leads to age-dependent cardiac dysfunction and failure. Hypertension 2005; 46(2): 426-32.
[http://dx.doi.org/10.1161/01.HYP.0000173069.53699.d9] [PMID: 15998712]
[58]
Huang C-Y, Yang A-L, Lin Y-M, et al. Anti-apoptotic and pro-survival effects of exercise training on hypertensive hearts. J Appl Physiol 2012; 112(5): 883-91.
[http://dx.doi.org/10.1152/japplphysiol.00605.2011] [PMID: 22207725]
[59]
Kwak HB, Song W, Lawler JM. Exercise training attenuates age-induced elevation in Bax/Bcl-2 ratio, apoptosis, and remodeling in the rat heart. FASEB J 2006; 20(6): 791-3.
[http://dx.doi.org/10.1096/fj.05-5116fje] [PMID: 16459353]
[60]
Lai C-H, Ho T-J, Kuo W-W, et al. Exercise training enhanced SIRT1 longevity signaling replaces the IGF1 survival pathway to attenuate aging-induced rat heart apoptosis. Age (Dordr) 2014; 36(5): 9706.
[http://dx.doi.org/10.1007/s11357-014-9706-4] [PMID: 25148910]
[61]
Roh J, Rhee J, Chaudhari V, Rosenzweig A. The role of exercise in cardiac aging: From physiology to molecular mechanisms. Circ Res 2016; 118(2): 279-95.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.305250] [PMID: 26838314]
[62]
Putinski C, Abdul-Ghani M, Stiles R, et al. Intrinsic-mediated caspase activation is essential for cardiomyocyte hypertrophy. Proc Natl Acad Sci USA 2013; 110(43): E4079-87.
[http://dx.doi.org/10.1073/pnas.1315587110] [PMID: 24101493]
[63]
(a) Weeks KL, Gao X, Du X-J, et al. Akt Activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation 2001; 104(3): 330-5.
[PMID: 11457753] ; (b) Yamashita K, Kajstura J, Discher DJ, et al. Reperfusion-activated Akt kinase prevents apoptosis in transgenic mouse hearts overex-pressing insulin-like growth factor-1. Circ Res 2001; 88(6): 609-14.
[PMID: 11282895]
[64]
Iemitsu M, Maeda S, Jesmin S, Otsuki T, Miyauchi T. Exercise training improves aging-induced downregulation of VEGF angiogenic sig-naling cascade in hearts. Am J Physiol Heart Circ Physiol 2006; 291(3): H1290-8.
[http://dx.doi.org/10.1152/ajpheart.00820.2005] [PMID: 16617130]
[65]
Lin C-H, Lin C-C, Ting W-J, et al. Resveratrol enhanced FOXO3 phosphorylation via synergetic activation of SIRT1 and PI3K/Akt signal-ing to improve the effects of exercise in elderly rat hearts. Age (Dordr) 2014; 36(5): 9705.
[http://dx.doi.org/10.1007/s11357-014-9705-5] [PMID: 25158994]
[66]
DeBosch B, Treskov I, Lupu TS, et al. Akt1 is required for physiological cardiac growth. Circulation 2006; 113(17): 2097-104.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.595231] [PMID: 16636172]
[67]
(a) Lebrasseur NK, Coté GM, Miller TA, Fielding RA, Sawyer DB. Regulation of neuregulin/ErbB signaling by contractile activity in skele-tal muscle. Am J Physiol Cell Physiol 2003; 284(5): C1149-55.
[PMID: 12519750] ; (b) Fukazawa R. Neuregulin-1 protects ventricular myocytes from anthracycline-induced apoptosis via erbB4-dependent activation of PI3-kinase/Akt. J Mol Cell Cardiol 2003; 35(12): 1473-9.
[PMID: 14654373]
[68]
Lenk K, Erbs S, Höllriegel R, et al. Exercise training leads to a reduction of elevated myostatin levels in patients with chronic heart failure. Eur J Prev Cardiol 2012; 19(3): 404-11.
[http://dx.doi.org/10.1177/1741826711402735] [PMID: 21450574]
[69]
Morissette MR, Cook SA, Foo S, et al. Myostatin regulates cardiomyocyte growth through modulation of Akt signaling. Circ Res 2006; 99(1): 15-24.
[http://dx.doi.org/10.1161/01.RES.0000231290.45676.d4] [PMID: 16763166]
[70]
(a) Molkentin JD. Parsing good versus bad signaling pathways in the heart. Circ Res 2013; 113(1): 16-9.
[PMID: 23788503] ; (b) Chung E, Yeung F, Leinwand LA. Calcineurin activity is required for cardiac remodelling in pregnancy. Cardiovasc Res 2013; 100(3): 402-10.
[PMID: 23985902]
[71]
Kim M, Kim M, Lee S, et al. cAMP/PKA signalling reinforces the LATS-YAP pathway to fully suppress YAP in response to actin cyto-skeletal changes. EMBO J 2013; 32(11): 1543-55.
[http://dx.doi.org/10.1038/emboj.2013.102] [PMID: 23644383]
[72]
Yu FX, Zhao B, Panupinthu N, et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 2012; 150(4): 780-91.
[http://dx.doi.org/10.1016/j.cell.2012.06.037] [PMID: 22863277]
[73]
Goodman CA, Dietz JM, Jacobs BL, McNally RM, You J-S, Hornberger TA. Yes-associated protein is up-regulated by mechanical over-load and is sufficient to induce skeletal muscle hypertrophy. FEBS Lett 2015; 589(13): 1491-7.
[http://dx.doi.org/10.1016/j.febslet.2015.04.047] [PMID: 25959868]
[74]
Bernardo BC, Weeks KL, Pretorius L, McMullen JR. Molecular distinction between physiological and pathological cardiac hypertrophy: Experimental findings and therapeutic strategies. Pharmacol Ther 2010; 128(1): 191-227.
[http://dx.doi.org/10.1016/j.pharmthera.2010.04.005] [PMID: 20438756]
[75]
(a) Tarawan VM, Gunadi JW, Subekti TAB, Widowati W, Goenawan H. Effect of acute physical exercise with moderate intensities on FGF23 gene expression in wistar rat heart. Majalah Kedokteran Bandung 2019; 51(4): 221-5.; (b) Gunadi JW, Tarawan VM, Setiawan I, Lesmana R, Wahyudianingsih R, Supratman U. Cardiac hypertrophy is stimulated by altered training intensity and correlates with autophagy modulation in male Wistar rats. BMC Sports Sci Med Rehabil 2019; 11(1)

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy