Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Mini-Review Article

Impact of MiRNAs and LncRNAs on Multidrug Resistance of Gastric Cancer

Author(s): Yiwen Wu, Xiaoyan Yang*, Zhizhong Xie, Haihong Hu, Xiaoyong Lei, Dun Niu, Shiyan Li and Lu Tuo

Volume 25, Issue 13, 2022

Published on: 22 April, 2022

Page: [2127 - 2140] Pages: 14

DOI: 10.2174/1386207325666220401090604

Price: $65

Abstract

Multi-drug resistance (MDR) is characterized by the resistance of tumor cells to some antitumor drugs with different structures and mechanisms after the use of a single chemotherapy drug or even the first use of the drug. Notably, MDR has become the largest obstacle to the success of gastric cancer chemotherapies. Non-coding RNAs are defined as a class of RNAs that do not have the ability to code proteins. They are widely involved in important biological functions in life activities. Multiple lines of evidence demonstrated that ncRNAs are closely related to human cancers, including gastric cancer. However, the relationship between ncRNAs and MDR in gastric cancer has been reported, yet the mechanisms are not fully clarified. Therefore, in this review, we systematically summarized the detailed molecular mechanisms of lncRNAs (long noncoding RNAs) and miRNAs (microRNAs) associated with MDR in gastric cancer. Additionally, we speculate that the abnormal expression of ncRNAs is likely to be a novel potential therapeutic target reversing MDR for gastric cancer. Future therapeutics for gastric cancer will most likely be based on noncoding RNAs (ncRNAs) that regulate MDR-related genes.

Keywords: Multidrug, resistance, gastric cancer, LncRNAs, MiRNAs, ncRNAs.

Next »
Graphical Abstract

[1]
Smyth, E.C.; Nilsson, M.; Grabsch, H.I.; van Grieken, N.C.T.; Lordick, F. Gastric cancer. Lancet, 2020, 396(10251), 635-648.
[http://dx.doi.org/10.1016/S0140-6736(20)31288-5] [PMID: 32861308]
[2]
Wu, Q.; Yang, Z.; Nie, Y.; Shi, Y.; Fan, D. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett., 2014, 347(2), 159-166.
[http://dx.doi.org/10.1016/j.canlet.2014.03.013] [PMID: 24657660]
[3]
Huang, S.; Li, X.; Zheng, H.; Si, X.; Li, B.; Wei, G.; Li, C.; Chen, Y.; Chen, Y.; Liao, W.; Liao, Y.; Bin, J. Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation, 2019, 139(25), 2857-2876.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.038361] [PMID: 30947518]
[4]
Rosalind, C. Lee; Victor Ambrost, R.L.F. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 843-854.
[5]
Ørom, U.A.; Nielsen, F.C.; Lund, A.H. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol. Cell, 2008, 30(4), 460-471.
[http://dx.doi.org/10.1016/j.molcel.2008.05.001] [PMID: 18498749]
[6]
Eiring, A.M.; Harb, J.G. Neviani, P.; Garton, C.; Oaks, J.J.; Spizzo, R.; Liu, S.; Schwind, S.; Santhanam, R.; Hickey, C.J.; Becker, H.; Chandler, J.C.; Andino, R.; Cortes, J.; Hokland, P.; Huettner, C.S.; Bhatia, R.; Roy, D.C.; Liebhaber, S.A.; Caligiuri, M.A.; Marcucci, G.; Garzon, R.; Croce, C.M.; Calin, G.A.; Perrotti, D. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell, 2010, 140(5), 652-665.
[http://dx.doi.org/10.1016/j.cell.2010.01.007] [PMID: 20211135]
[7]
Deng, Y.W.; Hao, W.J.; Li, Y.W.; Li, Y.X.; Zhao, B.C.; Lu, D. Hsa-miRNA-143-3p reverses multidrug resistance of triple-negative breast cancer by inhibiting the expression of its target protein cytokine-induced apoptosis inhibitor 1 in vivo. J. Breast Cancer, 2018, 21(3), 251-258.
[http://dx.doi.org/10.4048/jbc.2018.21.e40] [PMID: 30275853]
[8]
Moitra, K. Im, K.; Limpert, K.; Borsa, A.; Sawitzke, J.; Robey, R.; Yuhki, N.; Savan, R.; Huang, W.; Lempicki, R.A.; Bates, S.; Dean, M. Differential gene and microRNA expression between etoposide resistant and etoposide sensitive MCF7 breast cancer cell lines. PLoS One, 2012, 7(9), e45268.
[http://dx.doi.org/10.1371/journal.pone.0045268] [PMID: 23028896]
[9]
Tokarz, P.; Blasiak, J. The role of microRNA in metastatic colorectal cancer and its significance in cancer prognosis and treatment. Acta Biochim. Pol., 2012, 59(4), 467-474.
[http://dx.doi.org/10.18388/abp.2012_2079] [PMID: 23173124]
[10]
Huang, G.L.; Shen, D.Y.; Cai, C.F.; Zhang, Q.Y.; Ren, H.Y.; Chen, Q.X. β-escin reverses multidrug resistance through inhibition of the GSK3β/β-catenin pathway in cholangiocarcinoma. World J. Gastroenterol., 2015, 21(4), 1148-1157.
[http://dx.doi.org/10.3748/wjg.v21.i4.1148] [PMID: 25632187]
[11]
Andersen, V.; Svenningsen, K.; Knudsen, L.A.; Hansen, A.K.; Holmskov, U.; Stensballe, A.; Vogel, U. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology. World J. Gastroenterol., 2015, 21(41), 11862-11876.
[http://dx.doi.org/10.3748/wjg.v21.i41.11862] [PMID: 26557010]
[12]
Magee, P.; Shi, L.; Garofalo, M. Role of microRNAs in chemoresistance. Ann. Transl. Med., 2015, 3(21), 332.
[PMID: 26734642]
[13]
Wilkens, S. Structure and mechanism of ABC transporters. F1000Prime Rep., 2015, 7, 14.
[http://dx.doi.org/10.12703/P7-14] [PMID: 25750732]
[14]
Wu, Q.; Yang, Z.; Xia, L.; Nie, Y.; Wu, K.; Shi, Y.; Fan, D. Methylation of miR-129-5p CpG island modulates multi-drug resistance in gastric cancer by targeting ABC transporters. Oncotarget, 2014, 5(22), 11552-11563.
[http://dx.doi.org/10.18632/oncotarget.2594] [PMID: 25344911]
[15]
Shang, Y.; Zhang, Z.; Liu, Z.; Feng, B.; Ren, G.; Li, K.; Zhou, L.; Sun, Y.; Li, M.; Zhou, J.; An, Y.; Wu, K.; Nie, Y.; Fan, D. miR-508-5p regulates multidrug resistance of gastric cancer by targeting ABCB1 and ZNRD1. Oncogene, 2014, 33(25), 3267-3276.
[http://dx.doi.org/10.1038/onc.2013.297] [PMID: 23893241]
[16]
Fang, Q.; Chen, X.; Zhi, X. Long Non-Coding RNA (LncRNA) Urothelial Carcinoma Associated 1 (UCA1) increases multi-drug resistance of gastric cancer via downregulating miR-27b. Med. Sci. Monit., 2016, 22, 3506-3513.
[http://dx.doi.org/10.12659/MSM.900688] [PMID: 27694794]
[17]
Shang, Y.; Feng, B.; Zhou, L.; Ren, G.; Zhang, Z.; Fan, X.; Sun, Y.; Luo, G.; Liang, J.; Wu, K.; Nie, Y.; Fan, D. The miR27b-CCNG1-P53-miR-508-5p axis regulates multidrug resistance of gastric cancer. Oncotarget, 2016, 7(1), 538-549.
[http://dx.doi.org/10.18632/oncotarget.6374] [PMID: 26623719]
[18]
Sauna, Z.E.; Peng, X.H.; Nandigama, K.; Tekle, S.; Ambudkar, S.V. The molecular basis of the action of disulfiram as a modulator of the multidrug resistance-linked ATP binding cassette transporters MDR1 (ABCB1) and MRP1 (ABCC1). Mol. Pharmacol., 2004, 65(3), 675-684.
[http://dx.doi.org/10.1124/mol.65.3.675] [PMID: 14978246]
[19]
Zhang, Y.; Qu, X.; Li, C.; Fan, Y.; Che, X.; Wang, X.; Cai, Y.; Hu, X.; Liu, Y. miR-103/107 modulates multidrug resistance in human gastric carcinoma by downregulating Cav-1. Tumour Biol., 2015, 36(4), 2277-2285.
[http://dx.doi.org/10.1007/s13277-014-2835-7] [PMID: 25407491]
[20]
Teng, R.; Hu, Y.; Zhou, J.; Seifer, B.; Chen, Y.; Shen, J.; Wang, L. Overexpression of Lin28 decreases the chemosensitivity of gastric cancer cells to oxaliplatin, paclitaxel, doxorubicin, and fluorouracil in part via microRNA-107. PLoS One, 2015, 10(12), e0143716.
[http://dx.doi.org/10.1371/journal.pone.0143716] [PMID: 26636340]
[21]
Li, C.; Zou, J.; Zheng, G.; Chu, J. MiR-30a Decreases Multidrug Resistance (MDR) of gastric cancer cells. Med. Sci. Monit., 2016, 22, 4509-45515.
[http://dx.doi.org/10.12659/MSM.898415] [PMID: 27876712]
[22]
Wang, F.; Li, T.; Zhang, B.; Li, H.; Wu, Q.; Yang, L.; Nie, Y.; Wu, K.; Shi, Y.; Fan, D. MicroRNA-19a/b regulates multidrug resistance in human gastric cancer cells by targeting PTEN. Biochem. Biophys. Res. Commun., 2013, 434(3), 688-694.
[http://dx.doi.org/10.1016/j.bbrc.2013.04.010] [PMID: 23603256]
[23]
Zhu, F.; Wu, Q.; Ni, Z.; Lei, C.; Li, T.; Shi, Y. miR-19a/b and MeCP2 repress reciprocally to regulate multidrug resistance in gastric cancer cells. Int. J. Mol. Med., 2018, 42(1), 228-236.
[http://dx.doi.org/10.3892/ijmm.2018.3581] [PMID: 29568890]
[24]
Jin, B.; Liu, Y.; Wang, H. Antagonism of miRNA-21 sensitizes human gastric cancer cells to paclitaxel. Cell Biochem. Biophys., 2015, 72(1), 275-282.
[http://dx.doi.org/10.1007/s12013-014-0450-2] [PMID: 27040946]
[25]
Yang, S.M.; Huang, C.; Li, X.F.; Yu, M.Z.; He, Y.; Li, J. miR-21 confers cisplatin resistance in gastric cancer cells by regulating PTEN. Toxicology, 2013, 306(2), 162-168.
[http://dx.doi.org/10.1016/j.tox.2013.02.014] [PMID: 23466500]
[26]
Eto, K.; Iwatsuki, M.; Watanabe, M.; Ida, S.; Ishimoto, T.; Iwagami, S.; Baba, Y.; Sakamoto, Y.; Miyamoto, Y.; Yoshida, N.; Baba, H. The microRNA-21/PTEN pathway regulates the sensitivity of HER2-positive gastric cancer cells to trastuzumab. Ann. Surg. Oncol., 2014, 21(1), 343-350.
[http://dx.doi.org/10.1245/s10434-013-3325-7] [PMID: 24154840]
[27]
Nieto, M.A. Context-specific roles of EMT programmes in cancer cell dissemination. Nat. Cell Biol., 2017, 19(5), 416-418.
[http://dx.doi.org/10.1038/ncb3520] [PMID: 28446813]
[28]
Wang, L.L.; Zhang, X.H.; Zhang, X.; Chu, J.K. MiR-30a increases cisplatin sensitivity of gastric cancer cells through suppressing epithelial-to-mesenchymal transition (EMT). Eur. Rev. Med. Pharmacol. Sci., 2016, 20(9), 1733-1739.
[PMID: 27212164]
[29]
Wang, Q.; Cao, T.; Guo, K.; Zhou, Y.; Liu, H.; Pan, Y.; Hou, Q.; Nie, Y.; Fan, D.; Lu, Y.; Zhao, X. Regulation of integrin subunit alpha 2 by miR-135b-5p modulates chemoresistance in gastric cancer. Front. Oncol., 2020, 10, 308.
[http://dx.doi.org/10.3389/fonc.2020.00308] [PMID: 32232000]
[30]
Shao, L.; Chen, Z.; Soutto, M.; Zhu, S.; Lu, H.; Romero-Gallo, J.; Peek, R.; Zhang, S.; El-Rifai, W. Helicobacter pylori-induced miR-135b-5p promotes cisplatin resistance in gastric cancer. FASEB J., 2019, 33(1), 264-274.
[http://dx.doi.org/10.1096/fj.201701456RR] [PMID: 29985646]
[31]
Zou, Z.; Zou, R.; Zong, D.; Shi, Y.; Chen, J.; Huang, J.; Zhu, J.; Chen, L.; Bao, X.; Liu, Y.; Liu, W.; Huang, W.; Hu, J.; Chen, Z.; Lao, X.; Chen, C.; Huang, X.; Lu, Y.; Ni, X.; Fang, D.; Wu, D.; Lu, S.; Jiang, M.; Qiu, C.; Wu, Y.; Qiu, Q.; Dong, Y.; Su, Y.; Zhao, C.; Zhong, Z.; Cai, J.; Liang, Y. miR-495 sensitizes MDR cancer cells to the combination of doxorubicin and taxol by inhibiting MDR1 expression. J. Cell. Mol. Med., 2017, 21(9), 1929-1943.
[http://dx.doi.org/10.1111/jcmm.13114] [PMID: 28411377]
[32]
Zhao, X.; Yang, L.; Hu, J. Down-regulation of miR-27a might inhibit proliferation and drug resistance of gastric cancer cells. J. Experiment. Clin. Cancer Res., 2011, 30, 55.
[33]
Zhao, Q.; Li, Y.; Tan, B.B.; Fan, L.Q.; Yang, P.G.; Tian, Y. HIF-1α induces multidrug resistance in gastric cancer cells by inducing MiR-27a. PLoS One, 2015, 10(8), e0132746.
[http://dx.doi.org/10.1371/journal.pone.0132746] [PMID: 26292288]
[34]
Xia, L.; Zhang, D.; Du, R.; Pan, Y.; Zhao, L.; Sun, S.; Hong, L.; Liu, J.; Fan, D. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int. J. Cancer, 2008, 123(2), 372-379.
[http://dx.doi.org/10.1002/ijc.23501] [PMID: 18449891]
[35]
Venturutti, L.; Cordo Russo, R.I.; Rivas, M.A.; Mercogliano, M.F.; Izzo, F.; Oakley, R.H.; Pereyra, M.G.; De Martino, M.; Proietti, C.J.; Yankilevich, P.; Roa, J.C.; Guzmán, P.; Cortese, E.; Allemand, D.H.; Huang, T.H.; Charreau, E.H.; Cidlowski, J.A.; Schillaci, R.; Elizalde, P.V. MiR-16 mediates trastuzumab and lapatinib response in ErbB-2-positive breast and gastric cancer via its novel targets CCNJ and FUBP1. Oncogene, 2016, 35(48), 6189-6202.
[http://dx.doi.org/10.1038/onc.2016.151] [PMID: 27157613]
[36]
Sun, Z.; Song, X.; Li, X.; Su, T.; Qi, S.; Qiao, R.; Wang, F.; Huan, Y.; Yang, W.; Wang, J.; Nie, Y.; Wu, K.; Gao, M.; Cao, F. In vivo multimodality imaging of miRNA-16 iron nanoparticle reversing drug resistance to chemotherapy in a mouse gastric cancer model. Nanoscale, 2014, 6(23), 14343-14353.
[http://dx.doi.org/10.1039/C4NR03003F] [PMID: 25327162]
[37]
Zhang, J.; Song, Y.; Zhang, C.; Zhi, X.; Fu, H.; Ma, Y.; Chen, Y.; Pan, F.; Wang, K.; Ni, J.; Jin, W.; He, X.; Su, H.; Cui, D. Circulating MiR-16-5p and MiR-19b-3p as two novel potential biomarkers to indicate progression of gastric cancer. Theranostics, 2015, 5(7), 733-745.
[http://dx.doi.org/10.7150/thno.10305] [PMID: 25897338]
[38]
Zhu, W.; Shan, X.; Wang, T.; Shu, Y.; Liu, P. miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int. J. Cancer, 2010, 127(11), 2520-2529.
[http://dx.doi.org/10.1002/ijc.25260] [PMID: 20162574]
[39]
Zhu, W.; Zhu, D.; Lu, S.; Wang, T.; Wang, J.; Jiang, B.; Shu, Y.; Liu, P. miR-497 modulates multidrug resistance of human cancer cell lines by targeting BCL2. Med. Oncol., 2012, 29(1), 384-391.
[http://dx.doi.org/10.1007/s12032-010-9797-4] [PMID: 21258880]
[40]
Nie, H.; Mu, J.; Wang, J.; Li, Y. miR-195-5p regulates multi-drug resistance of gastric cancer cells via targeting ZNF139. Oncol. Rep., 2018, 40(3), 1370-1378.
[http://dx.doi.org/10.3892/or.2018.6524] [PMID: 29956811]
[41]
Shang, C.; Guo, Y.; Zhang, J.; Huang, B. Silence of long noncoding RNA UCA1 inhibits malignant proliferation and chemotherapy resistance to adriamycin in gastric cancer. Cancer Chemother. Pharmacol., 2016, 77(5), 1061-1067.
[http://dx.doi.org/10.1007/s00280-016-3029-3] [PMID: 27056384]
[42]
Dai, Q.; Zhang, T.; Pan, J.; Li, C. LncRNA UCA1 promotes cisplatin resistance in gastric cancer via recruiting EZH2 and activating PI3K/AKT pathway. J. Cancer, 2020, 11(13), 3882-3892.
[http://dx.doi.org/10.7150/jca.43446] [PMID: 32328192]
[43]
Zhu, W.; Xu, H.; Zhu, D.; Zhi, H.; Wang, T.; Wang, J.; Jiang, B.; Shu, Y.; Liu, P. miR-200bc/429 cluster modulates multidrug resistance of human cancer cell lines by targeting BCL2 and XIAP. Cancer Chemother. Pharmacol., 2012, 69(3), 723-731.
[http://dx.doi.org/10.1007/s00280-011-1752-3] [PMID: 21993663]
[44]
Kim, H.; Choi, H.; Lee, S.K. Epstein-Barr virus miR-BART20-5p regulates cell proliferation and apoptosis by targeting BAD. Cancer Lett., 2015, 356(2)(2 Pt B), 733-742.
[http://dx.doi.org/10.1016/j.canlet.2014.10.023] [PMID: 25449437]
[45]
Chen, Y.; Zuo, J.; Liu, Y.; Gao, H.; Liu, W. Inhibitory effects of miRNA-200c on chemotherapy-resistance and cell proliferation of gastric cancer SGC7901/DDP cells. Chin. J. Cancer, 2010, 29(12), 1006-1011.
[http://dx.doi.org/10.5732/cjc.010.10236] [PMID: 21114921]
[46]
Chang, L.; Guo, F.; Wang, Y.; Lv, Y.; Huo, B.; Wang, L.; Liu, W. MicroRNA-200c regulates the sensitivity of chemotherapy of gastric cancer SGC7901/DDP cells by directly targeting RhoE. POR, 2014, 20(1), 93-98.
[http://dx.doi.org/10.1007/s12253-013-9664-7] [PMID: 23821457]
[47]
Zhou, X.; Men, X.; Zhao, R.; Han, J.; Fan, Z.; Wang, Y.; Lv, Y.; Zuo, J.; Zhao, L.; Sang, M.; Liu, X.D.; Shan, B. miR-200c inhibits TGF-β-induced-EMT to restore trastuzumab sensitivity by targeting ZEB1 and ZEB2 in gastric cancer. Cancer Gene Ther., 2018, 25(3-4), 68-76.
[http://dx.doi.org/10.1038/s41417-017-0005-y] [PMID: 29302045]
[48]
Jiang, T.; Dong, P.; Li, L.; Ma, X.; Xu, P.; Zhu, H.; Wang, Y.; Yang, B.; Liu, K.; Liu, J.; Xue, J.; Lv, R.; Su, P.; Kong, G.; Chang, Y.; Zhao, C.; Wang, L. MicroRNA-200c regulates cisplatin resistance by targeting ZEB2 in human gastric cancer cells. Oncol. Rep., 2017, 38(1), 151-158.
[http://dx.doi.org/10.3892/or.2017.5659] [PMID: 28534959]
[49]
Ji, Q.; Hao, X.; Meng, Y.; Zhang, M.; Desano, J.; Fan, D.; Xu, L. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer, 2008, 8(1), 266.
[http://dx.doi.org/10.1186/1471-2407-8-266] [PMID: 18803879]
[50]
Bommer, G.T.; Gerin, I.; Feng, Y.; Kaczorowski, A.J.; Kuick, R.; Love, R.E.; Zhai, Y.; Giordano, T.J.; Qin, Z.S.; Moore, B.B.; MacDougald, O.A.; Cho, K.R.; Fearon, E.R. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol., 2007, 17(15), 1298-1307.
[51]
Koseki, T.; Inohara, N.; Chen, S.; Núñez, G. ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases. Proc. Natl. Acad. Sci. USA, 1998, 95(9), 5156-5160.
[http://dx.doi.org/10.1073/pnas.95.9.5156] [PMID: 9560245]
[52]
Tóth, C.; Meinrath, J.; Herpel, E.; Derix, J.; Fries, J.; Buettner, R.; Schirmacher, P.; Heikaus, S. Expression of the apoptosis repressor with caspase recruitment domain (ARC) in liver metastasis of colorectal cancer and its correlation with DNA mismatch repair proteins and p53. J. Cancer Res. Clin. Oncol., 2016, 142(5), 927-935.
[http://dx.doi.org/10.1007/s00432-015-2102-3] [PMID: 26721253]
[53]
Li, Q.; Wang, J.X.; He, Y.Q.; Feng, C.; Zhang, X.J.; Sheng, J.Q.; Li, P.F. MicroRNA-185 regulates chemotherapeutic sensitivity in gastric cancer by targeting apoptosis repressor with caspase recruitment domain. Cell Death Dis., 2014, 5(4), e1197.
[http://dx.doi.org/10.1038/cddis.2014.148] [PMID: 24763054]
[54]
Wang, P.; Li, Z.; Liu, H.; Zhou, D.; Fu, A.; Zhang, E. MicroRNA-126 increases chemosensitivity in drug-resistant gastric cancer cells by targeting EZH2. Biochem. Biophys. Res. Commun., 2016, 479(1), 91-96.
[http://dx.doi.org/10.1016/j.bbrc.2016.09.040] [PMID: 27622325]
[55]
Zhang, X.L.; Shi, H.J.; Wang, J.P.; Tang, H.S.; Wu, Y.B.; Fang, Z.Y.; Cui, S.Z.; Wang, L.T. MicroRNA-218 is upregulated in gastric cancer after cytoreductive surgery and hyperthermic intraperitoneal chemotherapy and increases chemosensitivity to cisplatin. World J. Gastroenterol., 2014, 20(32), 11347-11355.
[http://dx.doi.org/10.3748/wjg.v20.i32.11347] [PMID: 25170221]
[56]
Zhang, X.L.; Shi, H.J.; Wang, J.P.; Tang, H.S.; Cui, S.Z. MiR-218 inhibits multidrug resistance (MDR) of gastric cancer cells by targeting Hedgehog/smoothened. Int. J. Clin. Exp. Pathol., 2015, 8(6), 6397-6406.
[PMID: 26261515]
[57]
Li, J.; Yen, C.; Liaw, D.; Podsypanina, K.; Bose, S.; Wang, S.I.; Puc, J.; Miliaresis, C.; Rodgers, L.; McCombie, R.; Bigner, S.H.; Giovanella, B.C.; Ittmann, M.; Tycko, B.; Hibshoosh, H.; Wigler, M.H.; Parsons, R. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science, 1997, 275(5308), 1943-1947.
[http://dx.doi.org/10.1126/science.275.5308.1943] [PMID: 9072974]
[58]
An, Y.; Zhang, Z.; Shang, Y.; Jiang, X.; Dong, J.; Yu, P.; Nie, Y.; Zhao, Q. miR-23b-3p regulates the chemoresistance of gastric cancer cells by targeting ATG12 and HMGB2. Cell Death Dis., 2015, 6(5), e1766.
[http://dx.doi.org/10.1038/cddis.2015.123] [PMID: 25996293]
[59]
Zhang, P.F.; Sheng, L.L.; Wang, G.; Tian, M.; Zhu, L.Y.; Zhang, R.; Zhang, J.; Zhu, J.S. miR-363 promotes proliferation and chemo-resistance of human gastric cancer via targeting of FBW7 ubiquitin ligase expression. Oncotarget, 2016, 7(23), 35284-35292.
[http://dx.doi.org/10.18632/oncotarget.9169] [PMID: 27167197]
[60]
Li, G.; Yang, F.; Gu, S.; Li, Z.; Xue, M. MicroRNA-101 induces apoptosis in cisplatin-resistant gastric cancer cells by targeting VEGF-C. Mol. Med. Rep., 2016, 13(1), 572-578.
[http://dx.doi.org/10.3892/mmr.2015.4560] [PMID: 26573417]
[61]
Bao, J.; Xu, Y.; Wang, Q.; Zhang, J.; Li, Z.; Li, D.; Li, J. miR-101 alleviates chemoresistance of gastric cancer cells by targeting ANXA2. Biomed. Pharmacother., 2017, 92, 1030-1037.
[http://dx.doi.org/10.1016/j.biopha.2017.06.011] [PMID: 28609840]
[62]
Zhang, Z.; Kong, Y.; Yang, W.; Ma, F.; Zhang, Y.; Ji, S.; Ma, E.M.; Liu, H.; Chen, Y.; Hua, Y. Upregulation of microRNA-34a enhances the DDP sensitivity of gastric cancer cells by modulating proliferation and apoptosis via targeting MET. Oncol. Rep., 2016, 36(4), 2391-2397.
[http://dx.doi.org/10.3892/or.2016.5016] [PMID: 27513895]
[63]
Li, L.; Wu, C.; Zhao, Y. miRNA-34a enhances the sensitivity of gastric cancer cells to treatment with paclitaxel by targeting E2F5. Oncol. Lett., 2017, 13(6), 4837-4842.
[http://dx.doi.org/10.3892/ol.2017.6041] [PMID: 28599485]
[64]
Zhu, M.; Zhou, X.; Du, Y.; Huang, Z.; Zhu, J.; Xu, J.; Cheng, G.; Shu, Y.; Liu, P.; Zhu, W.; Wang, T. miR-20a induces cisplatin resistance of a human gastric cancer cell line via targeting CYLD. Mol. Med. Rep., 2016, 14(2), 1742-1750.
[http://dx.doi.org/10.3892/mmr.2016.5413] [PMID: 27357419]
[65]
Du, Y.; Zhu, M.; Zhou, X.; Huang, Z.; Zhu, J.; Xu, J.; Cheng, G.; Shu, Y.; Liu, P.; Zhu, W.; Wang, T. miR-20a enhances cisplatin resistance of human gastric cancer cell line by targeting NFKBIB. Tumour Biol., 2016, 37(1), 1261-1269.
[http://dx.doi.org/10.1007/s13277-015-3921-1] [PMID: 26286834]
[66]
Li, X.; Zhang, Z.; Yu, M.; Li, L.; Du, G.; Xiao, W.; Yang, H. Involvement of miR-20a in promoting gastric cancer progression by targeting early growth response 2 (EGR2). Int. J. Mol. Sci., 2013, 14(8), 16226-16239.
[http://dx.doi.org/10.3390/ijms140816226] [PMID: 23924943]
[67]
Zhou, L.; Li, X.; Zhou, F.; Jin, Z.; Chen, D.; Wang, P.; Zhang, S.; Zhuge, Y.; Shang, Y.; Zou, X. Downregulation of leucine-rich repeats and immunoglobulin-like domains 1 by microRNA-20a modulates gastric cancer multidrug resistance. Cancer Sci., 2018, 109(4), 1044-1054.
[http://dx.doi.org/10.1111/cas.13538] [PMID: 29450946]
[68]
Danza, K.; Silvestris, N.; Simone, G.; Signorile, M.; Saragoni, L.; Brunetti, O.; Monti, M.; Mazzotta, A.; De Summa, S.; Mangia, A.; Tommasi, S. Role of miR-27a, miR-181a and miR-20b in gastric cancer hypoxia-induced chemoresistance. Cancer Biol. Ther., 2016, 17(4), 400-406.
[http://dx.doi.org/10.1080/15384047.2016.1139244] [PMID: 26793992]
[69]
Vader, G.; Lens, S.M. The Aurora kinase family in cell division and cancer. Biochim. Biophys. Acta, 2008, 1786(1), 60-72.
[PMID: 18662747]
[70]
Han, X.; Zhang, J.J.; Han, Z.Q.; Zhang, H.B.; Wang, Z.A. Let-7b attenuates cisplatin resistance and tumor growth in gastric cancer by targeting AURKB. Cancer Gene Ther., 2018, 25(11-12), 300-308.
[http://dx.doi.org/10.1038/s41417-018-0048-8] [PMID: 30237418]
[71]
Yang, X.; Cai, H.; Liang, Y.; Chen, L.; Wang, X.; Si, R.; Qu, K.; Jiang, Z.; Ma, B.; Miao, C.; Li, J.; Wang, B.; Gao, P. Inhibition of c-Myc by let-7b mimic reverses mutidrug resistance in gastric cancer cells. Oncol. Rep., 2015, 33(4), 1723-1730.
[http://dx.doi.org/10.3892/or.2015.3757] [PMID: 25633261]
[72]
Yu, Y.; Yu, X.; Liu, H.; Song, Q.; Yang, Y. miR-494 inhibits cancer-initiating cell phenotypes and reverses resistance to lapatinib by downregulating FGFR2 in HER2-positive gastric cancer. Int. J. Mol. Med., 2018, 42(2), 998-1007.
[http://dx.doi.org/10.3892/ijmm.2018.3680] [PMID: 29786108]
[73]
Peng, Q-P.; Du, D-B.; Ming, Q.; Hu, F.; Wu, Z-B.; Qiu, S. MicroRNA 494 increases chemosensitivity to doxorubicin in gastric cancer cells by targeting phosphodiesterases 4D. Cell. Mol. Biol., 2018, 64(15), 62-66.
[http://dx.doi.org/10.14715/cmb/2017.64.15.10] [PMID: 30672438]
[74]
Zeng, J.F.; Ma, X.Q.; Wang, L.P.; Wang, W. MicroRNA-145 exerts tumor-suppressive and chemo-resistance lowering effects by targeting CD44 in gastric cancer. World J. Gastroenterol., 2017, 23(13), 2337-2345.
[http://dx.doi.org/10.3748/wjg.v23.i13.2337] [PMID: 28428713]
[75]
Wang, K.C.; Chang, H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell, 2011, 43(6), 904-914.
[http://dx.doi.org/10.1016/j.molcel.2011.08.018] [PMID: 21925379]
[76]
Li, M.L.; Wang, Y.; Xu, Y.N.; Lu, Q.Y. Overexpression of LncRNA-HOTAIR promotes chemoresistance in acute leukemia cells. Int. J. Clin. Exp. Pathol., 2020, 13(12), 3044-3051.
[PMID: 33425105]
[77]
Liu, Q.; Ma, H.; Sun, X.; Liu, B.; Xiao, Y.; Pan, S.; Zhou, H.; Dong, W.; Jia, L. The regulatory ZFAS1/miR-150/ST6GAL1 crosstalk modulates sialylation of EGFR via PI3K/Akt pathway in T-cell acute lymphoblastic leukemia. J. Exp. Clin. Cancer Res., 2019, 38(1), 199.
[78]
Li, L.; Lv, G.; Wang, B.; Ma, H.; Long Non-Coding, R.N.A. Long non-coding RNA KCNQ1OT1 promotes multidrug resistance in chordoma by functioning as a molecular sponge of miR-27b-3p and subsequently increasing ATF2 expression. Cancer Manag. Res., 2020, 12, 7847-7853.
[http://dx.doi.org/10.2147/CMAR.S250611] [PMID: 32922083]
[79]
Zhang, Z.Z.; Shen, Z.Y.; Shen, Y.Y.; Zhao, E.H.; Wang, M.; Wang, C.J.; Cao, H.; Xu, J. HOTAIR long noncoding RNA promotes gastric cancer metastasis through suppression of Poly r(C)-Binding Protein (PCBP) 1. Mol. Cancer Ther., 2015, 14(5), 1162-1170.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0695] [PMID: 25612617]
[80]
Cheng, C.; Qin, Y.; Zhi, Q.; Wang, J.; Qin, C. Knockdown of long non-coding RNA HOTAIR inhibits cisplatin resistance of gastric cancer cells through inhibiting the PI3K/Akt and Wnt/beta-catenin signaling pathways by up-regulating miR-34a. Inter. J. Boil. Macromol., 2018, 107(Pt B), 2620-2629.
[81]
Yan, J.; Dang, Y.; Liu, S.; Zhang, Y.; Zhang, G. LncRNA HOTAIR promotes cisplatin resistance in gastric cancer by targeting miR-126 to activate the PI3K/AKT/MRP1 genes. Tumour Biol., 2016, 37(12), 16345-16355.
[http://dx.doi.org/10.1007/s13277-016-5448-5] [PMID: 27900563]
[82]
Wang, H.; Qin, R.; Guan, A.; Yao, Y.; Huang, Y.; Jia, H.; Huang, W.; Gao, J. HOTAIR enhanced paclitaxel and doxorubicin resistance in gastric cancer cells partly through inhibiting miR-217 expression. J. Cell. Biochem., 2018, 119(9), 7226-7234.
[http://dx.doi.org/10.1002/jcb.26901] [PMID: 29856087]
[83]
Xu, W.; He, L.; Li, Y.; Tan, Y.; Zhang, F.; Xu, H. Silencing of lncRNA ZFAS1 inhibits malignancies by blocking Wnt/β-catenin signaling in gastric cancer cells. Biosci. Biotechnol. Biochem., 2018, 82(3), 456-465.
[http://dx.doi.org/10.1080/09168451.2018.1431518] [PMID: 29424266]
[84]
Wang, Y.; Zhang, D.; Wu, K.; Zhao, Q.; Nie, Y.; Fan, D. Long noncoding RNA MRUL promotes ABCB1 expression in multidrug-resistant gastric cancer cell sublines. Mol. Cell. Biol., 2014, 34(17), 3182-3193.
[http://dx.doi.org/10.1128/MCB.01580-13] [PMID: 24958102]
[85]
Hosseini, N.F.; Manoochehri, H.; Khoei, S.G.; Sheykhhasan, M. The Functional role of long non-coding rna uca1 in human multiple cancers: A review study. Curr. Mol. Med., 2021, 21(2), 96-110.
[http://dx.doi.org/10.2174/1566524020666200619124543] [PMID: 32560605]
[86]
Zhang, X.W.; Bu, P.; Liu, L.; Zhang, X.Z.; Li, J. Overexpression of long non-coding RNA PVT1 in gastric cancer cells promotes the development of multidrug resistance. Biochem. Biophys. Res. Commun., 2015, 462(3), 227-232.
[http://dx.doi.org/10.1016/j.bbrc.2015.04.121] [PMID: 25956062]
[87]
Du, P.; Hu, C.; Qin, Y.; Zhao, J.; Patel, R.; Fu, Y.; Zhu, M.; Zhang, W.; Huang, G. LncRNA PVT1 mediates antiapoptosis and 5-fluorouracil resistance via increasing Bcl2 expression in gastric cancer. J. Oncol., 2019, 2019, 9325407.
[http://dx.doi.org/10.1155/2019/9325407] [PMID: 31205469]
[88]
Ding, J.; Li, D.; Gong, M.; Wang, J.; Huang, X.; Wu, T.; Wang, C. Expression and clinical significance of the long non-coding RNA PVT1 in human gastric cancer. OncoTargets Ther., 2014, 7, 1625-1630.
[http://dx.doi.org/10.2147/OTT.S68854] [PMID: 25258543]
[89]
Zhao, Y.; Guo, Q.; Chen, J.; Hu, J.; Wang, S.; Sun, Y. Role of long non-coding RNA HULC in cell proliferation, apoptosis and tumor metastasis of gastric cancer: A clinical and in vitro investigation. Oncol. Rep., 2014, 31(1), 358-364.
[http://dx.doi.org/10.3892/or.2013.2850] [PMID: 24247585]
[90]
Zhang, Y.; Song, X.; Wang, X.; Hu, J.; Jiang, L. Silencing of LncRNA HULC enhances chemotherapy induced apoptosis in human gastric cancer. J. Med. Biochem., 2016, 35(2), 137-143.
[http://dx.doi.org/10.1515/jomb-2015-0016] [PMID: 28356873]
[91]
Xin, L.; Zhou, Q.; Yuan, Y.W.; Zhou, L.Q.; Liu, L.; Li, S.H.; Liu, C. METase/lncRNA HULC/FoxM1 reduced cisplatin resistance in gastric cancer by suppressing autophagy. J. Cancer Res. Clin. Oncol., 2019, 145(10), 2507-2517.
[http://dx.doi.org/10.1007/s00432-019-03015-w] [PMID: 31485766]
[92]
Wang, S.; Chen, W.; Yu, H.; Song, Z.; Li, Q.; Shen, X.; Wu, Y.; Zhu, L.; Ma, Q.; Xing, D. lncRNA ROR promotes gastric cancer drug resistance. Cancer Contr., 2020, 27(1), 1073274820904694.
[http://dx.doi.org/10.1177/1073274820904694] [PMID: 32019330]
[93]
Zeng, L.; Liao, Q.; Zou, Z.; Wen, Y.; Wang, J.; Liu, C.; He, Q.; Weng, N.; Zeng, J.; Tang, H.; Fang, R.; Lei, Z.; Tang, Z.; Yang, X.; Cui, S.; Long Non-Coding, R.N.A. Long non-coding RNA XLOC_006753 promotes the development of multidrug resistance in gastric cancer cells through the PI3K/AKT/mTOR signaling pathway. Cell. Physiol. Biochem., 2018, 51(3), 1221-1236.
[http://dx.doi.org/10.1159/000495499] [PMID: 30481766]
[94]
Lan, W.G.; Xu, D.H.; Xu, C.; Ding, C.L.; Ning, F.L.; Zhou, Y.L.; Ma, L.B.; Liu, C.M.; Han, X. Silencing of long non-coding RNA ANRIL inhibits the development of multidrug resistance in gastric cancer cells. Oncol. Rep., 2016, 36(1), 263-270.
[http://dx.doi.org/10.3892/or.2016.4771] [PMID: 27121324]
[95]
YiRen H.; YingCong, Y.; Sunwu, Y.; Keqin, L.; Xiaochun, T.; Senrui, C.; Ende, C.; XiZhou, L.; Yanfan, C. Long noncoding RNA MALAT1 regulates autophagy associated chemoresistance via miR-23b-3p sequestration in gastric cancer. Mol. Cancer, 2017, 16(1), 174.
[http://dx.doi.org/10.1186/s12943-017-0743-3] [PMID: 29162158]
[96]
Xi, Z.; Si, J.; Nan, J. LncRNA MALAT1 potentiates autophagy-associated cisplatin resistance by regulating the microRNA-30b/autophagy-related gene 5 axis in gastric cancer. Int. J. Oncol., 2019, 54(1), 239-248.
[PMID: 30365113]
[97]
Dai, Q.; Zhang, T.; Li, C. LncRNA MALAT1 regulates the cell proliferation and cisplatin resistance in gastric cancer via PI3K/AKT Pathway. Cancer Manag. Res., 2020, 12, 1929-1939.
[http://dx.doi.org/10.2147/CMAR.S243796] [PMID: 32214850]
[98]
Shang, C.; Sun, L.; Zhang, J.; Zhao, B.; Chen, X.; Xu, H.; Huang, B. Silence of cancer susceptibility candidate 9 inhibits gastric cancer and reverses chemoresistance. Oncotarget, 2017, 8(9), 15393-15398.
[http://dx.doi.org/10.18632/oncotarget.14871] [PMID: 28146436]
[99]
Sanchez-Mejias, A.; Tay, Y. Competing endogenous RNA networks: Tying the essential knots for cancer biology and therapeutics. J. Hematol. Oncol., 2015, 8(1), 30.
[http://dx.doi.org/10.1186/s13045-015-0129-1] [PMID: 25888444]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy