Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Research Article

The lncRNA Tincr Regulates the Abnormal Differentiation of Intestinal Epithelial Stem Cells in the Diabetic State Via the miR-668-3p/Klf3 Axis

Author(s): Li-Bin Sun, Ai-Ping Ding, Yue Han, Ming-Quan Song and Ti-Dong Shan*

Volume 18, Issue 1, 2023

Published on: 27 May, 2022

Page: [105 - 114] Pages: 10

DOI: 10.2174/1574888X17666220331124607

Price: $65

Abstract

Background: Diabetes mellitus (DM) is among the most common chronic diseases, and diabetic enteropathy (DE), which is a complication caused by DM, is a serious health condition. Long noncoding RNAs (lncRNAs) are regulators of DE progression.

Objective: However, the mechanisms of action of multiple lncRNAs involved in DE remain poorly understood.

Methods: Reverse transcription-quantitative PCR (RT–qPCR) and in situ hybridization were used to analyze terminal differentiation-induced lncRNA (Tincr) expression in intestinal epithelial cells (IECs) in the DM state. Microarray analysis, bioinformatics analysis, and luciferase reporter assays were used to identify the genes targeted by Tincr. The role of miR-668-3p was then explored by up- and down-regulating its expression in vitro and in vivo.

Results: In this study, we observed that the level of lncRNA Tincr was increased in IECs in the DM state. More importantly, Tincr was associated with abnormal intestinal epithelial stem cell (IESC) differentiation in DM. Our mechanistic study demonstrated that Tincr is a major marker of Lgr5+ stem cells in DM. In addition, we investigated whether Tincr directly targets miR-668-3p and whether miR-668-3p targets Klf3. Our findings showed that Tincr sponged miR-668-3p, which attenuated abnormal IESC differentiation in DM by regulating Klf3 expression.

Conclusion: This study presents evidence of an essential role for Tincr in IESC differentiation in DM.

Keywords: Diabetes mellitus, Tincr, microRNA, intestinal epithelial stem cell, differentiation, diabetic enteropathy (DE).

Graphical Abstract

[1]
Archer AC, Muthukumar SP, Halami PM. Lactobacillus fermentum MCC2759 and MCC2760 alleviate inflammation and intestinal function in high-fat diet-fed and streptozotocin-induced diabetic rats. Probiotics Antimicrob Proteins 2021; 13(4): 1068-80.
[http://dx.doi.org/10.1007/s12602-021-09744-0] [PMID: 33575913]
[2]
Al-Kafaji G, Al-Muhtaresh HA, Salem AH. Expression and clinical significance of miR-1 and miR-133 in pre-diabetes. Biomed Rep 2021; 14(3): 33.
[http://dx.doi.org/10.3892/br.2021.1409] [PMID: 33585035]
[3]
D’Addio F, Fiorina P. Type 1 diabetes and dysfunctional intestinal homeostasis. Trends Endocrinol Metab 2016; 27(7): 493-503.
[http://dx.doi.org/10.1016/j.tem.2016.04.005] [PMID: 27185326]
[4]
de Kort S, Simons CCJM, van den Brandt PA, et al. Diabetes mellitus, genetic variants in the insulin-like growth factor pathway and colorectal cancer risk. Int J Cancer 2019; 145(7): 1774-81.
[http://dx.doi.org/10.1002/ijc.32365] [PMID: 31018241]
[5]
Wang X, Häring MF, Rathjen T, et al. Insulin resistance in vascular endothelial cells promotes intestinal tumour formation. Oncogene 2017; 36(35): 4987-96.
[http://dx.doi.org/10.1038/onc.2017.107] [PMID: 28459466]
[6]
Shan TD, Tian ZB, Jiang YP. Downregulation of lncRNA MALAT1 suppresses abnormal proliferation of small intestinal epithelial stem cells through miR-129-5p expression in diabetic mice. Int J Mol Med 2020; 45(4): 1250-60.
[http://dx.doi.org/10.3892/ijmm.2020.4492] [PMID: 32124944]
[7]
Groot M, Zhang D, Jin Y. Long non-coding RNA review and implications in lung diseases. JSM Bioinform Genom Proteom 2018; 3(2): 1033.
[PMID: 30854513]
[8]
Grote P, Wittler L, Hendrix D, et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 2013; 24(2): 206-14.
[http://dx.doi.org/10.1016/j.devcel.2012.12.012] [PMID: 23369715]
[9]
Dong L, Ding H, Li Y, Xue D, Liu Y. LncRNA TINCR is associated with clinical progression and serves as tumor suppressive role in prostate cancer. Cancer Manag Res 2018; 10: 2799-807.
[http://dx.doi.org/10.2147/CMAR.S170526] [PMID: 30154672]
[10]
Kretz M. TINCR, staufen1, and cellular differentiation. RNA Biol 2013; 10(10): 1597-601.
[http://dx.doi.org/10.4161/rna.26249] [PMID: 24019000]
[11]
Girish N, Liu CY, Gadeock S, et al. Persistence of Lgr5+ colonic epithelial stem cells in mouse models of inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 2021; 321(3): G308-24.
[http://dx.doi.org/10.1152/ajpgi.00248.2020] [PMID: 34260310]
[12]
Bracken CP, Scott HS, Goodall GJ. A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 2016; 17(12): 719-32.
[http://dx.doi.org/10.1038/nrg.2016.134] [PMID: 27795564]
[13]
Huang CZ, Xu JH, Zhong W, et al. Sox9 transcriptionally regulates Wnt signaling in intestinal epithelial stem cells in hypomethylated crypts in the diabetic state. Stem Cell Res Ther 2017; 8(1): 60.
[http://dx.doi.org/10.1186/s13287-017-0507-4] [PMID: 28279198]
[14]
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method Methods 2001; 25(4): 402-8.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[15]
Shan TD, Yue H, Sun XG, Jiang YP, Chen L. Rspo3 regulates the abnormal differentiation of small intestinal epithelial cells in diabetic state. Stem Cell Res Ther 2021; 12(1): 330.
[http://dx.doi.org/10.1186/s13287-021-02385-8] [PMID: 34099046]
[16]
Shan TD, Ouyang H, Yu T, et al. miRNA-30e regulates abnormal differentiation of small intestinal epithelial cells in diabetic mice by downregulating Dll4 expression. Cell Prolif 2016; 49(1): 102-14.
[http://dx.doi.org/10.1111/cpr.12230] [PMID: 26786283]
[17]
Gracz AD, Ramalingam S, Magness ST. Sox9 expression marks a subset of CD24-expressing small intestine epithelial stem cells that form organoids in vitro. Am J Physiol Gastrointest Liver Physiol 2010; 298(5): G590-600.
[http://dx.doi.org/10.1152/ajpgi.00470.2009] [PMID: 20185687]
[18]
Tay Y, Kats L, Salmena L, et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 2011; 147(2): 344-57.
[http://dx.doi.org/10.1016/j.cell.2011.09.029] [PMID: 22000013]
[19]
Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 2011; 147(2): 358-69.
[http://dx.doi.org/10.1016/j.cell.2011.09.028] [PMID: 22000014]
[20]
Ghafouri-Fard S, Dashti S, Taheri M, Omrani MD. TINCR: An lncRNA with dual functions in the carcinogenesis process. Noncoding RNA Res 2020; 5(3): 109-15.
[http://dx.doi.org/10.1016/j.ncrna.2020.06.003] [PMID: 32695943]
[21]
Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007; 449(7165): 1003-7.
[http://dx.doi.org/10.1038/nature06196] [PMID: 17934449]
[22]
Brex D, Barbagallo C, Mirabella F, et al. LINC00483 has a potential tumor-suppressor role in colorectal cancer through multiple molecular axes. Front Oncol 2021; 10: 614455.
[http://dx.doi.org/10.3389/fonc.2020.614455] [PMID: 33552987]
[23]
Zhang J, Liu L, Li J, Le TD. LncmiRSRN: Identification and analysis of long non-coding RNA related miRNA sponge regulatory network in human cancer. Bioinformatics 2018; 34(24): 4232-40.
[http://dx.doi.org/10.1093/bioinformatics/bty525] [PMID: 29955818]
[24]
McKenna LB, Schug J, Vourekas A, et al. MicroRNAs control intestinal epithelial differentiation, architecture, and barrier function. Gastroenterology 2010; 139(5): 1654-64.
[http://dx.doi.org/10.1053/j.gastro.2010.07.040]
[25]
Chivukula RR, Shi G, Acharya A, et al. An essential mesenchymal function for miR-143/145 in intestinal epithelial regeneration. Cell 2014; 157(5): 1104-16.
[http://dx.doi.org/10.1016/j.cell.2014.03.055] [PMID: 24855947]
[26]
Fernandez-Zapico ME, Lomberk GA, Tsuji S, et al. A functional family-wide screening of SP/KLF proteins identifies a subset of suppressors of KRAS-mediated cell growth. Biochem J 2011; 435(2): 529-37.
[http://dx.doi.org/10.1042/BJ20100773] [PMID: 21171965]
[27]
Lyng H, Brøvig RS, Svendsrud DH, et al. Gene expressions and copy numbers associated with metastatic phenotypes of uterine cervical cancer. BMC Genomics 2006; 7(1): 268.
[http://dx.doi.org/10.1186/1471-2164-7-268] [PMID: 17054779]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy