Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

The Impact of Bioactive Compounds Derived from Marine Fish on Cancer

Author(s): S. Mirunalini* and V.L. Maruthanila

Volume 22, Issue 15, 2022

Published on: 25 May, 2022

Page: [2757 - 2765] Pages: 9

DOI: 10.2174/1871520622666220330142442

Price: $65

Abstract

Cancer persists as the world's leading cause of mortality, thereby making it a compelling condition to research and potentially develop prevention options. Anticancer therapies such as chemotherapy, surgery and radiation therapy are becoming highly futile and tend to have achieved a clinical deficit due to massive side effects, toxicities, and limited specificity. Anticancer agents from natural sources, such as aquatic fishes, terrestrial mammals, animal venoms, and amphibians, have mainly been focused on in recent researches. Edible marine fishes contain high contents of fatty acids, vitamins, and proteins, also having bioactive compounds. Fish derivatives naturally have the potential to target cancer cells while being less hazardous to normal tissues, making them a better choice for cancer prevention and therapy. In this review, we mainly focused on the bioactive compounds identified in marine fishes which have significant biological properties including anticancer effects, also discuss the mechanism of action.

Keywords: Marine fish, bioactive peptides, mechanism of action, anticancer activity, cancer, malignant tumor.

Graphical Abstract

[1]
Zhang, Y.; Goddard, K.; Spinelli, J.J.; Gotay, C.; McBride, M.L. Risk of late mortality and second malignant neoplasms among 5-year survivors of young adult cancer: A report of the childhood, adolescent, and young adult cancer survivors research program. J. Cancer Epidemiol., 2012, 2012, 103032.
[http://dx.doi.org/10.1155/2012/103032] [PMID: 23008713]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN esti-mates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Danaei, G.; Vander Hoorn, S.; Lopez, A.D.; Murray, C.J.; Ezzati, M. Causes of cancer in the world: Comparative risk assessment of nine behavioural and environmental risk factors. Lancet, 2005, 366(9499), 1784-1793.
[http://dx.doi.org/10.1016/S0140-6736(05)67725-2] [PMID: 16298215]
[4]
Hamilton, E.P.; Kaklamani, V.; Falkson, C.; Vidal, G.A.; Ward, P.J.; Patre, M.; Chui, S.Y.; Rotmensch, J.; Gupta, K.; Molinero, L.; Li, Y.; Emens, L.A. Impact of anti-HER2 treatments combined with atezolizumab on the tumor immune microenvironment in early or metastatic breast cancer: Results from a phase Ib study. Clin. Breast Cancer, 2021, 21(6), 539-551.
[http://dx.doi.org/10.1016/j.clbc.2021.04.011] [PMID: 34154926]
[5]
Hilchie, A.L.; Doucette, C.D.; Pinto, D.M.; Patrzykat, A.; Douglas, S.; Hoskin, D.W. Pleurocidin-family cationic antimicrobial peptides are cytolytic for breast carcinoma cells and prevent growth of tumor xenografts. Breast Cancer Res., 2011, 13(5), R102.
[http://dx.doi.org/10.1186/bcr3043] [PMID: 22023734]
[6]
Smith, G.I.; Julliand, S.; Reeds, D.N.; Sinacore, D.R.; Klein, S.; Mittendorfer, B. Fish oil-derived n-3 PUFA therapy increases muscle mass and function in healthy older adults. Am. J. Clin. Nutr., 2015, 102(1), 115-122.
[http://dx.doi.org/10.3945/ajcn.114.105833] [PMID: 25994567]
[7]
Jiang, W.; Zhu, Z.; McGinley, J.N.; El Bayoumy, K.; Manni, A.; Thompson, H.J. Identification of a molecular signature underlying inhibi-tion of mammary carcinoma growth by dietary N-3 fatty acids. Cancer Res., 2012, 72(15), 3795-3806.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1047] [PMID: 22651929]
[8]
Jourdan, M.L.; Mahéo, K.; Barascu, A.; Goupille, C.; De Latour, M.P.; Bougnoux, P.; Rio, P.G. Increased BRCA1 protein in mammary tumours of rats fed marine ω-3 fatty acids. Oncol. Rep., 2007, 17(4), 713-719.
[http://dx.doi.org/10.3892/or.17.4.713] [PMID: 17342305]
[9]
Picot, L.; Bordenave, S.; Didelot, S.; Fruitier-Arnaudin, I.; Sannier, F.; Thorkelsson, G.; Bergé, J.P.; Guérard, F.; Chabeaud, A.; Piot, J.M. Antiproliferative activity of fish protein hydrolysates on human breast cancer cell lines. Process Biochem., 2006, 41(5), 1217-1222.
[http://dx.doi.org/10.1016/j.procbio.2005.11.024]
[10]
Kim, S.K.; Wijesekara, I. Development and biological activities of marine-derived bioactive peptides: A review. J. Funct. Foods, 2010, 2(1), 1-9.
[http://dx.doi.org/10.1016/j.jff.2010.01.003]
[11]
Saeed, A.F.U.H.; Su, J.; Ouyang, S. Marine-derived drugs: Recent advances in cancer therapy and immune signaling. Biomed. Pharmacother., 2021, 134, 111091.
[http://dx.doi.org/10.1016/j.biopha.2020.111091] [PMID: 33341044]
[12]
Williams, D.E.; Andersen, R.J. Biologically active marine natural products and their molecular targets discovered using a chemical genetics approach. Nat. Prod. Rep., 2020, 37(5), 617-633.
[http://dx.doi.org/10.1039/C9NP00054B] [PMID: 31750842]
[13]
Signori, C.; El-Bayoumy, K.; Russo, J.; Thompson, H.J.; Richie, J.P.; Hartman, T.J.; Manni, A. Chemoprevention of breast cancer by fish oil in preclinical models: Trials and tribulations. Cancer Res., 2011, 71(19), 6091-6096.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-0977] [PMID: 21933885]
[14]
Yee, L.D.; Young, D.C.; Rosol, T.J.; Vanbuskirk, A.M.; Clinton, S.K. Dietary (n-3) polyunsaturated fatty acids inhibit HER-2/neu-induced breast cancer in mice independently of the PPARgamma ligand rosiglitazone. J. Nutr., 2005, 135(5), 983-988.
[http://dx.doi.org/10.1093/jn/135.5.983] [PMID: 15867269]
[15]
Le, H.M.; Newman, D.J.; Glaser, K.B.; Mayer, A.M. The marine pharmacology and pharmaceuticals pipeline in 2020. FASEB J., 2020, 34(S1), 1.
[http://dx.doi.org/10.1096/fasebj.2020.34.s1.01808]
[16]
Manni, A.; Richie, J.P., Jr; Xu, H.; Washington, S.; Aliaga, C.; Bruggeman, R.; Cooper, T.K.; Prokopczyk, B.; Trushin, N.; Calcagnotto, A.; Das, A.; Liao, J.; El-Bayoumy, K. Influence of omega-3 fatty acids on Tamoxifen-induced suppression of rat mammary carcinogenesis. Int. J. Cancer, 2014, 134(7), 1549-1557.
[http://dx.doi.org/10.1002/ijc.28490] [PMID: 24122252]
[17]
Kuzan, A.; Smulczyńska-Demel, A.; Chwiłkowska, A.; Saczko, J.; Frydrychowski, A.; Dominiak, M. An estimation of the biological prop-erties of fish collagen in an experimental in vitro study. Adv. Clin. Exp. Med. Adv. Clin. Exp. Med., 2015, 24(3), 385-392.
[http://dx.doi.org/10.17219/acem/31704] [PMID: 26467125]
[18]
Zhuang, Y.; Sun, L.; Zhang, Y.; Liu, G. Antihypertensive effect of long-term oral administration of jellyfish (Rhopilema esculentum) col-lagen peptides on renovascular hypertension. Mar. Drugs, 2012, 10(2), 417-426.
[http://dx.doi.org/10.3390/md10020417] [PMID: 22412809]
[19]
Al Khawli, F.; Ferrer, E.; Berrada, H.; Barba, F.J.; Pateiro, M.; Domínguez, R.; Lorenzo, J.M.; Gullón, P.; Kousoulaki, K. Innovative green technologies of intensification for valorization of seafood and their by-products. Mar. Drugs, 2019, 17(12), 689.
[http://dx.doi.org/10.3390/md17120689] [PMID: 31817754]
[20]
Barman, L.C.; Sikder, M.B.H.; Ahmad, I.; Shourove, J.H.; Rashid, S.S.; Ramli, A.N.M. Gelatin extraction from the bangladeshi pangas catfish (pangasius pangasius) waste and comparative study of their physicochemical properties with a commercial gelatin. Int. J. Eng. Sci. Technol., 2020, 7(2), 13-23.
[http://dx.doi.org/10.15282/10.15282/ijets.7.2.2020.1002]
[21]
Sow, L.C.; Chong, J.M.N.; Liao, Q.X.; Yang, H. Effects of κ-carrageenan on the structure and rheological properties of fish gelatin. J. Food Eng., 2018, 239, 92-103.
[http://dx.doi.org/10.1016/j.jfoodeng.2018.05.035]
[22]
Judan Cruz, K.G.; Landingin, E.P.; Gajeton, M.B.; Fernando, S.I.D.; Watanabe, K. Carotenoid coloration and coloration-linked gene ex-pression in red tilapia (Oreochromis sp.) tissues. BMC Vet. Res., 2021, 17(1), 314.
[http://dx.doi.org/10.1186/s12917-021-03006-5] [PMID: 34563199]
[23]
Hsu, K.C.; Li-Chan, E.C.; Jao, C.L. Antiproliferative activity of peptides prepared from enzymatic hydrolysates of tuna dark muscle on human breast cancer cell line MCF-7. Food Chem., 2011, 126(2), 617-622.
[http://dx.doi.org/10.1016/j.foodchem.2010.11.066]
[24]
Ostrander, G.K.; Cheng, K.C.; Wolf, J.C.; Wolfe, M.J. Shark cartilage, cancer and the growing threat of pseudoscience. Cancer Res., 2004, 64(23), 8485-8491.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2260] [PMID: 15574750]
[25]
Hammerness, P.; Ulbricht, C.; Barrette, E.P.; Boon, H.; Szapary, P.; Sollars, D.; Smith, M.; Tsourounis, C.; Bent, S.; Basch, E. Shark carti-lage monograph: A clinical decision support tool. J. Herb. Pharmacother., 2002, 2(2), 71-93.
[PMID: 15277099]
[26]
Freitas-Júnior, A.C.; Costa, H.M.; Icimoto, M.Y.; Hirata, I.Y.; Marcondes, M.; Carvalho, L.B., Jr; Oliveira, V.; Bezerra, R.S. Giant Amazo-nian fish pirarucu (Arapaima gigas): Its viscera as a source of thermostable trypsin. Food Chem., 2012, 133(4), 1596-1602.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.056]
[27]
Lee, A.; Langer, R. Shark cartilage contains inhibitors of tumor angiogenesis. Science, 1983, 221(4616), 1185-1187.
[http://dx.doi.org/10.1126/science.6193581] [PMID: 6193581]
[28]
Dupont, E.; Falardeau, P.; Mousa, S.A.; Dimitriadou, V.; Pepin, M.C.; Wang, T.; Alaoui-Jamali, M.A. Antiangiogenic and antimetastatic properties of Neovastat (AE-941), an orally active extract derived from cartilage tissue. Clin. Exp. Metastasis, 2002, 19(2), 145-153.
[http://dx.doi.org/10.1023/A:1014546909573] [PMID: 11964078]
[29]
Shai, Y.; Fox, J.; Caratsch, C.; Shih, Y.L.; Edwards, C.; Lazarovici, P. Sequencing and synthesis of pardaxin, a polypeptide from the Red Sea Moses sole with ionophore activity. FEBS Lett., 1988, 242(1), 161-166.
[http://dx.doi.org/10.1016/0014-5793(88)81007-X] [PMID: 2462511]
[30]
Zheng, L.; Ling, P.; Wang, Z.; Niu, R.; Hu, C.; Zhang, T.; Lin, X. A novel polypeptide from shark cartilage with potent anti-angiogenic activity. Cancer Biol. Ther., 2007, 6(5), 775-780.
[http://dx.doi.org/10.4161/cbt.6.5.4002] [PMID: 17426448]
[31]
Wang, M.; Nie, Y.; Peng, Y.; He, F.; Yang, J.; Wu, C.; Li, X. Purification, characterization and antitumor activities of a new protein from Syngnathus acus, an officinal marine fish. Mar. Drugs, 2012, 10(1), 35-50.
[PMID: 22363219]
[32]
Lin, W.J.; Chien, Y.L.; Pan, C.Y.; Lin, T.L.; Chen, J.Y.; Chiu, S.J.; Hui, C.F. Epinecidin-1, an antimicrobial peptide from fish (Epinephelus coioides) which has an antitumor effect like lytic peptides in human fibrosarcoma cells. Peptides, 2009, 30(2), 283-290.
[http://dx.doi.org/10.1016/j.peptides.2008.10.007] [PMID: 19007829]
[33]
Pangestuti, R.; Kim, S.K. Bioactive peptide of marine origin for the prevention and treatment of non-communicable diseases. Mar. Drugs, 2017, 15(3), 67.
[http://dx.doi.org/10.3390/md15030067] [PMID: 28282929]
[34]
Tripathi, A.K.; Kumari, T.; Harioudh, M.K.; Yadav, P.K.; Kathuria, M.; Shukla, P.K.; Mitra, K.; Ghosh, J.K. Identification of GXXXXG motif in Chrysophsin-1 and its implication in the design of analogs with cell-selective antimicrobial and anti-endotoxin activities. Sci. Rep., 2017, 7(1), 3384.
[http://dx.doi.org/10.1038/s41598-017-03576-1] [PMID: 28611397]
[35]
Chen, J.Y.; Lin, W.J.; Lin, T.L. A fish antimicrobial peptide, tilapia hepcidin TH2-3, shows potent antitumor activity against human fibro-sarcoma cells. Peptides, 2009, 30(9), 1636-1642.
[http://dx.doi.org/10.1016/j.peptides.2009.06.009] [PMID: 19539000]
[36]
Kohama, Y.; Matsumoto, S.; Oka, H.; Teramoto, T.; Okabe, M.; Mimura, T. Isolation of angiotensin-converting enzyme inhibitor from tuna muscle. Biochem. Biophys. Res. Commun., 1988, 155(1), 332-337.
[http://dx.doi.org/10.1016/S0006-291X(88)81089-1] [PMID: 3415688]
[37]
Matsumura, N.; Fujii, M.; Takeda, Y.; Sugita, K.; Shimizu, T. Angiotensin I-converting enzyme inhibitory peptides derived from bonito bowels autolysate. Biosci. Biotechnol. Biochem., 1993, 57(5), 695-697.
[http://dx.doi.org/10.1271/bbb.57.695] [PMID: 7763772]
[38]
Kim, S.K.; Kim, Y.T.; Byun, H.G.; Nam, K.S.; Joo, D.S.; Shahidi, F. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska pollack skin. J. Agric. Food Chem., 2001, 49(4), 1984-1989.
[http://dx.doi.org/10.1021/jf000494j] [PMID: 11308357]
[39]
Ono, S.; Hosokawa, M.; Miyashita, K.; Takahashi, K. Isolation of peptides with angiotensin I-converting enzyme inhibitory effect derived from hydrolysate of upstream chum salmon muscle. J. Food Sci., 2003, 68(5), 1611-1614.
[http://dx.doi.org/10.1111/j.1365-2621.2003.tb12300.x]
[40]
Enari, H.; Takahashi, Y.; Kawarasaki, M.; Tada, M.; Tatsuta, K. Identification of angiotensin I-converting enzyme inhibitory peptides derived from salmon muscle and their antihypertensive effect. Fish. Sci., 2008, 74(4), 911-920.
[http://dx.doi.org/10.1111/j.1444-2906.2008.01606.x]
[41]
Najm, A.A.K.; Azfaralariff, A.; Dyari, H.R.E.; Othman, B.A.; Shahid, M.; Khalili, N.; Law, D.; Syed Alwi, S.S.; Fazry, S. Anti-breast can-cer synthetic peptides derived from the Anabas testudineus skin mucus fractions. Sci. Rep., 2021, 11(1), 23182.
[http://dx.doi.org/10.1038/s41598-021-02007-6] [PMID: 34848729]
[42]
Wu, S.P.; Huang, T.C.; Lin, C.C.; Hui, C.F.; Lin, C.H.; Chen, J.Y. Pardaxin, a fish antimicrobial peptide, exhibits antitumor activity toward murine fibrosarcoma in vitro and in vivo. Mar. Drugs, 2012, 10(8), 1852-1872.
[http://dx.doi.org/10.3390/md10081852] [PMID: 23015777]
[43]
Huang, T.C.; Lee, J.F.; Chen, J.Y. Pardaxin, an antimicrobial peptide, triggers caspase-dependent and ROS-mediated apoptosis in HT-1080 cells. Mar. Drugs, 2011, 9(10), 1995-2009.
[http://dx.doi.org/10.3390/md9101995] [PMID: 22073006]
[44]
Choksawangkarn, W.; Phiphattananukoon, S.; Jaresitthikunchai, J.; Roytrakul, S. Antioxidative peptides from fish sauce by-product: Isola-tion and characterization. Agric. Nat. Resour. (Bangk.), 2018, 52(5), 460-466.
[http://dx.doi.org/10.1016/j.anres.2018.11.001]
[45]
Sarode, G.S.; Gupta, K.; Maniyar, N.; Sarode, S.C.; Panta, P.; Patil, S. Use of Tilapia Hepcidin in Oral Cancer Therapeutics: A Proposal. J. Contemp. Dent. Pract., 2019, 20(4), 403-404.
[http://dx.doi.org/10.5005/jp-journals-10024-2529] [PMID: 31308267]
[46]
Nasri, R.; Younes, I.; Jridi, M.; Trigui, M.; Bougatef, A.; Nedjar Arroume, N.; Dhulster, P.; Nasri, M.; Karra-Châabouni, M. ACE inhibito-ry and antioxidative activities of Goby (Zosterissessor ophiocephalus) fish protein hydrolysates: Effect on meat lipid oxidation. Food Res. Int., 2013, 54(1), 552-561.
[http://dx.doi.org/10.1016/j.foodres.2013.07.001]
[47]
Sampath Kumar, N.S.; Nazeer, R.A.; Jaiganesh, R. Purification and biochemical characterization of antioxidant peptide from horse macke-rel (Magalaspis cordyla) viscera protein. Peptides, 2011, 32(7), 1496-1501.
[http://dx.doi.org/10.1016/j.peptides.2011.05.020] [PMID: 21640151]
[48]
Theodore, A.E.; Raghavan, S.; Kristinsson, H.G. Antioxidative activity of protein hydrolysates prepared from alkaline-aided channel cat-fish protein isolates. J. Agric. Food Chem., 2008, 56(16), 7459-7466.
[http://dx.doi.org/10.1021/jf800185f] [PMID: 18662014]
[49]
Guha, P.; Kaptan, E.; Bandyopadhyaya, G.; Kaczanowska, S.; Davila, E.; Thompson, K.; Martin, S.S.; Kalvakolanu, D.V.; Vasta, G.R.; Ahmed, H. Cod glycopeptide with picomolar affinity to galectin-3 suppresses T-cell apoptosis and prostate cancer metastasis. Proc. Natl. Acad. Sci. USA, 2013, 110(13), 5052-5057.
[http://dx.doi.org/10.1073/pnas.1202653110] [PMID: 23479624]
[50]
Xu, M.; Fang, Y.J.; Chen, Y.M.; Lu, M.S.; Pan, Z.Z.; Yan, B.; Zhong, X.; Zhang, C.X. Higher freshwater fish and sea fish intake is inverse-ly associated with colorectal cancer risk among Chinese population: A case-control study. Sci. Rep., 2015, 5(1), 12976.
[http://dx.doi.org/10.1038/srep12976] [PMID: 26264963]
[51]
Song, M.; Chan, A.T.; Fuchs, C.S.; Ogino, S.; Hu, F.B.; Mozaffarian, D.; Ma, J.; Willett, W.C.; Giovannucci, E.L.; Wu, K. Dietary intake of fish, ω-3 and ω-6 fatty acids and risk of colorectal cancer: A prospective study in U.S. men and women. Int. J. Cancer, 2014, 135(10), 2413-2423.
[http://dx.doi.org/10.1002/ijc.28878] [PMID: 24706410]
[52]
Mat Jais, A.M.; Dambisya, Y.M.; Lee, T.L. Antinociceptive activity of Channa striatus (haruan) extracts in mice. J. Ethnopharmacol., 1997, 57(2), 125-130.
[http://dx.doi.org/10.1016/S0378-8741(97)00057-3] [PMID: 9254114]
[53]
Fu, Y.; Zhao, X.H. In vitro responses of hFOB1.19 cells towards chum salmon (Oncorhynchus keta) skin gelatin hydrolysates in cell proliferation, cycle progression and apoptosis. J. Funct. Foods, 2013, 5(1), 279-288.
[http://dx.doi.org/10.1016/j.jff.2012.10.017]
[54]
Wu, H.C.; Chen, H.M.; Shiau, C.Y. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int., 2003, 36(9-10), 949-957.
[http://dx.doi.org/10.1016/S0963-9969(03)00104-2]
[55]
Ennaas, N.; Hammami, R.; Beaulieu, L.; Fliss, I. Purification and characterization of four antibacterial peptides from protamex hydrolysate of Atlantic mackerel (Scomber scombrus) by-products. Biochem. Biophys. Res. Commun., 2015, 462(3), 195-200.
[http://dx.doi.org/10.1016/j.bbrc.2015.04.091] [PMID: 25934151]
[56]
Zheng, J.S.; Hu, X.J.; Zhao, Y.M.; Yang, J.; Li, D. Intake of fish and marine n-3 polyunsaturated fatty acids and risk of breast cancer: Meta-analysis of data from 21 independent prospective cohort studies. BMJ, 2013, 346(jun27 5), f3706.
[http://dx.doi.org/10.1136/bmj.f3706] [PMID: 23814120]
[57]
Engeset, D.; Braaten, T.; Teucher, B.; Kühn, T.; Bueno-de-Mesquita, H.B.; Leenders, M.; Agudo, A.; Bergmann, M.M.; Valanou, E.; Nas-ka, A.; Trichopoulou, A.; Key, T.J.; Crowe, F.L.; Overvad, K.; Sonestedt, E.; Mattiello, A.; Peeters, P.H.; Wennberg, M.; Jansson, J.H.; Boutron-Ruault, M.C.; Dossus, L.; Dartois, L.; Li, K.; Barricarte, A.; Ward, H.; Riboli, E.; Agnoli, C.; Huerta, J.M.; Sánchez, M.J.; Tumino, R.; Altzibar, J.M.; Vineis, P.; Masala, G.; Ferrari, P.; Muller, D.C.; Johansson, M.; Luisa Redondo, M.; Tjønneland, A.; Olsen, A.; Olsen, K.S.; Brustad, M.; Skeie, G.; Lund, E. Fish consumption and mortality in the European prospective investigation into cancer and nutrition cohort. Eur. J. Epidemiol., 2015, 30(1), 57-70.
[http://dx.doi.org/10.1007/s10654-014-9966-4] [PMID: 25377533]
[58]
Sathivel, S.; Bechtel, P.J.; Babbitt, J.; Prinyawiwatkul, W.; Negulescu, I.I.; Reppond, K.D. Properties of protein powders from arrowtooth flounder (Atheresthes stomias) and herring (Clupea harengus) byproducts. J. Agric. Food Chem., 2004, 52(16), 5040-5046.
[http://dx.doi.org/10.1021/jf0351422] [PMID: 15291472]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy