Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Environmental Science

Optimization of Site-exploration Programs in Slope Designs Using 3D Conditional Random Fields

Author(s): Jia-Yi Ou-Yang, Yong Liu and Guan Chen*

Volume 2, Issue 6, 2022

Published on: 24 June, 2022

Page: [450 - 459] Pages: 10

DOI: 10.2174/2210298102666220330102442

Abstract

Background: In situ soil properties exhibit inherent spatial variability, which is often described by a 3D random field. Soil properties at particular portions are available by site investigation. Wider site investigation scope provides a more accurate description of the geologic profile. However, limited by budget, choosing an effective site exploration scope is of significance.

Objective: This study introduces a framework to determine the optimal site investigation strategy in the 3D domain, which yields the lowest mean risk of slope designs.

Methods: The mean risk of slope designs is considered to be a function of the costs of site investigation, under-design, and over-design. The unconditional random fields are generated by the spectral representation method initially. Subsequently, the sampled data are incorporated into the random fields via the Kriging algorithm, and the conditional random fields are simulated. A 3D undrained slope is evaluated for illustration.

Results: The effects of sampling locations and spacing on the risk of slope designs are examined. The results indicate that the optimal sampling location is close to the zone where slope failure may occur. Moreover, there exists an optimal sampling spacing that minimizes the mean risk of slope designs.

Conclusion: This investigation can provide guidance for determining the optimal site exploration programs on the 3D domain with knowledge of the associated risks.

Keywords: Site investigation optimization, risk analysis, conditional random field, kriging, spatial variability, finite element analysis.

Graphical Abstract

[1]
Griffiths, D.V.; Fenton, G.A. Bearing capacity of spatially random soil: The undrained clay Prandtl problem revisited. Geotechnique, 2001, 51(4), 351-359.
[http://dx.doi.org/10.1680/geot.2001.51.4.351]
[2]
Cho, E. Probabilistic analysis of seepage that considers the spatial variability of permeability for an embankment on soil foundation. Eng. Geol., 2012, 133-134, 30-39.
[http://dx.doi.org/10.1016/j.enggeo.2012.02.013]
[3]
Vanmarcke, E.H. Random fields: Analysis and synthesis; MIT Press: Cambridge, MA, 1983.
[4]
Phoon, K.K.; Kulhawy, F.H. Characterization of geotechnical variability. Can. Geotech. J., 1999, 36(4), 612-624.
[http://dx.doi.org/10.1139/t99-038]
[5]
Liu, Y.; Quek, S.T.; Lee, F.H. Translation random field with marginal beta distribution in modelling material properties. Struct. Saf., 2016, 61, 57-66.
[http://dx.doi.org/10.1016/j.strusafe.2016.04.001]
[6]
Liu, Y.; Lee, F.H.; Quek, S.T.; Chen, E.J.; Yi, J.T. Effect of spatial variation of strength and modulus on the lateral compression response of cement-admixed clay slab. Geotechnique, 2015, 65(10), 851-865.
[http://dx.doi.org/10.1680/jgeot.14.P.254]
[7]
Johari, A.; Fooladi, H. Comparative study of stochastic slope stability analysis based on conditional and unconditional random field. Comput. Geotech., 2020, 125, 103707.
[http://dx.doi.org/10.1016/j.compgeo.2020.103707]
[8]
Namikawa, T. Conditional probabilistic analysis of cement-treated soil column strength. Int. J. Geomech., 2016, 16(1), 04015021.
[http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000481]
[9]
Wang, Y.; Cao, Z.J.; Li, D.Q. Bayesian perspective on geotechnical variability and site characterization. Eng. Geol., 2016, 203, 117-125.
[http://dx.doi.org/10.1016/j.enggeo.2015.08.017]
[10]
Chen, G.; Wang, F.T.; Li, D.Q.; Liu, Y. Dyadic wavelet analysis of bender element signals in determining shear wave velocity. Can. Geotech. J., 2020, 57, 2027-2030.
[http://dx.doi.org/10.1139/cgj-2019-0167]
[11]
Chen, G.; Li, Q.Y.; Li, D.Q.; Wu, Z.Y.; Liu, Y. Main frequency band of blast vibration signal based on wavelet packet transform. Appl. Math. Model., 2019, 74, 569-585.
[http://dx.doi.org/10.1016/j.apm.2019.05.005]
[12]
Lloret-Cabot, M.; Hicks, M.A.; van Den Eijnden, A.P. Investigation of the reduction in uncertainty due to soil variability when conditioning a random field using Kriging. Géotech. Lett., 2012, 2, 123-127.
[http://dx.doi.org/10.1680/geolett.12.00022]
[13]
Huang, L.; Zhang, Y.; Lo, M.K.; Cheng, Y.M. Comparative study of conditional methods in slope reliability evaluation. Comput. Geotech., 2020, 127, 103762.
[http://dx.doi.org/10.1016/j.compgeo.2020.103762]
[14]
Liu, L.L.; Cheng, Y.M.; Zhang, S.H. Conditional random field reliability analysis of a cohesion-frictional slope. Comput. Geotech., 2017, 82, 173-186.
[http://dx.doi.org/10.1016/j.compgeo.2016.10.014]
[15]
Kim, J.M.; Sitar, N. Reliability approach to slope stability analysis with spatially correlated soil properties. Soil Found., 2013, 53(1), 1-10.
[http://dx.doi.org/10.1016/j.sandf.2012.12.001]
[16]
Li, Y.J.; Hicks, M.A.; Vardon, P.J. Uncertainty reduction and sampling efficiency in slope designs using 3D conditional random fields. Comput. Geotech., 2016, 79, 159-172.
[http://dx.doi.org/10.1016/j.compgeo.2016.05.027]
[17]
Huang, L.; Cheng, Y.M.; Leung, Y.F.; Li, L. Influence of rotated anisotropy on slope reliability evaluation using conditional random field. Comput. Geotech., 2019, 115, 103133.
[http://dx.doi.org/10.1016/j.compgeo.2019.103133]
[18]
Ou-Yang, J.Y.; Li, D.Q.; Tang, X.S.; Liu, Y. A patching algorithm for conditional random fields in modelling material properties. Comput. Methods Appl. Mech. Eng., 2021, 377, 113719.
[http://dx.doi.org/10.1016/j.cma.2021.113719]
[19]
Gong, W.; Tien, Y.M.; Juang, C.H.; Martin, I.I., Jr; Luo, Z. Optimization of site investigation program for improved statistical characterization of geotechnical property based on random field theory. Bull. Eng. Geol. Environ., 2017, 76, 1021-1035.
[http://dx.doi.org/10.1007/s10064-016-0869-3]
[20]
Li, X.Y.; Zhang, L.M.; Li, J.H. Using conditioned random field to characterize the variability of geologic profiles. J. Geotech. Geoenviron. Eng., 2016, 142(4), 04015096.
[http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0001428]
[21]
Yang, R.; Huang, J.S.; Griffiths, D.V.; Meng, J.J.; Fenton, G.A. Optimal geotechnical site investigations for slope design. Comput. Geotech., 2019, 114, 103111.
[http://dx.doi.org/10.1016/j.compgeo.2019.103111]
[22]
Hicks, A.; Nuttall, J.D.; Chen, J. Influence of heterogeneity on 3D slope reliability and failure consequence. Comput. Geotech., 2014, 61, 198-208.
[http://dx.doi.org/10.1016/j.compgeo.2014.05.004]
[23]
Liu, Y.; Zhang, W.G.; Zhang, L.; Zhu, Z.R.; Hu, J.; Wei, H. Probabilistic stability analyses of undrained slopes by 3D random fields and finite element methods. Geoscience Frontiers, 2018, 9(6), 1657-1664.
[http://dx.doi.org/10.1016/j.gsf.2017.09.003]
[24]
Ou-Yang, J.Y.; Liu, Y.; Yao, K.; Yang, C.J. Model updating of slope stability analysis using 3D conditional random fields. J. Risk Uncertainty Engi. Sys., Part A. Civ. Eng., 2021, 7(3), 04021034.
[25]
Shinozuka, M.; Deodatis, G. Simulation of multi-dimensional Gaussian stochastic fields by spectral representation. Appl. Mech. Rev., 1996, 49(1), 29-53.
[http://dx.doi.org/10.1115/1.3101883]
[26]
Phoon, K.K.; Huang, H.W.; Quek, S.T. Simulation of strongly non-Gaussian processes using Karhunen-Loeve expansion. Probab. Eng. Mech., 2005, 20(2), 188-198.
[http://dx.doi.org/10.1016/j.probengmech.2005.05.007]
[27]
Li, Q.; Jiang, S.H.; Cao, Z.J.; Zhou, W.; Zhou, C.B.; Zhang, L.M. A multiple response-surface method for slope reliability analysis considering spatial variability of soil properties. Eng. Geol., 2015, 187, 60-72.
[http://dx.doi.org/10.1016/j.enggeo.2014.12.003]
[28]
Fenton, G.A.; Vanmarcke, E.H. Simulation of random fields via local average subdivision. J. Eng. Mech., 1990, 116(8), 1733-1749.
[http://dx.doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1733)]
[29]
Liu, Y.; Lee, F.H.; Quek, S.T.; Beer, M. Modified linear estimation method for generating multi-dimensional multivariate Gaussian field in modelling material properties. Probab. Eng. Mech., 2014, 38, 42-53.
[http://dx.doi.org/10.1016/j.probengmech.2014.09.001]
[30]
Griffiths, D.V.; Fenton, G.A. Probabilistic Method in Geotechnical Engineering; Springer Verlag: Vienna, 2007.
[http://dx.doi.org/10.1007/978-3-211-73366-0]
[31]
Henderson, C.R. Best linear unbiased estimation and prediction under a selection model. Biometrics, 1975, 31(2), 423-447.
[http://dx.doi.org/10.2307/2529430] [PMID: 1174616]
[32]
Cressie, N. The origins of Kriging. Math. Geol., 1990, 22(3), 239-252.
[http://dx.doi.org/10.1007/BF00889887]
[33]
Vanmarcke, E.H.; Heredia-Zavoni, E.; Fenton, G.A. Conditional simulation of spatially correlated earthquake ground motion. J. Eng. Mech., 1993, 119(11), 2333-2352.
[http://dx.doi.org/10.1061/(ASCE)0733-9399(1993)119:11(2333)]
[34]
Hicks, M.A.; Spencer, W.A. Influence of heterogeneity on the reliability and failure of a long 3D slope. Comput. Geotech., 2010, 37(7-8), 948-955.
[http://dx.doi.org/10.1016/j.compgeo.2010.08.001]
[35]
Hogg, R.V.; Tanis, E.A. Probability and statistical inference, 8th ed; Prentice Hall: Pearson, 2010.
[36]
Goldsworthy, J.S.; Jaksa, M.B.; Fenton, G.A.; Griffiths, D.V.; Kaggwa, W.S.; Poulos, H.G. Measuring the risk of geotechnical site investigations. Probabilistic Applications in Geotechnical Engineering, 2007, 170, 1-12.
[http://dx.doi.org/10.1061/40914(233)2]
[37]
Jiang, S.H.; Papaioannou, I.; Straub, D. Bayesian updating of slope reliability in spatially variable soils with in-situ measurements. Eng. Geol., 2018, 239, 310-320.
[http://dx.doi.org/10.1016/j.enggeo.2018.03.021]
[38]
Jiang, S.H.; Huang, J.S.; Huang, F.M.; Yang, J.; Yao, C.; Zhou, C.B. Modelling of spatial variability of soil undrained shear strength by conditional random fields for slope reliability analysis. Appl. Math. Model., 2018, 63, 374-389.
[http://dx.doi.org/10.1016/j.apm.2018.06.030]

© 2025 Bentham Science Publishers | Privacy Policy