Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

A Review on the Design, Synthesis, and Structure-activity Relationships of Benzothiazole Derivatives against Hypoxic Tumors

Author(s): Akif Hakan Kurt, Lokman Ayaz, Furkan Ayaz, Zeynel Seferoglu and Yahya Nural*

Volume 19, Issue 7, 2022

Published on: 22 July, 2022

Page: [772 - 796] Pages: 25

DOI: 10.2174/1570179419666220330001036

Price: $65

Abstract

There has been a growing body of studies on benzothiazoles and benzothiazole derivatives as strong and effective anti-tumor agents against lung, liver, pancreas, breast, and brain tumors. Due to the highly proliferative nature of the tumor cells, the oxygen levels get lower than that of normal tissues in the tumor microenvironment. This situation is called hypoxia and has been associated with increased ability for carcinogenesis. For the drug design and development strategies, the hypoxic nature of the tumor tissues has been exploited more aggressively. Hypoxia itself acts as a signal initiating system to activate the pathways that eventually lead to the spread of the tumor cells into the different tissues, increases the rate of DNA damage, and eventually ends up with more mutation levels that may increase the drug resistance. As one of the major mediators of hypoxic response, hypoxia-inducible factors (HIFs) have been shown to activate angiogenesis, metastasis, apoptosis resistance, and many other protumorigenic responses in cancer development. In the current review, we will be discussing the design, synthesis, and structureactivity relationships of benzothiazole derivatives against hypoxic tumors such as lung, liver, pancreas, breast, and brain as potential anti-cancer drug candidates. The focus points of the study will be the biology behind carcinogenesis and how hypoxia contributes to the process, recent studies on benzothiazole and its derivatives as anti-cancer agents against hypoxic cancers, conclusions, and future perspectives. We believe that this review will be useful for researchers in the field of drug design during their studies to generate novel benzothiazole-containing hybrids against hypoxic tumors with higher efficacies.

Keywords: Anti-cancer activity, benzothiazole, heterocyclic compounds, hypoxia, organic synthesis, brain tumors.

Graphical Abstract

[1]
Di Lonardo, A.; Nasi, S.; Pulciani, S. Cancer: We should not forget the past. J. Cancer, 2015, 6(1), 29-39.
[http://dx.doi.org/10.7150/jca.10336] [PMID: 25553086]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of inci-dence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Sun, Y. Tumor microenvironment and cancer therapy resistance. Cancer Lett., 2016, 380(1), 205-215.
[http://dx.doi.org/10.1016/j.canlet.2015.07.044] [PMID: 26272180]
[4]
Jing, X.; Yang, F.; Shao, C.; Wei, K.; Xie, M.; Shen, H.; Shu, Y. Role of hypoxia in cancer therapy by regulating the tumor microenviron-ment. Mol. Cancer, 2019, 18(1), 157.
[http://dx.doi.org/10.1186/s12943-019-1089-9] [PMID: 31711497]
[5]
Harris, A.L. Hypoxia--a key regulatory factor in tumour growth. Nat. Rev. Cancer, 2002, 2(1), 38-47.
[http://dx.doi.org/10.1038/nrc704] [PMID: 11902584]
[6]
Weber, C.E.; Kuo, P.C. The tumor microenvironment. Surg. Oncol., 2012, 21(3), 172-177.
[http://dx.doi.org/10.1016/j.suronc.2011.09.001] [PMID: 21963199]
[7]
Brahimi-Horn, M.C.; Chiche, J.; Pouysségur, J. Hypoxia and cancer. J. Mol. Med., 2007, 85(12), 1301-1307.
[http://dx.doi.org/10.1007/s00109-007-0281-3] [PMID: 18026916]
[8]
Monteiro, A.R.; Hill, R.; Pilkington, G.J.; Madureira, P.A. The role of hypoxia in glioblastoma invasion. Cells, 2017, 6(4), 45.
[http://dx.doi.org/10.3390/cells6040045] [PMID: 29165393]
[9]
Tan, Z.; Xu, J.; Zhang, B.; Shi, S.; Yu, X.; Liang, C. Hypoxia: A barricade to conquer the pancreatic cancer. Cell. Mol. Life Sci., 2020, 77(16), 3077-3083.
[http://dx.doi.org/10.1007/s00018-019-03444-3] [PMID: 31907561]
[10]
Pouysségur, J.; Dayan, F.; Mazure, N.M. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature, 2006, 441(7092), 437-443.
[http://dx.doi.org/10.1038/nature04871] [PMID: 16724055]
[11]
Chen, C.; Lou, T. Hypoxia inducible factors in hepatocellular carcinoma. Oncotarget, 2017, 8(28), 46691-46703.
[http://dx.doi.org/10.18632/oncotarget.17358] [PMID: 28493839]
[12]
Shioya, M.; Takahashi, T.; Ishikawa, H.; Sakurai, H.; Ebara, T.; Suzuki, Y.; Saitoh, J.; Ohno, T.; Asao, T.; Kuwano, H.; Nakano, T. Ex-pression of hypoxia-inducible factor 1α predicts clinical outcome after preoperative hyperthermo-chemoradiotherapy for locally ad-vanced rectal cancer. J. Radiat. Res., 2011, 52(6), 821-827.
[http://dx.doi.org/10.1269/jrr.11117] [PMID: 22104271]
[13]
Ilardi, E.A.; Vitaku, E.; Njardarson, J.T. Data-mining for sulfur and fluorine: An evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J. Med. Chem., 2014, 57(7), 2832-2842.
[http://dx.doi.org/10.1021/jm401375q] [PMID: 24102067]
[14]
Brase, S. Privileged Scaffolds in Medicinal Chemistry; The Royal Society of Chemistry: Cambridge, 2016.
[15]
Nural, Y.; Gemili, M.; Yabalak, E.; Coen, L.D.; Ulger, M. Green synthesis of highly functionalized octahydropyrrolo[3,4-c]pyrrole deriv-atives using subcritical water, and their anti(myco)bacterial and antifungal activity. ARKIVOC, 2018, 5(5), 51-64.
[http://dx.doi.org/10.24820/ark.5550190.p010.573]
[16]
Nural, Y. Synthesis, antimycobacterial activity, and acid dissociation constants of polyfunctionalized 3-[2-(pyrrolidin-1-yl)thiazole-5-carbonyl]-2H-chromen-2-one derivatives. Monatsh. Chem., 2018, 149(10), 1905-1918.
[http://dx.doi.org/10.1007/s00706-018-2250-7]
[17]
Kamal, A.; Syed, M.A.; Mohammed, S.M. Therapeutic potential of benzothiazoles: A patent review (2010-2014). Expert Opin. Ther. Pat., 2015, 25, 335-349.
[http://dx.doi.org/10.1517/13543776.2014.999764]
[18]
Blunt, C.E.; Nawrat, C.C.; LeBozec, L.; Liutkus, M.; Liu, Y.; Lewis, W.; Moody, C.J. Oxidative routes to the heterocyclic cores of benzo-thiazole natural products. Synlett, 2016, 27(1), 37-40.
[http://dx.doi.org/10.1055/s-0035-1560722]
[19]
Liu, X.; Dong, Z.B. A review on domino condensation/cyclization reactions for the synthesis of 2‐substituted 1,3‐benzothiazole deriva-tives. Eur. J. Org. Chem., 2020, 2020(4), 408-419.
[http://dx.doi.org/10.1002/ejoc.201901502]
[20]
Rouf, A.; Tanyeli, C. Bioactive thiazole and benzothiazole derivatives. Eur. J. Med. Chem., 2015, 97, 911-927.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.058] [PMID: 25455640]
[21]
Le Bozec, L.; Moody, C.J. Naturally occurring nitrogen-sulfur compounds. The benzothiazole alkaloids. Aust. J. Chem., 2009, 62(7), 639-647.
[http://dx.doi.org/10.1071/CH09126]
[22]
Song, J.; Gao, Q.L.; Wu, B.W.; Zhu, T.; Cui, X.X.; Jin, C.J.; Wang, S.Y.; Wang, S.H.; Fu, D.J.; Liu, H.M.; Zhang, S.Y.; Zhang, Y.B.; Li, Y.C. Discovery of tertiary amide derivatives incorporating benzothiazole moiety as anti-gastric cancer agents in vitro via inhibiting tubulin polymerization and activating the Hippo signaling pathway. Eur. J. Med. Chem., 2020, 203, 112618.
[http://dx.doi.org/10.1016/j.ejmech.2020.112618] [PMID: 32682200]
[23]
Bhutani, R.; Pathak, D.P.; Kapoor, G.; Husain, A.; Kant, R.; Iqbal, M.A. Synthesis, molecular modelling studies and ADME prediction of benzothiazole clubbed oxadiazole-Mannich bases, and evaluation of their anti-diabetic activity through in vivo model. Bioorg. Chem., 2018, 77, 6-15.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.037] [PMID: 29316509]
[24]
Djuidje, E.N.; Sciabica, S.; Buzzi, R.; Dissette, V.; Balzarini, J.; Liekens, S.; Serra, E.; Andreotti, E.; Manfredini, S.; Vertuani, S.; Baldis-serotto, A. Design, synthesis and evaluation of benzothiazole derivatives as multifunctional agents. Bioorg. Chem., 2020, 101, 103960.
[http://dx.doi.org/10.1016/j.bioorg.2020.103960] [PMID: 32559579]
[25]
Irfan, A.; Batool, F.; Zahra Naqvi, S.A.; Islam, A.; Osman, S.M.; Nocentini, A.; Alissa, S.A.; Supuran, C.T. Benzothiazole derivatives as anticancer agents. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 265-279.
[http://dx.doi.org/10.1080/14756366.2019.1698036] [PMID: 31790602]
[26]
Bhat, M.; Belagali, S.L. Structural activity relationship and importance of benzothiazole derivatives in medicinal chemistry: A comprehen-sive review. Mini Rev. Org. Chem., 2020, 17(3), 323-350.
[http://dx.doi.org/10.2174/1570193X16666190204111502]
[27]
Pathak, N.; Rathi, E.; Kumar, N.; Kini, S.G.; Rao, C.M. A review on anticancer potentials of benzothiazole derivatives. Mini Rev. Med. Chem., 2020, 20(1), 12-23.
[http://dx.doi.org/10.2174/1389557519666190617153213] [PMID: 31288719]
[28]
Tariq, S.; Kamboj, P.; Amir, M. Therapeutic advancement of benzothiazole derivatives in the last decennial period. Arch. Pharm. (Weinheim), 2019, 352(1), e1800170.
[http://dx.doi.org/10.1002/ardp.201800170] [PMID: 30488989]
[29]
Agarwal, S.; Gandhi, D.; Kalal, P. Benzothiazole: A versatile and multi targeted pharmacophore in the field of medicinal chemistry. Lett. Org. Chem., 2017, 14(10), 729-742.
[http://dx.doi.org/10.2174/1570178614666170707160654]
[30]
Keri, R.S.; Patil, M.R.; Patil, S.A.; Budagumpi, S. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur. J. Med. Chem., 2015, 89, 207-251.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.059] [PMID: 25462241]
[31]
Sharma, P.C.; Sinhmar, A.; Sharma, A.; Rajak, H.; Pathak, D.P. Medicinal significance of benzothiazole scaffold: An insight view. J. Enzyme Inhib. Med. Chem., 2013, 28(2), 240-266.
[http://dx.doi.org/10.3109/14756366.2012.720572] [PMID: 23030043]
[32]
Dubey, R.; Shrivastava, P.K.; Basniwal, P.K.; Bhattacharya, S.; Moorthy, N.S. 2-(4-aminophenyl) benzothiazole: A potent and selective pharmacophore with novel mechanistic action towards various tumour cell lines. Mini Rev. Med. Chem., 2006, 6(6), 633-637.
[http://dx.doi.org/10.2174/138955706777435706] [PMID: 16787373]
[33]
Michiels, C. Physiological and pathological responses to hypoxia. Am. J. Pathol., 2004, 164(6), 1875-1882.
[http://dx.doi.org/10.1016/S0002-9440(10)63747-9] [PMID: 15161623]
[34]
Semenza, G.L. Hypoxia-inducible factor 1: Master regulator of O2 homeostasis. Curr. Opin. Genet. Dev., 1998, 8(5), 588-594.
[http://dx.doi.org/10.1016/S0959-437X(98)80016-6] [PMID: 9794818]
[35]
Dvorak, H.F. Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med., 1986, 315(26), 1650-1659.
[http://dx.doi.org/10.1056/NEJM198612253152606] [PMID: 3537791]
[36]
Elzakra, N.; Kim, Y. HIF-1α Metabolic pathways in human cancer. Adv. Exp. Med. Biol., 2021, 1280, 243-260.
[http://dx.doi.org/10.1007/978-3-030-51652-9_17] [PMID: 33791987]
[37]
Petrova, V.; Annicchiarico-Petruzzelli, M.; Melino, G.; Amelio, I. The hypoxic tumour microenvironment. Oncogenesis, 2018, 7(1), 10.
[http://dx.doi.org/10.1038/s41389-017-0011-9] [PMID: 29362402]
[38]
Muz, B.; de la Puente, P.; Azab, F.; Azab, A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl.), 2015, 3, 83-92.
[http://dx.doi.org/10.2147/HP.S93413] [PMID: 27774485]
[39]
Bhattarai, D.; Xu, X.; Lee, K. Hypoxia-Inducible Factor-1 (HIF-1) inhibitors from the last decade (2007 to 2016): A “structure-activity relationship” perspective. Med. Res. Rev., 2018, 38(4), 1404-1442.
[http://dx.doi.org/10.1002/med.21477] [PMID: 29278273]
[40]
Semenza, G.L. HIF-1: Mediator of physiological and pathophysiological responses to hypoxia. J. Appl. Physiol., 2000, 88(4), 1474-1480.
[http://dx.doi.org/10.1152/jappl.2000.88.4.1474] [PMID: 10749844]
[41]
Pugh, C.W.; Ratcliffe, P.J. New horizons in hypoxia signaling pathways. Exp. Cell Res., 2017, 356(2), 116-121.
[http://dx.doi.org/10.1016/j.yexcr.2017.03.008] [PMID: 28315322]
[42]
Wang, G.L.; Semenza, G.L. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc. Natl. Acad. Sci., 1993, 90(9), 4304-4308.
[http://dx.doi.org/10.1073/pnas.90.9.4304] [PMID: 8387214]
[43]
Wang, G.L.; Semenza, G.L. Molecular basis of hypoxia-induced erythropoietin expression. Curr. Opin. Hematol., 1996, 3(2), 156-162.
[http://dx.doi.org/10.1097/00062752-199603020-00009] [PMID: 9372067]
[44]
Duan, C. Hypoxia-inducible factor 3 biology: Complexities and emerging themes. Am. J. Physiol. Cell Physiol., 2016, 310(4), C260-C269.
[http://dx.doi.org/10.1152/ajpcell.00315.2015] [PMID: 26561641]
[45]
Wang, G.L.; Jiang, B.H.; Rue, E.A.; Semenza, G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci., 1995, 92(12), 5510-5514.
[http://dx.doi.org/10.1073/pnas.92.12.5510] [PMID: 7539918]
[46]
Semenza, G.L. HIF-1 and tumor progression: Pathophysiology and therapeutics. Trends Mol. Med., 2002, 8(4)(Suppl.), S62-S67.
[http://dx.doi.org/10.1016/S1471-4914(02)02317-1] [PMID: 11927290]
[47]
Roy, S.; Kumaravel, S.; Sharma, A.; Duran, C.L.; Bayless, K.J.; Chakraborty, S. Hypoxic tumor microenvironment: Implications for can-cer therapy. Exp. Biol. Med., 2020, 245(13), 1073-1086.
[http://dx.doi.org/10.1177/1535370220934038] [PMID: 32594767]
[48]
Denko, N.C.; Fontana, L.A.; Hudson, K.M.; Sutphin, P.D.; Raychaudhuri, S.; Altman, R.; Giaccia, A.J. Investigating hypoxic tumor phys-iology through gene expression patterns. Oncogene, 2003, 22(37), 5907-5914.
[http://dx.doi.org/10.1038/sj.onc.1206703] [PMID: 12947397]
[49]
Smythies, J.A.; Sun, M.; Masson, N.; Salama, R.; Simpson, P.D.; Murray, E.; Neumann, V.; Cockman, M.E.; Choudhry, H.; Ratcliffe, P.J.; Mole, D.R. Inherent DNA-binding specificities of the HIF-1α and HIF-2α transcription factors in chromatin. EMBO Rep., 2019, 20(1), e46401.
[http://dx.doi.org/10.15252/embr.201846401] [PMID: 30429208]
[50]
Wiesener, M.S.; Jürgensen, J.S.; Rosenberger, C.; Scholze, C.K.; Hörstrup, J.H.; Warnecke, C.; Mandriota, S.; Bechmann, I.; Frei, U.A.; Pugh, C.W.; Ratcliffe, P.J.; Bachmann, S.; Maxwell, P.H.; Eckardt, K.U. Widespread hypoxia-inducible expression of HIF-2alpha in dis-tinct cell populations of different organs. FASEB J., 2003, 17(2), 271-273.
[http://dx.doi.org/10.1096/fj.02-0445fje] [PMID: 12490539]
[51]
Onita, T.; Ji, P.G.; Xuan, J.W.; Sakai, H.; Kanetake, H.; Maxwell, P.H.; Fong, G-H.; Gabril, M.Y.; Moussa, M.; Chin, J.L. Hypoxia-induced, perinecrotic expression of endothelial Per-ARNT-Sim domain protein-1/hypoxia-inducible factor-2alpha correlates with tumor progression, vascularization, and focal macrophage infiltration in bladder cancer. Clin. Cancer Res., 2002, 8(2), 471-480.
[PMID: 11839666]
[52]
Keith, B.; Johnson, R.S.; Simon, M.C. HIF1α and HIF2α: Sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer, 2011, 12(1), 9-22.
[http://dx.doi.org/10.1038/nrc3183] [PMID: 22169972]
[53]
Leek, R.D.; Talks, K.L.; Pezzella, F.; Turley, H.; Campo, L.; Brown, N.S.; Bicknell, R.; Taylor, M.; Gatter, K.C.; Harris, A.L. Relation of hypoxia-inducible factor-2 α (HIF-2 α) expression in tumor-infiltrative macrophages to tumor angiogenesis and the oxidative thymidine phosphorylase pathway in Human breast cancer. Cancer Res., 2002, 62(5), 1326-1329.
[PMID: 11888900]
[54]
Wiesener, M.S.; Turley, H.; Allen, W.E.; Willam, C.; Eckardt, K.U.; Talks, K.L.; Wood, S.M.; Gatter, K.C.; Harris, A.L.; Pugh, C.W.; Ratcliffe, P.J.; Maxwell, P.H. Induction of endothelial PAS domain protein-1 by hypoxia: Characterization and comparison with hypoxia-inducible factor-1alpha. Blood, 1998, 92(7), 2260-2268.
[http://dx.doi.org/10.1182/blood.V92.7.2260] [PMID: 9746763]
[55]
Fukumura, D.; Xavier, R.; Sugiura, T.; Chen, Y.; Park, E.C.; Lu, N.; Selig, M.; Nielsen, G.; Taksir, T.; Jain, R.K.; Seed, B. Tumor induc-tion of VEGF promoter activity in stromal cells. Cell, 1998, 94(6), 715-725.
[http://dx.doi.org/10.1016/S0092-8674(00)81731-6] [PMID: 9753319]
[56]
Flamme, I.; Krieg, M.; Plate, K.H. Up-regulation of vascular endothelial growth factor in stromal cells of hemangioblastomas is correlated with up-regulation of the transcription factor HRF/HIF-2alpha. Am. J. Pathol., 1998, 153(1), 25-29.
[http://dx.doi.org/10.1016/S0002-9440(10)65541-1] [PMID: 9665461]
[57]
Spirina, L.V.; Usynin, Y.A.; Yurmazov, Z.A.; Slonimskaya, E.M.; Kolegova, E.S.; Kondakova, I.V. Transcription factors NF-kB, HIF-1, HIF-2, growth factor VEGF, VEGFR2 and carboanhydrase IX mRNA and protein level in the development of kidney cancer metastasis Mol. Biol., 2017, 51(2), 372-377.
[http://dx.doi.org/10.1134/S0026893317020194] [PMID: 28537244]
[58]
Xia, G.; Kageyama, Y.; Hayashi, T.; Kawakami, S.; Yoshida, M.; Kihara, K. Regulation of vascular endothelial growth factor transcription by endothelial PAS domain protein 1 (EPAS1) and possible involvement of EPAS1 in the angiogenesis of renal cell carcinoma. Cancer, 2001, 91(8), 1429-1436.
[http://dx.doi.org/10.1002/1097-0142(20010415)91:8<1429::AID-CNCR1149>3.0.CO;2-V] [PMID: 11301389]
[59]
Favier, J.; Plouin, P.F.; Corvol, P.; Gasc, J.M. Angiogenesis and vascular architecture in pheochromocytomas: Distinctive traits in malig-nant tumors. Am. J. Pathol., 2002, 161(4), 1235-1246.
[http://dx.doi.org/10.1016/S0002-9440(10)64400-8] [PMID: 12368197]
[60]
Holmquist-Mengelbier, L.; Fredlund, E.; Löfstedt, T.; Noguera, R.; Navarro, S.; Nilsson, H.; Pietras, A.; Vallon-Christersson, J.; Borg, A.; Gradin, K.; Poellinger, L.; Påhlman, S. Recruitment of HIF-1α and HIF-2α to common target genes is differentially regulated in neuroblas-toma: HIF-2α promotes an aggressive phenotype. Cancer Cell, 2006, 10(5), 413-423.
[http://dx.doi.org/10.1016/j.ccr.2006.08.026] [PMID: 17097563]
[61]
Makino, Y.; Kanopka, A.; Wilson, W.J.; Tanaka, H.; Poellinger, L. Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3alpha locus. J. Biol. Chem., 2002, 277(36), 32405-32408.
[http://dx.doi.org/10.1074/jbc.C200328200] [PMID: 12119283]
[62]
Hara, S.; Hamada, J.; Kobayashi, C.; Kondo, Y.; Imura, N. Expression and characterization of Hypoxia-Inducible Factor (HIF)-3alpha in human kidney: Suppression of HIF-mediated gene expression by HIF-3alpha. Biochem. Biophys. Res. Commun., 2001, 287(4), 808-813.
[http://dx.doi.org/10.1006/bbrc.2001.5659] [PMID: 11573933]
[63]
Heikkilä, M.; Pasanen, A.; Kivirikko, K.I.; Myllyharju, J. Roles of the human Hypoxia-Inducible Factor (HIF)-3α variants in the hypoxia response. Cell. Mol. Life Sci., 2011, 68(23), 3885-3901.
[http://dx.doi.org/10.1007/s00018-011-0679-5] [PMID: 21479871]
[64]
Sørensen, B.S.; Horsman, M.R. Tumor hypoxia: Impact on radiation therapy and molecular pathways. Front. Oncol., 2020, 10, 562.
[http://dx.doi.org/10.3389/fonc.2020.00562] [PMID: 32373534]
[65]
Nikitenko, L.L.; Smith, D.M.; Bicknell, R.; Rees, M.C.P. Transcriptional regulation of the CRLR gene in human microvascular endothelial cells by hypoxia. FASEB J., 2003, 17(11), 1499-1501.
[http://dx.doi.org/10.1096/fj.02-0993fje] [PMID: 12824306]
[66]
Kelly, B.D.; Hackett, S.F.; Hirota, K.; Oshima, Y.; Cai, Z.; Berg-Dixon, S.; Rowan, A.; Yan, Z.; Campochiaro, P.A.; Semenza, G.L. Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitu-tively active form of hypoxia-inducible factor 1. Circ. Res., 2003, 93(11), 1074-1081.
[http://dx.doi.org/10.1161/01.RES.0000102937.50486.1B] [PMID: 14576200]
[67]
Pugh, C.W.; Ratcliffe, P.J. Regulation of angiogenesis by hypoxia: Role of the HIF system. Nat. Med., 2003, 9(6), 677-684.
[http://dx.doi.org/10.1038/nm0603-677] [PMID: 12778166]
[68]
Riva, C.; Chauvin, C.; Pison, C.; Leverve, X. Cellular physiology and molecular events in hypoxia-induced apoptosis. Anticancer Res., 1998, 18(6B), 4729-4736.
[PMID: 9891549]
[69]
Hammond, E.M.; Dorie, M.J.; Giaccia, A.J. ATR/ATM targets are phosphorylated by ATR in response to hypoxia and ATM in response to reoxygenation. J. Biol. Chem., 2003, 278(14), 12207-12213.
[http://dx.doi.org/10.1074/jbc.M212360200] [PMID: 12519769]
[70]
Akakura, N.; Kobayashi, M.; Horiuchi, I.; Suzuki, A.; Wang, J.; Chen, J.; Niizeki, H. Kawamura Ki; Hosokawa, M.; Asaka, M. Constitu-tive expression of hypoxia-inducible factor-1alpha renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation. Cancer Res., 2001, 61(17), 6548-6554.
[PMID: 11522653]
[71]
Carmeliet, P.; Dor, Y.; Herbert, J-M.; Fukumura, D.; Brusselmans, K.; Dewerchin, M.; Neeman, M.; Bono, F.; Abramovitch, R.; Maxwell, P.; Koch, C.J.; Ratcliffe, P.; Moons, L.; Jain, R.K.; Collen, D.; Keshert, E. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell prolif-eration and tumour angiogenesis. Nature, 1998, 394(6692), 485-490.
[http://dx.doi.org/10.1038/28867] [PMID: 9697772]
[72]
Chen, N.; Chen, X.; Huang, R.; Zeng, H.; Gong, J.; Meng, W.; Lu, Y.; Zhao, F.; Wang, L.; Zhou, Q. BCL-xL is a target gene regulated by hypoxia-inducible factor-1α. J. Biol. Chem., 2009, 284(15), 10004-10012.
[http://dx.doi.org/10.1074/jbc.M805997200] [PMID: 19211554]
[73]
Erler, J.T.; Cawthorne, C.J.; Williams, K.J.; Koritzinsky, M.; Wouters, B.G.; Wilson, C.; Miller, C.; Demonacos, C.; Stratford, I.J.; Dive, C. Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mecha-nisms and contributes to drug resistance. Mol. Cell. Biol., 2004, 24(7), 2875-2889.
[http://dx.doi.org/10.1128/MCB.24.7.2875-2889.2004] [PMID: 15024076]
[74]
Trollmann, R.; Richter, M.; Jung, S.; Walkinshaw, G.; Brackmann, F. Pharmacologic stabilization of hypoxia-inducible transcription fac-tors protects developing mouse brain from hypoxia-induced apoptotic cell death. Neuroscience, 2014, 278, 327-342.
[http://dx.doi.org/10.1016/j.neuroscience.2014.08.019] [PMID: 25162122]
[75]
Tao, J.; Yang, G.; Zhou, W.; Qiu, J.; Chen, G.; Luo, W.; Zhao, F.; You, L.; Zheng, L.; Zhang, T.; Zhao, Y. Targeting hypoxic tumor mi-croenvironment in pancreatic cancer. J. Hematol. Oncol., 2021, 14(1), 14.
[http://dx.doi.org/10.1186/s13045-020-01030-w] [PMID: 33436044]
[76]
Okegawa, T.; Pong, R.C.; Li, Y.; Hsieh, J.T. The role of cell adhesion molecule in cancer progression and its application in cancer therapy. Acta Biochim. Pol., 2004, 51(2), 445-457.
[http://dx.doi.org/10.18388/abp.2004_3583] [PMID: 15218541]
[77]
Cowden Dahl, K.D.; Robertson, S.E.; Weaver, V.M.; Simon, M.C. Hypoxia-inducible factor regulates alphavbeta3 integrin cell surface expression. Mol. Biol. Cell, 2005, 16(4), 1901-1912.
[http://dx.doi.org/10.1091/mbc.e04-12-1082] [PMID: 15689487]
[78]
Ryu, M.H.; Park, H.M.; Chung, J.; Lee, C.H.; Park, H.R. Hypoxia-inducible factor-1alpha mediates oral squamous cell carcinoma invasion via upregulation of alpha5 integrin and fibronectin. Biochem. Biophys. Res. Commun., 2010, 393(1), 11-15.
[http://dx.doi.org/10.1016/j.bbrc.2010.01.060] [PMID: 20097172]
[79]
Lee, S.H.; Lee, Y.J.; Han, H.J. Role of hypoxia-induced fibronectin-integrin β1 expression in embryonic stem cell proliferation and migra-tion: Involvement of PI3K/Akt and FAK. J. Cell. Physiol., 2011, 226(2), 484-493.
[http://dx.doi.org/10.1002/jcp.22358] [PMID: 20677223]
[80]
Barak, V.; Pe’er, J.; Kalickman, I.; Frenkel, S. VEGF as a biomarker for metastatic uveal melanoma in humans. Curr. Eye Res., 2011, 36(4), 386-390.
[http://dx.doi.org/10.3109/02713683.2010.534573] [PMID: 21284506]
[81]
Lester, R.D.; Jo, M.; Campana, W.M.; Gonias, S.L. Erythropoietin promotes MCF-7 breast cancer cell migration by an ERK/mitogen-activated protein kinase-dependent pathway and is primarily responsible for the increase in migration observed in hypoxia. J. Biol. Chem., 2005, 280(47), 39273-39277.
[http://dx.doi.org/10.1074/jbc.M509446200] [PMID: 16207704]
[82]
Cannito, S.; Novo, E.; Compagnone, A.; Valfrè di Bonzo, L.; Busletta, C.; Zamara, E.; Paternostro, C.; Povero, D.; Bandino, A.; Bozzo, F.; Cravanzola, C.; Bravoco, V.; Colombatto, S.; Parola, M. Redox mechanisms switch on hypoxia-dependent epithelial-mesenchymal transi-tion in cancer cells. Carcinogenesis, 2008, 29(12), 2267-2278.
[http://dx.doi.org/10.1093/carcin/bgn216] [PMID: 18791199]
[83]
Matsuoka, J.; Yashiro, M.; Doi, Y.; Fuyuhiro, Y.; Kato, Y.; Shinto, O.; Noda, S.; Kashiwagi, S.; Aomatsu, N.; Hirakawa, T.; Hasegawa, T.; Shimizu, K.; Shimizu, T.; Miwa, A.; Yamada, N.; Sawada, T.; Hirakawa, K. Hypoxia stimulates the EMT of gastric cancer cells through autocrine TGFβ signaling. PLoS One, 2013, 8(5), e62310.
[http://dx.doi.org/10.1371/journal.pone.0062310] [PMID: 23690936]
[84]
Reddy, V.G.; Reddy, T.S.; Jadala, C.; Reddy, M.S.; Sultana, F.; Akunuri, R.; Bhargava, S.K.; Wlodkowic, D.; Srihari, P.; Kamal, A. Pyra-zolo-benzothiazole hybrids: Synthesis, anticancer properties and evaluation of antiangiogenic activity using in vitro VEGFR-2 kinase and in vivo transgenic zebrafish model. Eur. J. Med. Chem., 2019, 182, 111609.
[http://dx.doi.org/10.1016/j.ejmech.2019.111609] [PMID: 31445229]
[85]
Liu, D.C.; Gao, M.J.; Huo, Q.; Ma, T.; Wang, Y.; Wu, C.Z. Design, synthesis, and apoptosis-promoting effect evaluation of novel pyra-zole with benzo[d]thiazole derivatives containing aminoguanidine units. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 829-837.
[http://dx.doi.org/10.1080/14756366.2019.1591391] [PMID: 30915869]
[86]
Nagaraju, B.; Kovvuri, J.; Kumar, C.G.; Routhu, S.R.; Shareef, M.A.; Kadagathur, M.; Adiyala, P.R.; Alavala, S.; Nagesh, N.; Kamal, A. Synthesis and biological evaluation of pyrazole linked benzothiazole-β-naphthol derivatives as topoisomerase I inhibitors with DNA binding ability. Bioorg. Med. Chem., 2019, 27(5), 708-720.
[http://dx.doi.org/10.1016/j.bmc.2019.01.011] [PMID: 30679134]
[87]
Kastan, M.B.; Bartek, J. Cell-cycle checkpoints and cancer. Nature, 2004, 432(7015), 316-323.
[http://dx.doi.org/10.1038/nature03097] [PMID: 15549093]
[88]
Belal, A. Abdelgawad, M.A. New benzothiazole/benzoxazole-pyrazole hybrids with potential as COX inhibitors: Design, synthesis and anticancer activity evaluation. Res. Chem. Intermed., 2017, 43(7), 3859-3872.
[http://dx.doi.org/10.1007/s11164-016-2851-x]
[89]
Xu, X.C. COX-2 inhibitors in cancer treatment and prevention, a recent development. Anticancer Drugs, 2002, 13(2), 127-137.
[http://dx.doi.org/10.1097/00001813-200202000-00003] [PMID: 11901304]
[90]
Abdelgawad, M.A.; Bakr, R.B.; Omar, H.A. Design, synthesis and biological evaluation of some novel benzothiazole/benzoxazole and/or benzimidazole derivatives incorporating a pyrazole scaffold as antiproliferative agents. Bioorg. Chem., 2017, 74, 82-90.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.007] [PMID: 28772160]
[91]
Algul, O.; Ersan, R.H.; Alagoz, M.A.; Duran, N.; Burmaoglu, S. An efficient synthesis of novel di-heterocyclic benzazole derivatives and evaluation of their antiproliferative activities. J. Biomol. Struct. Dyn., 2021, 39(18), 6926-6938.
[http://dx.doi.org/10.1080/07391102.2020.1803966] [PMID: 32772845]
[92]
Yurttaş, L.; Çavuşoğlu, B.K.; Sever, A.; Çiftçi, G.A. A preliminary investigation of anticancer activity of novel benzothiazole derivatives against A549 lung carcinoma cell line. Turk Biyokim. Derg., 2017, 42(5), 535-544.
[http://dx.doi.org/10.1515/tjb-2017-0015]
[93]
Baig, M.F.; Shaik, S.P.; Nayak, V.L.; Alarifi, A.; Kamal, A. Iodine-catalyzed Csp3-H functionalization of methylhetarenes: One-pot synthe-sis and cytotoxic evaluation of heteroarenyl-benzimidazoles and benzothiazole. Bioorg. Med. Chem. Lett., 2017, 27(17), 4039-4043.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.051] [PMID: 28789894]
[94]
Rezki, N.; Almehmadi, M.A.; Ihmaid, S.; Shehata, A.M.; Omar, A.M.; Ahmed, H.E.A.; Aouad, M.R. Novel scaffold hopping of potent benzothiazole and isatin analogues linked to 1,2,3-triazole fragment that mimic quinazoline epidermal growth factor receptor inhibitors: Synthesis, antitumor and mechanistic analyses. Bioorg. Chem., 2020, 103, 104133.
[http://dx.doi.org/10.1016/j.bioorg.2020.104133] [PMID: 32745759]
[95]
Grandis, J.R.; Sok, J.C. Signaling through the epidermal growth factor receptor during the development of malignancy. Pharmacol. Ther., 2004, 102(1), 37-46.
[http://dx.doi.org/10.1016/j.pharmthera.2004.01.002] [PMID: 15056497]
[96]
Seshacharyulu, P.; Ponnusamy, M.P.; Haridas, D.; Jain, M.; Ganti, A.K.; Batra, S.K. Targeting the EGFR signaling pathway in cancer ther-apy. Expert Opin. Ther. Targets, 2012, 16(1), 15-31.
[http://dx.doi.org/10.1517/14728222.2011.648617] [PMID: 22239438]
[97]
Pragathi, Y.J.; Sreenivasulu, R.; Veronica, D.; Madhavi, S.; Raju, R.R. Design, synthesis, and biological evaluation of novel 2-(4-arylsubstituted-1H,2,3-triazol-1-yl)-N-{4-[2-(thiazol-2-yl)benzo[d]thiazol-6-yl]phenyl}acetamide derivatives as potent anticancer agents. Russ. J. Gen. Chem., 2019, 89(5), 1009-1014.
[http://dx.doi.org/10.1134/S1070363219050220]
[98]
Aouad, M.R.; Soliman, M.A.; Alharbi, M.O.; Bardaweel, S.K.; Sahu, P.K.; Ali, A.A.; Messali, M.; Rezki, N.; Al-Soud, Y.A. Design, syn-thesis and anticancer screening of novel benzothiazole-piperazine-1, 2, 3-triazole hybrids. Molecules, 2018, 23(11), 2788.
[http://dx.doi.org/10.3390/molecules23112788] [PMID: 30373247]
[99]
Ashraf, M.; Shaik, T.B.; Malik, M.S.; Syed, R.; Mallipeddi, P.L.; Vardhan, M.V.P.S.V.; Kamal, A. Design and synthesis of cis-restricted benzimidazole and benzothiazole mimics of combretastatin A-4 as antimitotic agents with apoptosis inducing ability. Bioorg. Med. Chem. Lett., 2016, 26(18), 4527-4535.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.044] [PMID: 27515320]
[100]
Sultana, F.; Saifi, M.A.; Syed, R.; Mani, G.S.; Shaik, S.P.; Osas, E.G.S.; Godugu, C.; Shahjahan, S.; Kamal, A. Synthesis of 2-anilinopyridyl linked benzothiazolehydrazones as apoptosis inducing cytotoxic agents. New J. Chem., 2019, 43(18), 7150-7161.
[http://dx.doi.org/10.1039/C8NJ06517A]
[101]
Ma, J.; Ni, X.; Gao, Y.; Huang, K.; Liu, J.; Wang, Y.; Chen, R.; Wang, C. Identification and biological evaluation of novel benzothiazole derivatives bearing a pyridine-semicarbazone moiety as apoptosis inducers via activation of procaspase-3 to caspase-3. MedChemComm, 2019, 10(3), 465-477.
[http://dx.doi.org/10.1039/C8MD00624E] [PMID: 31015910]
[102]
Diao, P.C.; Lin, W.Y.; Jian, X.E.; Li, Y.H.; You, W.W.; Zhao, P.L. Discovery of novel pyrimidine-based benzothiazole derivatives as potent cyclin-dependent kinase 2 inhibitors with anticancer activity. Eur. J. Med. Chem., 2019, 179, 196-207.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.055] [PMID: 31254921]
[103]
Malumbres, M.; Barbacid, M. Cell cycle kinases in cancer. Curr. Opin. Genet. Dev., 2007, 17(1), 60-65.
[http://dx.doi.org/10.1016/j.gde.2006.12.008] [PMID: 17208431]
[104]
Horiuchi, D.; Huskey, N.E.; Kusdra, L.; Wohlbold, L.; Merrick, K.A.; Zhang, C.; Creasman, K.J.; Shokat, K.M.; Fisher, R.P.; Goga, A. Chemical-genetic analysis of cyclin dependent kinase 2 function reveals an important role in cellular transformation by multiple oncogen-ic pathways. Proc. Natl. Acad. Sci., 2012, 109(17), E1019-E1027.
[http://dx.doi.org/10.1073/pnas.1111317109] [PMID: 22474407]
[105]
Luye, Z.; Yang, Z.; Zhengjie, W.; Tao, W.; Limin, L.; Xiujuan, L.; Erdong, L.; Panpan, S.; Jiaxin, Z.; Yu, K.; Lihong, S.; Hongmin, L.; Qiurong, Z. Synthesis and antitumor activity of novel 4-aminoquinazoline derivatives containing benzothiazole. Youji Huaxue, 2020, 40(7), 1967-1974.
[http://dx.doi.org/10.6023/cjoc201902036]
[106]
Husseiny, E.M. Synthesis, cytotoxicity of some pyrazoles and pyrazolo[1,5-a]pyrimidines bearing benzothiazole moiety and investiga-tion of their mechanism of action. Bioorg. Chem., 2020, 102, 104053.
[http://dx.doi.org/10.1016/j.bioorg.2020.104053] [PMID: 32673889]
[107]
Sović, I.; Jambon, S.; Kraljević Pavelić, S.; Markova-Car, E.; Ilić, N.; Depauw, S.; David-Cordonnier, M.H.; Karminski-Zamola, G. Syn-thesis, antitumor activity and DNA binding features of benzothiazolyl and benzimidazolyl substituted isoindolines. Bioorg. Med. Chem., 2018, 26(8), 1950-1960.
[http://dx.doi.org/10.1016/j.bmc.2018.02.045] [PMID: 29519603]
[108]
Philoppes, J.N.; Lamie, P.F. Design and synthesis of new benzoxazole/benzothiazole-phthalimide hybrids as antitumor-apoptotic agents. Bioorg. Chem., 2019, 89, 102978.
[http://dx.doi.org/10.1016/j.bioorg.2019.102978] [PMID: 31136900]
[109]
El-Meguid, E.A.A.; Moustafa, G.O.; Awad, H.M.; Zaki, E.R.; Nossier, E.S. Novel benzothiazole hybrids targeting EGFR: Design, synthe-sis, biological evaluation and molecular docking studies. J. Mol. Struct., 2021, 1240, 130595.
[http://dx.doi.org/10.1016/j.molstruc.2021.130595]
[110]
Altıntop, M.D.; Sever, B.; Akalın Çiftçi, G.; Turan-Zitouni, G.; Kaplancıklı, Z.A.; Özdemir, A. Design, synthesis, in vitro and in silico evaluation of a new series of oxadiazole-based anticancer agents as potential AKT and FAK inhibitors. Eur. J. Med. Chem., 2018, 155, 905-924.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.049] [PMID: 29966916]
[111]
Nitulescu, G.M.; Margina, D.; Juzenas, P.; Peng, Q.; Olaru, O.T.; Saloustros, E.; Fenga, C.; Spandidos, D.A.; Libra, M.; Tsatsakis, A.M. AKT inhibitors in cancer treatment: The long journey from drug discovery to clinical use. (Review) Int. J. Oncol., 2016, 48(3), 869-885.
[http://dx.doi.org/10.3892/ijo.2015.3306] [PMID: 26698230]
[112]
Kumar, P.S.; Umadevi, P. Novel bis (1,2,4-oxadiazolyl) fused thiazole derivatives: Synthesis and anticancer activity. Russ. J. Gen. Chem., 2018, 88(12), 2611-2615.
[http://dx.doi.org/10.1134/S107036321812023X]
[113]
Sankara Rao, N.; Nagesh, N.; Lakshma Nayak, V.; Sunkari, S.; Tokala, R.; Kiranmai, G.; Regur, P.; Shankaraiah, N.; Kamal, A. Design and synthesis of DNA-intercalative naphthalimide-benzothiazole/cinnamide derivatives: Cytotoxicity evaluation and topoisomerase-IIα inhibition. MedChemComm, 2018, 10(1), 72-79.
[http://dx.doi.org/10.1039/C8MD00395E] [PMID: 30774856]
[114]
Osmaniye, D.; Levent, S.; Karaduman, A.B.; Ilgın, S.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis of new benzothiazole acylhydrazones as anticancer agents. Molecules, 2018, 23(5), 1054.
[http://dx.doi.org/10.3390/molecules23051054] [PMID: 29724002]
[115]
Pugh, K.W.; Zhang, Z.; Wang, J.; Xu, X.; Munthali, V.; Zuo, A.; Blagg, B.S.J. From bacteria to cancer: A benzothiazole-based DNA gyrase B inhibitor redesigned for Hsp90 C-terminal inhibition. ACS Med. Chem. Lett., 2020, 11(8), 1535-1538.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00100] [PMID: 32832020]
[116]
Whitesell, L.; Lindquist, S.L. HSP90 and the chaperoning of cancer. Nat. Rev. Cancer, 2005, 5(10), 761-772.
[http://dx.doi.org/10.1038/nrc1716] [PMID: 16175177]
[117]
Terracciano, S.; Foglia, A.; Chini, M.G.; Vaccaro, M.C.; Russo, A.; Dal Piaz, F.; Saturnino, C.; Riccio, R.; Bifulco, G.; Bruno, I. New dihy-dropyrimidin-2 (1H)-one based Hsp90 C-terminal inhibitors. RSC Advances, 2016, 6(85), 82330-82340.
[http://dx.doi.org/10.1039/C6RA17235K]
[118]
Barrott, J.J.; Haystead, T.A. Hsp90, an unlikely ally in the war on cancer. FEBS J., 2013, 280(6), 1381-1396.
[http://dx.doi.org/10.1111/febs.12147] [PMID: 23356585]
[119]
Hall, J.A.; Forsberg, L.K.; Blagg, B.S.J. Alternative approaches to Hsp90 modulation for the treatment of cancer. Future Med. Chem., 2014, 6(14), 1587-1605.
[http://dx.doi.org/10.4155/fmc.14.89] [PMID: 25367392]
[120]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[121]
Liu, Q.Q.; Lu, K.; Zhu, H.M.; Kong, S.L.; Yuan, J.M.; Zhang, G.H.; Chen, N.Y.; Gu, C.X.; Pan, C.X.; Mo, D.L.; Su, G.F. Identification of 3-(benzazol-2-yl)quinoxaline derivatives as potent anticancer compounds: Privileged structure-based design, synthesis, and bioactive evaluation in vitro and in vivo. Eur. J. Med. Chem., 2019, 165, 293-308.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.004] [PMID: 30685528]
[122]
Tokala, R.; Mahajan, S.; Kiranmai, G.; Sigalapalli, D.K.; Sana, S.; John, S.E.; Nagesh, N.; Shankaraiah, N. Development of β-carboline-benzothiazole hybrids via carboxamide formation as cytotoxic agents: DNA intercalative topoisomerase IIα inhibition and apoptosis in-duction. Bioorg. Chem., 2021, 106, 104481.
[http://dx.doi.org/10.1016/j.bioorg.2020.104481] [PMID: 33261848]
[123]
Ammazzalorso, A.; De Lellis, L.; Florio, R.; Laghezza, A.; De Filippis, B.; Fantacuzzi, M.; Giampietro, L.; Maccallini, C.; Tortorella, P.; Veschi, S.; Loiodice, F.; Cama, A.; Amoroso, R. Synthesis of novel benzothiazole amides: Evaluation of PPAR activity and anti-proliferative effects in paraganglioma, pancreatic and colorectal cancer cell lines. Bioorg. Med. Chem. Lett., 2019, 29(16), 2302-2306.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.020] [PMID: 31272790]
[124]
Gao, J.; Yuan, S.; Jin, J.; Shi, J.; Hou, Y. PPARα regulates tumor progression, foe or friend? Eur. J. Pharmacol., 2015, 765, 560-564.
[http://dx.doi.org/10.1016/j.ejphar.2015.09.027] [PMID: 26409040]
[125]
Gao, J.; Liu, Q.; Xu, Y.; Gong, X.; Zhang, R.; Zhou, C.; Su, Z.; Jin, J.; Shi, H.; Shi, J.; Hou, Y. PPARα induces cell apoptosis by destruct-ing Bcl2. Oncotarget, 2015, 6(42), 44635-44642.
[http://dx.doi.org/10.18632/oncotarget.5988] [PMID: 26556865]
[126]
Ceylan, M.; Erkan, S.; Yaglioglu, A.S.; Akdogan Uremis, N.; Koç, E. Antiproliferative evaluation of some 2‐[2‐(2‐phenylethenyl)‐cyclopent‐3‐en‐1‐yl]‐1,3‐benzothiazoles: DFT and molecular docking study. Chem. Biodivers., 2020, 17(4), e1900675.
[http://dx.doi.org/10.1002/cbdv.201900675] [PMID: 32141675]
[127]
Uremis, N.; Uremis, M.M.; Tolun, F.I.; Ceylan, M.; Doganer, A.; Kurt, A.H. Synthesis of 2-substituted benzothiazole derivatives and their in vitro anticancer effects and antioxidant activities against pancreatic cancer cells. Anticancer Res., 2017, 37(11), 6381-6389.
[http://dx.doi.org/10.21873/anticanres.12091] [PMID: 29061823]
[128]
Uremis, M.M.; Yaglioglu, A.S.; Budak, Y.; Ceylan, M. Synthesis, characterization, in vitro antiproliferative and cytotoxicity effects of a new class of 2-((1R, 2S)-2-((E)-4-substitutedstyryl)cyclooctyl)benzo[d]thiazole derivatives. Org. Commun., 2017, 10(3), 190-200.
[http://dx.doi.org/10.25135/acg.oc.18.17.02.009]
[129]
El-Helby, A.A.; Sakr, H.; Eissa, I.H.; Al-Karmalawy, A.A.; El-Adl, K. Benzoxazole/benzothiazole-derived VEGFR-2 inhibitors: Design, synthesis, molecular docking, and anticancer evaluations. Arch. Pharm. (Weinheim), 2019, 352(12), e1900178.
[http://dx.doi.org/10.1002/ardp.201900178] [PMID: 31596514]
[130]
Simons, M.; Gordon, E.; Claesson-Welsh, L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat. Rev. Mol. Cell Biol., 2016, 17(10), 611-625.
[http://dx.doi.org/10.1038/nrm.2016.87] [PMID: 27461391]
[131]
Lian, L.; Li, X.L.; Xu, M.D.; Li, X.M.; Wu, M.Y.; Zhang, Y.; Tao, M.; Li, W.; Shen, X.M.; Zhou, C.; Jiang, M. VEGFR2 promotes tumor-igenesis and metastasis in a pro-angiogenic-independent way in gastric cancer. BMC Cancer, 2019, 19(1), 183.
[http://dx.doi.org/10.1186/s12885-019-5322-0] [PMID: 30819137]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy