Review Article

与EMT相关的lncRNAs在治疗耐药性中的作用及其作为生物标志物的应用

卷 29, 期 26, 2022

发表于: 10 May, 2022

页: [4574 - 4601] 页: 28

弟呕挨: 10.2174/0929867329666220329203032

价格: $65

摘要

癌症是世界第二大死因。最常见的癌症治疗方法是手术、放疗和化疗。耐药、上皮-间充质转化(EMT)和转移是当今癌症治疗的紧迫问题。越来越多的证据表明,耐药与EMT之间存在着密切的联系。的确,耐药癌细胞具有更强的EMT和侵袭能力。最近的研究表明,lncRNAs(长链非编码RNAs)是一种非编码转录本,在不同癌症的EMT、转移和耐药调控中发挥重要作用。然而,lncRNAs与EMT和耐药性之间的关系尚不清楚。这些作用可能通过多种信号通路发挥作用,如TGF-β、PI3K-AKT和Wnt/β-catenin。确定lncRNAs在这些途径和过程中的关键调控作用,将有助于开发新的靶向治疗方法。我们综述了与EMT和治疗耐药相关的lncRNAs的关键方面。我们关注lncRNAs与影响EMT和耐药的分子信号通路之间的串扰。此外,上述每种lncRNAs都可作为癌症的潜在诊断、预后和治疗耐药指标。然而,lncRNAs的临床应用研究仍存在一些挑战。

关键词: 长链非编码RNA,耐药,EMT, Wnt/β-catenin通路,PI3K-AKT通路,TGF-β通路,EMT相关lncRNAs,耐药,生物标志物。

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Cortes, J.; Perez-García, J.M.; Llombart-Cussac, A.; Curigliano, G.; El Saghir, N.S.; Cardoso, F.; Barrios, C.H.; Wagle, S.; Roman, J.; Harbeck, N.; Eniu, A.; Kaufman, P.A.; Tabernero, J.; García-Estévez, L.; Schmid, P.; Arribas, J. Enhancing global access to cancer medicines. CA Cancer J. Clin., 2020, 70(2), 105-124.
[http://dx.doi.org/10.3322/caac.21597] [PMID: 32068901]
[3]
Liu, K.; Gao, L.; Ma, X.; Huang, J-J.; Chen, J.; Zeng, L.; Ashby, C.R., Jr; Zou, C.; Chen, Z-S. Long non-coding RNAs regulate drug resistance in cancer. Mol. Cancer, 2020, 19(1), 54.
[http://dx.doi.org/10.1186/s12943-020-01162-0] [PMID: 32164712]
[4]
Liang, Y.; McDonnell, S.; Clynes, M. Examining the relationship between cancer invasion/metastasis and drug resistance. Curr. Cancer Drug Targets, 2002, 2(3), 257-277.
[http://dx.doi.org/10.2174/1568009023333872] [PMID: 12188911]
[5]
Norouzi, S.; Gorgi Valokala, M.; Mosaffa, F.; Zirak, M.R.; Zamani, P.; Behravan, J. Crosstalk in cancer resistance and metastasis. Crit. Rev. Oncol. Hematol., 2018, 132, 145-153.
[http://dx.doi.org/10.1016/j.critrevonc.2018.09.017] [PMID: 30447920]
[6]
Yuan, L.; Xu, Z-Y.; Ruan, S-M.; Mo, S.; Qin, J-J.; Cheng, X-D. Long non-coding RNAs towards precision medicine in gastric cancer: Early diagnosis, treatment, and drug resistance. Mol. Cancer, 2020, 19(1), 96.
[http://dx.doi.org/10.1186/s12943-020-01219-0] [PMID: 32460771]
[7]
Huang, Q.; Yan, J.; Agami, R. Long non-coding RNAs in metastasis. Cancer Metastasis Rev., 2018, 37(1), 75-81.
[http://dx.doi.org/10.1007/s10555-017-9713-x] [PMID: 29230620]
[8]
Statello, L.; Guo, C-J.; Chen, L-L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol., 2020, 1-23.
[PMID: 33353982]
[9]
Qu, Y.; Tan, H-Y.; Chan, Y-T.; Jiang, H.; Wang, N.; Wang, D. The functional role of long noncoding RNA in resistance to anticancer treatment. Ther. Adv. Med. Oncol., 2020, 12, 1758835920927850.
[http://dx.doi.org/10.1177/1758835920927850] [PMID: 32536982]
[10]
Gugnoni, M.; Ciarrocchi, A. Long noncoding RNA and epithelial mesenchymal transition in cancer. Int. J. Mol. Sci., 2019, 20(8), 1924.
[http://dx.doi.org/10.3390/ijms20081924] [PMID: 31003545]
[11]
Lin, C.-W.; Lin, P.-Y.; Yang, P.-C. Noncoding RNAs in tumor epithelial-to-mesenchymal transition. Stem Cells Int., 2016, 2016, Article ID 2732705.
[http://dx.doi.org/10.1155/2016/2732705]
[12]
Serrano-Gomez, S.J.; Maziveyi, M.; Alahari, S.K. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol. Cancer, 2016, 15(1), 18.
[http://dx.doi.org/10.1186/s12943-016-0502-x] [PMID: 26905733]
[13]
van Staalduinen, J.; Baker, D.; Ten Dijke, P.; van Dam, H. Epithelial-mesenchymal-transition-inducing transcription factors: New targets for tackling chemoresistance in cancer? Oncogene, 2018, 37(48), 6195-6211.
[http://dx.doi.org/10.1038/s41388-018-0378-x] [PMID: 30002444]
[14]
Luo, M.; Li, Z.; Wang, W.; Zeng, Y.; Liu, Z.; Qiu, J. Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett., 2013, 333(2), 213-221.
[http://dx.doi.org/10.1016/j.canlet.2013.01.033] [PMID: 23354591]
[15]
Liang, W-C.; Fu, W-M.; Wong, C-W.; Wang, Y.; Wang, W-M.; Hu, G-X.; Zhang, L.; Xiao, L-J.; Wan, D.C-C.; Zhang, J-F.; Waye, M.M. The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer. Oncotarget, 2015, 6(26), 22513-22525.
[http://dx.doi.org/10.18632/oncotarget.4154] [PMID: 26068968]
[16]
Dong, H.; Hu, J.; Zou, K.; Ye, M.; Chen, Y.; Wu, C.; Chen, X.; Han, M. Activation of LncRNA TINCR by H3K27 acetylation promotes Trastuzumab resistance and epithelial-mesenchymal transition by targeting MicroRNA-125b in breast cancer. Mol. Cancer, 2019, 18(1), 3.
[http://dx.doi.org/10.1186/s12943-018-0931-9] [PMID: 30621694]
[17]
Li, S-P.; Xu, H-X.; Yu, Y.; He, J-D.; Wang, Z.; Xu, Y-J.; Wang, C-Y.; Zhang, H-M.; Zhang, R-X.; Zhang, J-J.; Yao, Z.; Shen, Z-Y. LncRNA HULC enhances epithelial-mesenchymal transition to promote tumorigenesis and metastasis of hepatocellular carcinoma via the miR-200a-3p/ZEB1 signaling pathway. Oncotarget, 2016, 7(27), 42431-42446.
[http://dx.doi.org/10.18632/oncotarget.9883] [PMID: 27285757]
[18]
Xu, J.; Lamouille, S.; Derynck, R. TGF-β-induced epithelial to mesenchymal transition. Cell Res., 2009, 19(2), 156-172.
[http://dx.doi.org/10.1038/cr.2009.5] [PMID: 19153598]
[19]
Gajria, D.; Chandarlapaty, S. HER2-amplified breast cancer: Mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev. Anticancer Ther., 2011, 11(2), 263-275.
[http://dx.doi.org/10.1586/era.10.226] [PMID: 21342044]
[20]
Xu, F.; Zhang, Z.Q.; Fang, Y.C.; Li, X.L.; Sun, Y.; Xiong, C.Z.; Yan, L.Q.; Wang, Q. Metastasis-associated lung adenocarcinoma transcript 1 promotes the proliferation of chondrosarcoma cell via activating Notch-1 signaling pathway. OncoTargets Ther., 2016, 9, 2143-2151.
[PMID: 27110130]
[21]
Kong, J.; Sun, W.; Li, C.; Wan, L.; Wang, S.; Wu, Y.; Xu, E.; Zhang, H.; Lai, M. Long non-coding RNA LINC01133 inhibits epithelial-mesenchymal transition and metastasis in colorectal cancer by interacting with SRSF6. Cancer Lett., 2016, 380(2), 476-484.
[http://dx.doi.org/10.1016/j.canlet.2016.07.015] [PMID: 27443606]
[22]
Zhao, Y.; Qin, Z.S.; Feng, Y.; Tang, X.J.; Zhang, T.; Yang, L. Long non-coding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) promote cell proliferation in colorectal cancer by affecting P53. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(4), 976-984.
[PMID: 29509245]
[23]
Zhuang, J.; Shen, L.; Yang, L.; Huang, X.; Lu, Q.; Cui, Y.; Zheng, X.; Zhao, X.; Zhang, D.; Huang, R.; Guo, H.; Yan, J. TGFβ1 promotes gemcitabine resistance through regulating the LncRNA-LET/NF90/miR-145 signaling axis in bladder cancer. Theranostics, 2017, 7(12), 3053-3067.
[http://dx.doi.org/10.7150/thno.19542] [PMID: 28839463]
[24]
Li, C.; Zheng, H.; Hou, W.; Bao, H.; Xiong, J.; Che, W.; Gu, Y.; Sun, H.; Liang, P. Long non-coding RNA linc00645 promotes TGF-β-induced epithelial-mesenchymal transition by regulating miR-205-3p-ZEB1 axis in glioma. Cell Death Dis., 2019, 10(10), 717.
[http://dx.doi.org/10.1038/s41419-019-1948-8] [PMID: 31558707]
[25]
Yuan, J.H.; Yang, F.; Wang, F.; Ma, J.Z.; Guo, Y.J.; Tao, Q.F.; Liu, F.; Pan, W.; Wang, T.T.; Zhou, C.C.; Wang, S.B.; Wang, Y.Z.; Yang, Y.; Yang, N.; Zhou, W.P.; Yang, G.S.; Sun, S.H. A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell, 2014, 25(5), 666-681.
[http://dx.doi.org/10.1016/j.ccr.2014.03.010] [PMID: 24768205]
[26]
Pádua Alves, C.; Fonseca, A.S.; Muys, B.R.; de Barros E Lima Bueno, R.; Bürger, M.C.; de Souza, J.E.; Valente, V.; Zago, M.A.; Silva, W.A. Jr. Brief report: The lincRNA Hotair is required for epithelial-to-mesenchymal transition and stemness maintenance of cancer cell lines. Stem Cells, 2013, 31(12), 2827-2832.
[http://dx.doi.org/10.1002/stem.1547] [PMID: 24022994]
[27]
Mondal, T.; Subhash, S.; Vaid, R.; Enroth, S.; Uday, S.; Reinius, B.; Mitra, S.; Mohammed, A.; James, A.R.; Hoberg, E.; Moustakas, A.; Gyllensten, U.; Jones, S.J.M.; Gustafsson, C.M.; Sims, A.H.; Westerlund, F.; Gorab, E.; Kanduri, C. MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA-DNA triplex structures. Nat. Commun., 2015, 6(1), 7743.
[http://dx.doi.org/10.1038/ncomms8743] [PMID: 26205790]
[28]
Tang, R.; Zhang, G.; Wang, Y-C.; Mei, X.; Chen, S-Y. The long non-coding RNA GAS5 regulates transforming growth factor β (TGF-β)-induced smooth muscle cell differentiation via RNA Smad-binding elements. J. Biol. Chem., 2017, 292(34), 14270-14278.
[http://dx.doi.org/10.1074/jbc.M117.790030] [PMID: 28659340]
[29]
Kawasaki, N.; Miwa, T.; Hokari, S.; Sakurai, T.; Ohmori, K.; Miyauchi, K.; Miyazono, K.; Koinuma, D. Long noncoding RNA NORAD regulates transforming growth factor-β signaling and epithelial-to-mesenchymal transition-like phenotype. Cancer Sci., 2018, 109(7), 2211-2220.
[http://dx.doi.org/10.1111/cas.13626] [PMID: 29722104]
[30]
Li, C.; Wan, L.; Liu, Z.; Xu, G.; Wang, S.; Su, Z.; Zhang, Y.; Zhang, C.; Liu, X.; Lei, Z.; Zhang, H.T. Long non-coding RNA XIST promotes TGF-β-induced epithelial-mesenchymal transition by regulating miR-367/141-ZEB2 axis in non-small-cell lung cancer. Cancer Lett., 2018, 418, 185-195.
[http://dx.doi.org/10.1016/j.canlet.2018.01.036] [PMID: 29339211]
[31]
Gonzalez, D.M.; Medici, D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci. Signal., 2014, 7(344), re8-re8.
[http://dx.doi.org/10.1126/scisignal.2005189] [PMID: 25249658]
[32]
Pan, H.; Jiang, T.; Cheng, N.; Wang, Q.; Ren, S.; Li, X.; Zhao, C.; Zhang, L.; Cai, W.; Zhou, C. Long non-coding RNA BC087858 induces non-T790M mutation acquired resistance to EGFR-TKIs by activating PI3K/AKT and MEK/ERK pathways and EMT in non-small-cell lung cancer. Oncotarget, 2016, 7(31), 49948-49960.
[http://dx.doi.org/10.18632/oncotarget.10521] [PMID: 27409677]
[33]
Song, L.; Zhou, Z.; Gan, Y.; Li, P.; Xu, Y.; Zhang, Z.; Luo, F.; Xu, J.; Zhou, Q.; Dai, F. Long noncoding RNA OIP5-AS1 causes cisplatin resistance in osteosarcoma through inducing the LPAATβ/PI3K/AKT/mTOR signaling pathway by sponging the miR-340-5p. J. Cell. Biochem., 2019, 120(6), 9656-9666.
[http://dx.doi.org/10.1002/jcb.28244] [PMID: 30548308]
[34]
Zeng, L.; Liao, Q.; Zou, Z.; Wen, Y.; Wang, J.; Liu, C.; He, Q.; Weng, N.; Zeng, J.; Tang, H.; Fang, R.; Lei, Z.; Tang, Z.; Yang, X.; Cui, S.; Long Non-Coding, R.N.A. Long non-coding RNA XLOC_006753 promotes the development of multidrug resistance in gastric cancer cells through the PI3K/AKT/mTOR signaling pathway. Cell. Physiol. Biochem., 2018, 51(3), 1221-1236.
[http://dx.doi.org/10.1159/000495499] [PMID: 30481766]
[35]
Zhou, H.; Feng, B.; Abudoureyimu, M.; Lai, Y.; Lin, X.; Tian, C.; Huang, G.; Chu, X.; Wang, R. The functional role of long non-coding RNAs and their underlying mechanisms in drug resistance of non-small cell lung cancer. Life Sci., 2020, 261, 118362.
[http://dx.doi.org/10.1016/j.lfs.2020.118362] [PMID: 32871184]
[36]
Li, W.; Dong, X.; He, C.; Tan, G.; Li, Z.; Zhai, B.; Feng, J.; Jiang, X.; Liu, C.; Jiang, H.; Sun, X. LncRNA SNHG1 contributes to sorafenib resistance by activating the Akt pathway and is positively regulated by miR-21 in hepatocellular carcinoma cells. J. Exp. Clin. Cancer Res., 2019, 38(1), 183.
[http://dx.doi.org/10.1186/s13046-019-1177-0] [PMID: 31053148]
[37]
Chen, Z.; Pan, T.; Jiang, D.; Jin, L.; Geng, Y.; Feng, X.; Shen, A.; Zhang, L. The lncRNA-GAS5/miR-221-3p/DKK2 axis modulates ABCB1-mediated adriamycin resistance of breast cancer via the Wnt/β-catenin signaling pathway. Mol. Ther. Nucleic Acids, 2020, 19, 1434-1448.
[http://dx.doi.org/10.1016/j.omtn.2020.01.030] [PMID: 32160712]
[38]
Gao, H.; Hao, G.; Sun, Y.; Li, L.; Wang, Y. Long noncoding RNA H19 mediated the chemosensitivity of breast cancer cells via Wnt pathway and EMT process. OncoTargets Ther., 2018, 11, 8001-8012.
[http://dx.doi.org/10.2147/OTT.S172379] [PMID: 30519041]
[39]
Jia, L.; Tian, Y.; Chen, Y.; Zhang, G. The silencing of LncRNA-H19 decreases chemoresistance of human glioma cells to temozolomide by suppressing epithelial-mesenchymal transition via the Wnt/β-Catenin pathway. OncoTargets Ther., 2018, 11, 313-321.
[http://dx.doi.org/10.2147/OTT.S154339] [PMID: 29391808]
[40]
Li, J.; Yang, S.; Su, N.; Wang, Y.; Yu, J.; Qiu, H.; He, X. Overexpression of long non-coding RNA HOTAIR leads to chemoresistance by activating the Wnt/β-catenin pathway in human ovarian cancer. Tumour Biol., 2016, 37(2), 2057-2065.
[http://dx.doi.org/10.1007/s13277-015-3998-6] [PMID: 26341496]
[41]
Fan, Y.; Shen, B.; Tan, M.; Mu, X.; Qin, Y.; Zhang, F.; Liu, Y. Long non-coding RNA UCA1 increases chemoresistance of bladder cancer cells by regulating Wnt signaling. FEBS J., 2014, 281(7), 1750-1758.
[http://dx.doi.org/10.1111/febs.12737] [PMID: 24495014]
[42]
Liu, H.; Wang, G.; Yang, L.; Qu, J.; Yang, Z.; Zhou, X. Knockdown of long non-coding RNA UCA1 increases the tamoxifen sensitivity of breast cancer cells through inhibition of Wnt/β-catenin pathway. PLoS One, 2016, 11(12), e0168406-e0168406.
[http://dx.doi.org/10.1371/journal.pone.0168406] [PMID: 27977766]
[43]
Xie, D.; Zhang, H.; Hu, X.; Shang, C. Knockdown of long non-coding RNA Taurine Up-Regulated 1 inhibited doxorubicin resistance of bladder urothelial carcinoma via Wnt/β-catenin pathway. Oncotarget, 2017, 8(51), 88689-88696.
[http://dx.doi.org/10.18632/oncotarget.20927] [PMID: 29179467]
[44]
Yang, Y.; Li, H.; Hou, S.; Hu, B.; Liu, J.; Wang, J. The noncoding RNA expression profile and the effect of lncRNA AK126698 on cisplatin resistance in non-small-cell lung cancer cell. PLoS One, 2013, 8(5), e65309.
[http://dx.doi.org/10.1371/journal.pone.0065309] [PMID: 23741487]
[45]
Wang, S.; Liang, K.; Hu, Q.; Li, P.; Song, J.; Yang, Y.; Yao, J.; Mangala, L.S.; Li, C.; Yang, W.; Park, P.K.; Hawke, D.H.; Zhou, J.; Zhou, Y.; Xia, W.; Hung, M-C.; Marks, J.R.; Gallick, G.E.; Lopez-Berestein, G.; Flores, E.R.; Sood, A.K.; Huang, S.; Yu, D.; Yang, L.; Lin, C. JAK2-binding long noncoding RNA promotes breast cancer brain metastasis. J. Clin. Invest., 2017, 127(12), 4498-4515.
[http://dx.doi.org/10.1172/JCI91553] [PMID: 29130936]
[46]
Shi, S-J.; Wang, L-J.; Yu, B.; Li, Y-H.; Jin, Y.; Bai, X-Z. LncRNA-ATB promotes trastuzumab resistance and invasion-metastasis cascade in breast cancer. Oncotarget, 2015, 6(13), 11652-11663.
[http://dx.doi.org/10.18632/oncotarget.3457] [PMID: 25871474]
[47]
Li, C.; Wang, S.; Xing, Z.; Lin, A.; Liang, K.; Song, J.; Hu, Q.; Yao, J.; Chen, Z.; Park, P.K.; Hawke, D.H.; Zhou, J.; Zhou, Y.; Zhang, S.; Liang, H.; Hung, M-C.; Gallick, G.E.; Han, L.; Lin, C.; Yang, L. A ROR1-HER3-lncRNA signalling axis modulates the Hippo-YAP pathway to regulate bone metastasis. Nat. Cell Biol., 2017, 19(2), 106-119.
[http://dx.doi.org/10.1038/ncb3464] [PMID: 28114269]
[48]
Liang, Y.; Li, Y.; Song, X.; Zhang, N.; Sang, Y.; Zhang, H.; Liu, Y.; Chen, B.; Zhao, W.; Wang, L.; Guo, R.; Yu, Z.; Yang, Q. Long noncoding RNA LINP1 acts as an oncogene and promotes chemoresistance in breast cancer. Cancer Biol. Ther., 2018, 19(2), 120-131.
[http://dx.doi.org/10.1080/15384047.2017.1394543] [PMID: 29293402]
[49]
Chang, L.; Hu, Z.; Zhou, Z.; Zhang, H. Linc00518 contributes to multidrug resistance through regulating the MiR-199a/MRP1 axis in breast cancer. Cell. Physiol. Biochem., 2018, 48(1), 16-28.
[50]
Li, Z.; Yu, D.; Li, H.; Lv, Y.; Li, S. Long non‑coding RNA UCA1 confers tamoxifen resistance in breast cancer endocrinotherapy through regulation of the EZH2/p21 axis and the PI3K/AKT signaling pathway. Int. J. Oncol., 2019, 54(3), 1033-1042.
[http://dx.doi.org/10.3892/ijo.2019.4679] [PMID: 30628639]
[51]
Liang, Y.; Song, X.; Li, Y.; Chen, B.; Zhao, W.; Wang, L.; Zhang, H.; Liu, Y.; Han, D.; Zhang, N.; Ma, T.; Wang, Y.; Ye, F.; Luo, D.; Li, X.; Yang, Q. LncRNA BCRT1 promotes breast cancer progression by targeting miR-1303/PTBP3 axis. Mol. Cancer, 2020, 19(1), 85.
[http://dx.doi.org/10.1186/s12943-020-01206-5] [PMID: 32384893]
[52]
Han, J.; Qu, H.; Han, M.; Ding, Y.; Xie, M.; Hu, J.; Chen, Y.; Dong, H. MSC-induced lncRNA AGAP2-AS1 promotes stemness and trastuzumab resistance through regulating CPT1 expression and fatty acid oxidation in breast cancer. Oncogene, 2021, 40(4), 833-847.
[http://dx.doi.org/10.1038/s41388-020-01574-8] [PMID: 33273726]
[53]
Dong, H.; Wang, W.; Mo, S.; Chen, R.; Zou, K.; Han, J.; Zhang, F.; Hu, J. SP1-induced lncRNA AGAP2-AS1 expression promotes chemoresistance of breast cancer by epigenetic regulation of MyD88. J. Exp. Clin. Cancer Res., 2018, 37(1), 202-202.
[http://dx.doi.org/10.1186/s13046-018-0875-3] [PMID: 30157918]
[54]
Chen, Q.; Shen, H.; Zhu, X.; Liu, Y.; Yang, H.; Chen, H.; Xiong, S.; Chi, H.; Xu, W. A nuclear lncRNA Linc00839 as a Myc target to promote breast cancer chemoresistance via PI3K/AKT signaling pathway. Cancer Sci., 2020, 111(9), 3279-3291.
[http://dx.doi.org/10.1111/cas.14555] [PMID: 32619088]
[55]
Zhang, N.; Zeng, X.; Sun, C.; Guo, H.; Wang, T.; Wei, L.; Zhang, Y.; Zhao, J.; Ma, X. LncRNA LINC00963 promotes tumorigenesis and radioresistance in breast cancer by sponging miR-324-3p and inducing ACK1 expression. Mol. Ther. Nucleic Acids, 2019, 18, 871-881.
[http://dx.doi.org/10.1016/j.omtn.2019.09.033] [PMID: 31751910]
[56]
Zhang, H.; Wei, N.; Zhang, W.; Shen, L.; Ding, R.; Li, Q.; Li, S.; Du, Y. lncRNA SNHG3 promotes breast cancer progression by acting as a miR‑326 sponge. Oncol. Rep., 2020, 44(4), 1502-1510.
[http://dx.doi.org/10.3892/or.2020.7690] [PMID: 32945476]
[57]
Wang, R.; Zhang, T.; Yang, Z.; Jiang, C.; Seng, J. Long non-coding RNA FTH1P3 activates paclitaxel resistance in breast cancer through miR-206/ABCB1. J. Cell. Mol. Med., 2018, 22(9), 4068-4075.
[http://dx.doi.org/10.1111/jcmm.13679] [PMID: 29971911]
[58]
Zheng, P.; Dong, L.; Zhang, B.; Dai, J.; Zhang, Y.; Wang, Y.; Qin, S. Long noncoding RNA CASC2 promotes paclitaxel resistance in breast cancer through regulation of miR-18a-5p/CDK19. Histochem. Cell Biol., 2019, 152(4), 281-291.
[http://dx.doi.org/10.1007/s00418-019-01794-4] [PMID: 31352515]
[59]
Gooding, A.J.; Zhang, B.; Jahanbani, F.K.; Gilmore, H.L.; Chang, J.C.; Valadkhan, S.; Schiemann, W.P. The lncRNA BORG drives breast cancer metastasis and disease recurrence. Sci. Rep., 2017, 7(1), 12698.
[http://dx.doi.org/10.1038/s41598-017-12716-6] [PMID: 28983112]
[60]
Li, X.; Wang, S.; Li, Z.; Long, X.; Guo, Z.; Zhang, G.; Zu, J.; Chen, Y.; Wen, L. The lncRNA NEAT1 facilitates cell growth and invasion via the miR-211/HMGA2 axis in breast cancer. Int. J. Biol. Macromol., 2017, 105(Pt 1), 346-353.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.053] [PMID: 28720546]
[61]
Jiang, X.; Zhou, Y.; Sun, A-J.; Xue, J-L. NEAT1 contributes to breast cancer progression through modulating miR-448 and ZEB1. J. Cell. Physiol., 2018, 233(11), 8558-8566.
[http://dx.doi.org/10.1002/jcp.26470] [PMID: 29323713]
[62]
Yao, N.; Fu, Y.; Chen, L.; Liu, Z.; He, J.; Zhu, Y.; Xia, T.; Wang, S. Long non-coding RNA NONHSAT101069 promotes epirubicin resistance, migration, and invasion of breast cancer cells through NONHSAT101069/ miR-129-5p/Twist1 axis. Oncogene, 2019, 38(47), 7216-7233.
[http://dx.doi.org/10.1038/s41388-019-0904-5] [PMID: 31444414]
[63]
Shin, V.Y.; Chen, J.; Cheuk, I.W.Y.; Siu, M-T.; Ho, C-W.; Wang, X.; Jin, H.; Kwong, A. Long non-coding RNA NEAT1 confers oncogenic role in triple-negative breast cancer through modulating chemoresistance and cancer stemness. Cell Death Dis., 2019, 10(4), 270.
[http://dx.doi.org/10.1038/s41419-019-1513-5] [PMID: 30894512]
[64]
Lin, L-C.; Lee, H-T.; Chien, P-J.; Huang, Y-H.; Chang, M-Y.; Lee, Y-C.; Chang, W-W. NAD(P)H: Quinone oxidoreductase 1 determines radiosensitivity of triple negative breast cancer cells and is controlled by long non-coding RNA NEAT1. Int. J. Med. Sci., 2020, 17(14), 2214-2224.
[http://dx.doi.org/10.7150/ijms.45706] [PMID: 32922184]
[65]
Wei, L.; Wu, T.; He, P.; Zhang, J-L.; Wu, W. LncRNA ATB promotes the proliferation and metastasis of lung cancer via activation of the p38 signaling pathway. Oncol. Lett., 2018, 16(3), 3907-3912.
[http://dx.doi.org/10.3892/ol.2018.9117] [PMID: 30128006]
[66]
Zhang, Y.; Xiang, C.; Wang, Y.; Duan, Y.; Liu, C.; Jin, Y.; Zhang, Y. lncRNA LINC00152 knockdown had effects to suppress biological activity of lung cancer via EGFR/PI3K/AKT pathway. Biomed. Pharmacother., 2017, 94, 644-651.
[http://dx.doi.org/10.1016/j.biopha.2017.07.120] [PMID: 28787699]
[67]
Chen, W.; Zhao, W.; Zhang, L.; Wang, L.; Wang, J.; Wan, Z.; Hong, Y.; Yu, L. MALAT1-miR-101-SOX9 feedback loop modulates the chemo-resistance of lung cancer cell to DDP via Wnt signaling pathway. Oncotarget, 2017, 8(55), 94317-94329.
[http://dx.doi.org/10.18632/oncotarget.21693] [PMID: 29212230]
[68]
Liu, X.; Huang, Z.; Qian, W.; Zhang, Q.; Sun, J. Silence of lncRNA UCA1 rescues drug resistance of cisplatin to non-small-cell lung cancer cells. J. Cell. Biochem., 2019, 120(6), 9243-9249.
[http://dx.doi.org/10.1002/jcb.28200] [PMID: 30652341]
[69]
Wu, H.; Zhou, C. Long non-coding RNA UCA1 promotes lung cancer cell proliferation and migration via microRNA-193a/HMGB1 axis. Biochem. Biophys. Res. Commun., 2018, 496(2), 738-745.
[http://dx.doi.org/10.1016/j.bbrc.2018.01.097] [PMID: 29355524]
[70]
Cai, Y.; Dong, Z.Y.; Wang, J.Y. LncRNA NNT-AS1 is a major mediator of cisplatin chemoresistance in non-small cell lung cancer through MAPK/Slug pathway. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(15), 4879-4887.
[PMID: 30070323]
[71]
Guo, F.; Cao, Z.; Guo, H.; Li, S. The action mechanism of lncRNA-HOTAIR on the drug resistance of non-small cell lung cancer by regulating Wnt signaling pathway. Exp. Ther. Med., 2018, 15(6), 4885-4889.
[http://dx.doi.org/10.3892/etm.2018.6052] [PMID: 29805510]
[72]
Liao, Y.; Cheng, S.; Xiang, J.; Luo, C. lncRNA CCHE1 increased proliferation, metastasis and invasion of non-small lung cancer cells and predicted poor survival in non-small lung cancer patients. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(6), 1686-1692.
[PMID: 29630113]
[73]
Deng, W.; Zhang, Y.; Cai, J.; Zhang, J.; Liu, X.; Yin, J.; Bai, Z.; Yao, H.; Zhang, Z. LncRNA-ANRIL promotes gastric cancer progression by enhancing NF-kB signaling. Exp. Biol. Med. (Maywood), 2019, 244(12), 953-959.
[http://dx.doi.org/10.1177/1535370219860207] [PMID: 31242038]
[74]
Yan, J.; Zhang, Y.; She, Q.; Li, X.; Peng, L.; Wang, X.; Liu, S.; Shen, X.; Zhang, W.; Dong, Y.; Lu, J.; Zhang, G.; Long Noncoding, R.N.A. Long noncoding RNA H19/miR-675 axis promotes gastric cancer via FADD/Caspase 8/Caspase 3 signaling pathway. Cell. Physiol. Biochem., 2017, 42(6), 2364-2376.
[http://dx.doi.org/10.1159/000480028] [PMID: 28848149]
[75]
Zhao, G.; Wang, S.; Liang, X.; Wang, C.; Peng, B. Oncogenic role of long non-coding RNA SNHG12 in gastric cancer cells by targeting miR-16. Exp. Ther. Med., 2019, 18(1), 199-208.
[http://dx.doi.org/10.3892/etm.2017.4512] [PMID: 31258654]
[76]
Qin, L.; Jia, Z.; Xie, D.; Liu, Z. Knockdown of long noncoding RNA urothelial carcinoma-associated 1 inhibits cell viability, migration, and invasion by regulating microRNA-182 in gastric carcinoma. J. Cell. Biochem., 2018, 119(12), 10075-10086.
[http://dx.doi.org/10.1002/jcb.27344] [PMID: 30129054]
[77]
Li, C.; Liang, G.; Yang, S.; Sui, J.; Yao, W.; Shen, X.; Zhang, Y.; Peng, H.; Hong, W.; Xu, S.; Wu, W.; Ye, Y.; Zhang, Z.; Zhang, W.; Yin, L.; Pu, Y. Dysregulated lncRNA-UCA1 contributes to the progression of gastric cancer through regulation of the PI3K-Akt-mTOR signaling pathway. Oncotarget, 2017, 8(55), 93476-93491.
[http://dx.doi.org/10.18632/oncotarget.19281] [PMID: 29212166]
[78]
Sun, L.; Liu, L.; Yang, J.; Li, H.; Zhang, C. SATB1 3′-UTR and lncRNA-UCA1 competitively bind to miR-495-3p and together regulate the proliferation and invasion of gastric cancer. J. Cell. Biochem., 2019, 120(4), 6671-6682.
[http://dx.doi.org/10.1002/jcb.27963] [PMID: 30368875]
[79]
Pan, J.; Dai, Q.; Zhang, T.; Li, C. Palmitate acid promotes gastric cancer metastasis via FABP5/SP1/UCA1 pathway. Cancer Cell Int., 2019, 19(1), 69.
[http://dx.doi.org/10.1186/s12935-019-0787-0] [PMID: 30948929]
[80]
Liu, G.; Zhao, X.; Zhou, J.; Cheng, X.; Ye, Z.; Ji, Z. LncRNA TP73-AS1 promotes cell proliferation and inhibits cell apoptosis in clear cell renal cell carcinoma through repressing KISS1 expression and inactivation of PI3K/Akt/mTOR signaling pathway. Cell. Physiol. Biochem., 2018, 48(1), 371-384.
[http://dx.doi.org/10.1159/000491767] [PMID: 30016766]
[81]
Zhang, C.; Qu, Y.; Xiao, H.; Xiao, W.; Liu, J.; Gao, Y.; Li, M.; Liu, J. LncRNA SNHG3 promotes clear cell renal cell carcinoma proliferation and migration by upregulating TOP2A. Exp. Cell Res., 2019, 384(1), 111595.
[http://dx.doi.org/10.1016/j.yexcr.2019.111595] [PMID: 31505165]
[82]
Song, W.; Mei, J-Z.; Zhang, M. Long noncoding RNA PlncRNA-1 promotes colorectal cancer cell progression by regulating the PI3K/Akt signaling pathway. Oncol. Res., 2018, 26(2), 261-268.
[http://dx.doi.org/10.3727/096504017X15031557924132] [PMID: 28835319]
[83]
Wang, L.; Zhao, Z.; Feng, W.; Ye, Z.; Dai, W.; Zhang, C.; Peng, J.; Wu, K. Long non-coding RNA TUG1 promotes colorectal cancer metastasis via EMT pathway. Oncotarget, 2016, 7(32), 51713-51719.
[http://dx.doi.org/10.18632/oncotarget.10563] [PMID: 27421138]
[84]
Wang, Y.; Kuang, H.; Xue, J.; Liao, L.; Yin, F.; Zhou, X. LncRNA AB073614 regulates proliferation and metastasis of colorectal cancer cells via the PI3K/AKT signaling pathway. Biomed. Pharmacother., 2017, 93, 1230-1237.
[http://dx.doi.org/10.1016/j.biopha.2017.07.024] [PMID: 28738539]
[85]
Yu, J.; Han, Z.; Sun, Z.; Wang, Y.; Zheng, M.; Song, C. LncRNA SLCO4A1-AS1 facilitates growth and metastasis of colorectal cancer through β-catenin-dependent Wnt pathway. J. Exp. Clin. Cancer Res., 2018, 37(1), 222-222.
[http://dx.doi.org/10.1186/s13046-018-0896-y] [PMID: 30201010]
[86]
Li, P.; Zhang, X.; Wang, L.; Du, L.; Yang, Y.; Liu, T.; Li, C.; Wang, C. lncRNA HOTAIR contributes to 5FU resistance through suppressing miR-218 and activating NF-κB/TS signaling in colorectal cancer. Mol. Ther. Nucleic Acids, 2017, 8, 356-369.
[http://dx.doi.org/10.1016/j.omtn.2017.07.007] [PMID: 28918035]
[87]
Xiao, Z.; Qu, Z.; Chen, Z.; Fang, Z.; Zhou, K.; Huang, Z.; Guo, X.; Zhang, Y. LncRNA HOTAIR is a prognostic biomarker for the proliferation and chemoresistance of colorectal cancer via MiR-203a-3p-Mediated Wnt/ß-catenin signaling pathway. Cell. Physiol. Biochem., 2018, 46(3), 1275-1285.
[http://dx.doi.org/10.1159/000489110] [PMID: 29680837]
[88]
Yang, Z.Y.; Yang, F.; Zhang, Y.L.; Liu, B.; Wang, M.; Hong, X.; Yu, Y.; Zhou, Y.H.; Zeng, H. LncRNA-ANCR down-regulation suppresses invasion and migration of colorectal cancer cells by regulating EZH2 expression. Cancer Biomark., 2017, 18(1), 95-104.
[http://dx.doi.org/10.3233/CBM-161715] [PMID: 27983539]
[89]
Wu, X.; Xia, T.; Cao, M.; Zhang, P.; Shi, G.; Chen, L.; Zhang, J.; Yin, J.; Wu, P.; Cai, B.; Lu, Z.; Miao, Y.; Jiang, K. LncRNA BANCR promotes pancreatic cancer tumorigenesis via modulating MiR-195-5p/Wnt/β-catenin signaling pathway. Technol. Cancer Res. Treat., 2019, 18, 1533033819887962.
[http://dx.doi.org/10.1177/1533033819887962] [PMID: 31769353]
[90]
Li, X.; Deng, S.J.; Zhu, S.; Jin, Y.; Cui, S.P.; Chen, J.Y.; Xiang, C.; Li, Q.Y.; He, C.; Zhao, S.F.; Chen, H.Y.; Niu, Y.; Liu, Y.; Deng, S.C.; Wang, C.Y.; Zhao, G. Hypoxia-induced lncRNA-NUTF2P3-001 contributes to tumorigenesis of pancreatic cancer by derepressing the miR-3923/KRAS pathway. Oncotarget, 2016, 7(5), 6000-6014.
[http://dx.doi.org/10.18632/oncotarget.6830] [PMID: 26755660]
[91]
Liu, Y.; Wang, J.; Dong, L.; Xia, L.; Zhu, H.; Li, Z.; Yu, X.; Long Noncoding, R.N.A. Long noncoding RNA HCP5 regulates pancreatic cancer Gemcitabine (GEM) resistance by sponging Hsa-miR-214-3p to target HDGF. OncoTargets Ther., 2019, 12, 8207-8216.
[http://dx.doi.org/10.2147/OTT.S222703] [PMID: 31632071]
[92]
Ding, K.; Liao, Y.; Gong, D.; Zhao, X.; Ji, W. Effect of long non-coding RNA H19 on oxidative stress and chemotherapy resistance of CD133+ cancer stem cells via the MAPK/ERK signaling pathway in hepatocellular carcinoma. Biochem. Biophys. Res. Commun., 2018, 502(2), 194-201.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.143] [PMID: 29800569]
[93]
Wang, H.; Ke, J.; Guo, Q.; Barnabo Nampoukime, K-P.; Yang, P.; Ma, K. Long non-coding RNA CRNDE promotes the proliferation, migration and invasion of hepatocellular carcinoma cells through miR-217/MAPK1 axis. J. Cell. Mol. Med., 2018, 22(12), 5862-5876.
[http://dx.doi.org/10.1111/jcmm.13856] [PMID: 30246921]
[94]
Ji, D.; Jiang, C.; Zhang, L.; Liang, N.; Jiang, T.; Yang, B.; Liang, H. LncRNA CRNDE promotes hepatocellular carcinoma cell proliferation, invasion, and migration through regulating miR-203/ BCAT1 axis. J. Cell. Physiol., 2019, 234(5), 6548-6560.
[http://dx.doi.org/10.1002/jcp.27396] [PMID: 30230527]
[95]
Yu, J.; Zhang, B.; Zhang, H.; Qi, Y.; Wang, Y.; Wang, W.; Wang, Y.; Wang, Y. E2F1-induced upregulation of long non-coding RNA LMCD1-AS1 facilitates cholangiocarcinoma cell progression by regulating miR-345-5p/COL6A3 pathway. Biochem. Biophys. Res. Commun., 2019, 512(2), 150-155.
[http://dx.doi.org/10.1016/j.bbrc.2019.03.054] [PMID: 30876691]
[96]
Xu, Y.; Yao, Y.; Leng, K.; Li, Z.; Qin, W.; Zhong, X.; Kang, P.; Wan, M.; Jiang, X.; Cui, Y. Long non-coding RNA UCA1 indicates an unfavorable prognosis and promotes tumorigenesis via regulating AKT/GSK-3β signaling pathway in cholangiocarcinoma. Oncotarget, 2017, 8(56), 96203-96214.
[http://dx.doi.org/10.18632/oncotarget.21884] [PMID: 29221199]
[97]
Zhang, F.; Wan, M.; Xu, Y.; Li, Z.; Leng, K.; Kang, P.; Cui, Y.; Jiang, X. Long noncoding RNA PCAT1 regulates extrahepatic cholangiocarcinoma progression via the Wnt/β-catenin-signaling pathway. Biomed. Pharmacother., 2017, 94, 55-62.
[98]
Kong, L.; Wu, Q.; Zhao, L.; Ye, J.; Li, N.; Yang, H. Upregulated lncRNA-UCA1 contributes to metastasis of bile duct carcinoma through regulation of miR-122/CLIC1 and activation of the ERK/MAPK signaling pathway. Cell Cycle, 2019, 18(11), 1212-1228.
[http://dx.doi.org/10.1080/15384101.2019.1593647] [PMID: 31106658]
[99]
Tan, J.; Qiu, K.; Li, M.; Liang, Y. Double-negative feedback loop between long non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells. FEBS Lett., 2015, 589(20PartB), 3175-3181.
[http://dx.doi.org/10.1016/j.febslet.2015.08.020]
[100]
Zhang, X-H.; Hu, P.; Xie, Y-Q.; Kang, Y-J.; Li, M.; Long Noncoding, R.N.A. Long noncoding RNA HOTAIR promotes endometrial carcinoma cell proliferation by binding to PTEN via the activating phosphatidylinositol 3-kinase/Akt signaling pathway. Mol. Cell. Biol., 2019, 39(23), e00251-e00219.
[http://dx.doi.org/10.1128/MCB.00251-19] [PMID: 31527078]
[101]
Liu, L.; Chen, X.; Zhang, Y.; Hu, Y.; Shen, X.; Zhu, W. Long non-coding RNA TUG1 promotes endometrial cancer development via inhibiting miR-299 and miR-34a-5p. Oncotarget, 2017, 8(19), 31386-31394.
[http://dx.doi.org/10.18632/oncotarget.15607] [PMID: 28404901]
[102]
Zhao, H.; Zheng, G-H.; Li, G-C.; Xin, L.; Wang, Y-S.; Chen, Y.; Zheng, X-M. Long noncoding RNA LINC00958 regulates cell sensitivity to radiotherapy through RRM2 by binding to microRNA-5095 in cervical cancer. J. Cell. Physiol., 2019, 234(12), 23349-23359.
[http://dx.doi.org/10.1002/jcp.28902] [PMID: 31169309]
[103]
Yu, G.; Liu, G.; Yuan, D.; Dai, J.; Cui, Y.; Tang, X. Long non-coding RNA ANRIL is associated with a poor prognosis of osteosarcoma and promotes tumorigenesis via PI3K/Akt pathway. J. Bone Oncol., 2018, 11, 51-55.
[http://dx.doi.org/10.1016/j.jbo.2018.02.002] [PMID: 29520337]
[104]
Gao, F.; Feng, J.; Yao, H.; Li, Y.; Xi, J.; Yang, J. LncRNA SBF2-AS1 promotes the progression of cervical cancer by regulating miR-361-5p/FOXM1 axis. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 776-782.
[http://dx.doi.org/10.1080/21691401.2019.1577883] [PMID: 30856345]
[105]
Li, H.; Jia, Y.; Cheng, J.; Liu, G.; Song, F. LncRNA NCK1-AS1 promotes proliferation and induces cell cycle progression by crosstalk NCK1-AS1/miR-6857/CDK1 pathway. Cell Death Dis., 2018, 9(2), 198.
[http://dx.doi.org/10.1038/s41419-017-0249-3] [PMID: 29416014]
[106]
Wang, C.; Shao, S.; Deng, L.; Wang, S.; Zhang, Y. LncRNA SNHG12 regulates the radiosensitivity of cervical cancer through the miR-148a/CDK1 pathway. Cancer Cell Int., 2020, 20(1), 554.
[http://dx.doi.org/10.1186/s12935-020-01654-5] [PMID: 33292254]
[107]
Li, Z.; Niu, H.; Qin, Q.; Yang, S.; Wang, Q.; Yu, C.; Wei, Z.; Jin, Z.; Wang, X.; Yang, A.; Chen, X. lncRNA UCA1 mediates resistance to cisplatin by regulating the miR-143/FOSL2-signaling pathway in ovarian cancer. Mol. Ther. Nucleic Acids, 2019, 17, 92-101.
[http://dx.doi.org/10.1016/j.omtn.2019.05.007] [PMID: 31234009]
[108]
Jin, Y.; Feng, S.J.; Qiu, S.; Shao, N.; Zheng, J.H. LncRNA MALAT1 promotes proliferation and metastasis in epithelial ovarian cancer via the PI3K-AKT pathway. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(14), 3176-3184.
[PMID: 28770968]
[109]
Jiang, X.; Guo, S.; Zhang, Y.; Zhao, Y.; Li, X.; Jia, Y.; Xu, Y.; Ma, B. LncRNA NEAT1 promotes docetaxel resistance in prostate cancer by regulating ACSL4 via sponging miR-34a-5p and miR-204-5p. Cell. Signal., 2020, 65, 109422.
[http://dx.doi.org/10.1016/j.cellsig.2019.109422] [PMID: 31672604]
[110]
Luo, J.; Wang, K.; Yeh, S.; Sun, Y.; Liang, L.; Xiao, Y.; Xu, W.; Niu, Y.; Cheng, L.; Maity, S.N.; Jiang, R.; Chang, C. LncRNA-p21 alters the antiandrogen enzalutamide-induced prostate cancer neuroendocrine differentiation via modulating the EZH2/STAT3 signaling. Nat. Commun., 2019, 10(1), 2571.
[http://dx.doi.org/10.1038/s41467-019-09784-9] [PMID: 31189930]
[111]
Gu, P.; Chen, X.; Xie, R.; Han, J.; Xie, W.; Wang, B.; Dong, W.; Chen, C.; Yang, M.; Jiang, J.; Chen, Z.; Huang, J.; Lin, T. lncRNA HOXD-AS1 regulates proliferation and chemo-resistance of castration-resistant prostate cancer via recruiting WDR5. Mol. Ther., 2017, 25(8), 1959-1973.
[http://dx.doi.org/10.1016/j.ymthe.2017.04.016] [PMID: 28487115]
[112]
Shang, Z.; Yu, J.; Sun, L.; Tian, J.; Zhu, S.; Zhang, B.; Dong, Q.; Jiang, N.; Flores-Morales, A.; Chang, C.; Niu, Y. LncRNA PCAT1 activates AKT and NF-κB signaling in castration-resistant prostate cancer by regulating the PHLPP/FKBP51/IKKα complex. Nucleic Acids Res., 2019, 47(8), 4211-4225.
[http://dx.doi.org/10.1093/nar/gkz108] [PMID: 30773595]
[113]
Huang, S.; Zhan, Z.; Li, L.; Guo, H.; Yao, Y.; Feng, M.; Deng, J.; Xiong, J. LINC00958-MYC positive feedback loop modulates resistance of head and neck squamous cell carcinoma cells to chemo- and radiotherapy in vitro. OncoTargets Ther., 2019, 12, 5989-6000.
[http://dx.doi.org/10.2147/OTT.S208318] [PMID: 31413594]
[114]
Li, D-X.; Fei, X-R.; Dong, Y-F.; Cheng, C-D.; Yang, Y.; Deng, X-F.; Huang, H-L.; Niu, W-X.; Zhou, C-X.; Xia, C-Y.; Niu, C-S. The long non-coding RNA CRNDE acts as a ceRNA and promotes glioma malignancy by preventing miR-136-5p-mediated downregulation of Bcl-2 and Wnt2. Oncotarget, 2017, 8(50), 88163-88178.
[http://dx.doi.org/10.18632/oncotarget.21513] [PMID: 29152149]
[115]
Liao, K.; Lin, Y.; Gao, W.; Xiao, Z.; Medina, R.; Dmitriev, P.; Cui, J.; Zhuang, Z.; Zhao, X.; Qiu, Y.; Zhang, X.; Ge, J.; Guo, L. Blocking lncRNA MALAT1/miR-199a/ZHX1 axis inhibits glioblastoma proliferation and progression. Mol. Ther. Nucleic Acids, 2019, 18, 388-399.
[http://dx.doi.org/10.1016/j.omtn.2019.09.005] [PMID: 31648104]
[116]
Chen, Y.; Huang, W.; Sun, W.; Zheng, B.; Wang, C.; Luo, Z.; Wang, J.; Yan, W. LncRNA MALAT1 promotes cancer metastasis in osteosarcoma via activation of the PI3K-Akt signaling pathway. Cell. Physiol. Biochem., 2018, 51(3), 1313-1326.
[http://dx.doi.org/10.1159/000495550] [PMID: 30481748]
[117]
Dong, Y.; Wei, M-H.; Lu, J-G.; Bi, C-Y. Long non-coding RNA HULC interacts with miR-613 to regulate colon cancer growth and metastasis through targeting RTKN. Biomed. Pharmacother., 2019, 109, 2035-2042.
[http://dx.doi.org/10.1016/j.biopha.2018.08.017] [PMID: 30551459]
[118]
Zhao, J.; Cheng, L. Long non-coding RNA CCAT1/miR-148a axis promotes osteosarcoma proliferation and migration through regulating PIK3IP1. Acta Biochim. Biophys. Sin. (Shanghai), 2017, 49(6), 503-512.
[http://dx.doi.org/10.1093/abbs/gmx041] [PMID: 28549102]
[119]
Wu, D-M.; Wang, S.; Wen, X.; Han, X-R.; Wang, Y-J.; Shen, M.; Fan, S-H.; Zhang, Z-F.; Shan, Q.; Li, M-Q.; Hu, B.; Lu, J.; Chen, G-Q.; Zheng, Y-L. LncRNA SNHG15 acts as a ceRNA to regulate YAP1-Hippo signaling pathway by sponging miR-200a-3p in papillary thyroid carcinoma. Cell Death Dis., 2018, 9(10), 947-947.
[http://dx.doi.org/10.1038/s41419-018-0975-1] [PMID: 30237435]
[120]
Liu, H.; Li, R.; Guan, L.; Jiang, T. Knockdown of lncRNA UCA1 inhibits proliferation and invasion of papillary thyroid carcinoma through regulating miR-204/IGFBP5 axis. OncoTargets Ther., 2018, 11, 7197-7204.
[http://dx.doi.org/10.2147/OTT.S175467] [PMID: 30425512]
[121]
Dai, J.; Mu, J-W.; Mu, H. Long non-coding RNA CRNDE regulates cell proliferation, migration, invasion, epithelial-mesenchymal transition and apoptosis in oral squamous cell carcinoma. Oncol. Lett., 2019, 17(3), 3330-3340.
[http://dx.doi.org/10.3892/ol.2019.9978] [PMID: 30867767]
[122]
Fang, Z.; Zhao, J.; Xie, W.; Sun, Q.; Wang, H.; Qiao, B. LncRNA UCA1 promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by sunppressing miR-184 expression. Cancer Med., 2017, 6(12), 2897-2908.
[http://dx.doi.org/10.1002/cam4.1253] [PMID: 29125238]
[123]
Yang, Y.; Chen, D.; Liu, H.; Yang, K. Increased expression of lncRNA CASC9 promotes tumor progression by suppressing autophagy-mediated cell apoptosis via the AKT/mTOR pathway in oral squamous cell carcinoma. Cell Death Dis., 2019, 10(2), 41-41.
[http://dx.doi.org/10.1038/s41419-018-1280-8] [PMID: 30674868]
[124]
Liu, F.; Tai, Y.; Ma, J. LncRNA NEAT1/let-7a-5p axis regulates the cisplatin resistance in nasopharyngeal carcinoma by targeting Rsf-1 and modulating the Ras-MAPK pathway. Cancer Biol. Ther., 2018, 19(6), 534-542.
[http://dx.doi.org/10.1080/15384047.2018.1450119] [PMID: 29565706]
[125]
Lian, Y.; Xiong, F.; Yang, L.; Bo, H.; Gong, Z.; Wang, Y.; Wei, F.; Tang, Y.; Li, X.; Liao, Q.; Wang, H.; Zhou, M.; Xiang, B.; Wu, X.; Li, Y.; Li, X.; Chen, X.; Li, G.; Guo, C.; Zeng, Z.; Xiong, W. Long noncoding RNA AFAP1-AS1 acts as a competing endogenous RNA of miR-423-5p to facilitate nasopharyngeal carcinoma metastasis through regulating the Rho/Rac pathway. J. Exp. Clin. Cancer Res., 2018, 37(1), 253-253.
[http://dx.doi.org/10.1186/s13046-018-0918-9] [PMID: 30326930]
[126]
Ma, X.; Zhou, J.; Liu, J.; Wu, G.; Yu, Y.; Zhu, H.; Liu, J. LncRNA ANCR promotes proliferation and radiation resistance of nasopharyngeal carcinoma by inhibiting PTEN expression. OncoTargets Ther., 2018, 11, 8399-8408.
[http://dx.doi.org/10.2147/OTT.S182573] [PMID: 30568463]
[127]
Sun, S.; Gong, C.; Yuan, K. LncRNA UCA1 promotes cell proliferation, invasion and migration of laryngeal squamous cell carcinoma cells by activating Wnt/β-catenin signaling pathway. Exp. Ther. Med., 2019, 17(2), 1182-1189.
[PMID: 30679991]
[128]
Wang, L.; Su, K.; Wu, H.; Li, J.; Song, D. LncRNA SNHG3 regulates laryngeal carcinoma proliferation and migration by modulating the miR-384/WEE1 axis. Life Sci., 2019, 232, 116597.
[http://dx.doi.org/10.1016/j.lfs.2019.116597] [PMID: 31238052]
[129]
Li, J.; Sun, S.; Chen, W.; Yuan, K. Small nucleolar RNA host gene 12 (SNHG12) promotes proliferation and invasion of laryngeal cancer cells via sponging miR-129-5p and potentiating WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) expression. Med. Sci. Monit., 2019, 25, 5552-5560.
[http://dx.doi.org/10.12659/MSM.917088] [PMID: 31348766]
[130]
Zheng, X.; Dong, S.; Sun, L.; Xu, J.; Liu, J.; Hao, R. LncRNA LINC00152 promotes laryngeal cancer progression by sponging miR-613. Open Med. (Wars.), 2020, 15(1), 240-248.
[http://dx.doi.org/10.1515/med-2020-0035] [PMID: 32266320]
[131]
Liu, Y.; Liu, X.; Zhang, X.; Deng, J.; Zhang, J.; Xing, H. lncRNA DLX6-AS1 promotes proliferation of laryngeal cancer cells by targeting the miR-26a/TRPC3 pathway. Cancer Manag. Res., 2020, 12, 2685-2695.
[http://dx.doi.org/10.2147/CMAR.S237181] [PMID: 32368147]
[132]
Zhang, T.H.; Liang, L.Z.; Liu, X.L.; Wu, J.N.; Su, K.; Chen, J.Y.; Zheng, Q.Y. LncRNA UCA1/miR-124 axis modulates TGFβ1-induced epithelial-mesenchymal transition and invasion of tongue cancer cells through JAG1/Notch signaling. J. Cell. Biochem., 2019, 120(6), 10495-10504.
[http://dx.doi.org/10.1002/jcb.28334] [PMID: 30635938]
[133]
Zhang, S.; Ma, H.; Zhang, D.; Xie, S.; Wang, W.; Li, Q.; Lin, Z.; Wang, Y. LncRNA KCNQ1OT1 regulates proliferation and cisplatin resistance in tongue cancer via miR-211-5p mediated Ezrin/Fak/Src signaling. Cell Death Dis., 2018, 9(7), 742.
[http://dx.doi.org/10.1038/s41419-018-0793-5] [PMID: 29970910]
[134]
Feng, B.; Wang, G.; Liang, X.; Wu, Z.; Wang, X.; Dong, Z.; Guo, Y.; Shen, S.; Liang, J.; Guo, W. LncRNA FAM83H-AS1 promotes oesophageal squamous cell carcinoma progression via miR-10a-5p/Girdin axis. J. Cell. Mol. Med., 2020, 24(16), 8962-8976.
[http://dx.doi.org/10.1111/jcmm.15530] [PMID: 32583631]
[135]
Wu, Y.; Wang, H. LncRNA NEAT1 promotes dexamethasone resistance in multiple myeloma by targeting miR-193a/MCL1 pathway. J. Biochem. Mol. Toxicol., 2018, 32(1), e22008.
[http://dx.doi.org/10.1002/jbt.22008] [PMID: 29205703]
[136]
Guan, R.; Wang, W.; Fu, B.; Pang, Y.; Lou, Y.; Li, H. Increased lncRNA HOTAIR expression promotes the chemoresistance of multiple myeloma to dexamethasone by regulating cell viability and apoptosis by mediating the JAK2/STAT3 signaling pathway. Mol. Med. Rep., 2019, 20(4), 3917-3923.
[http://dx.doi.org/10.3892/mmr.2019.10603] [PMID: 31485665]
[137]
David, A.; Zocchi, S.; Talbot, A.; Choisy, C.; Ohnona, A.; Lion, J.; Cuccuini, W.; Soulier, J.; Arnulf, B.; Bories, J-C.; Goodhardt, M.; Garrick, D. The long non-coding RNA CRNDE regulates growth of multiple myeloma cells via an effect on IL6 signalling. Leukemia, 2021, 35, 1710-1721.
[PMID: 32879426]
[138]
Yang, L.; Zhang, L.; Lu, L.; Wang, Y.; Long Noncoding, R.N.A. Long noncoding RNA SNHG16 sponges miR-182-5p and miR-128-3p to promote retinoblastoma cell migration and invasion by targeting LASP1. OncoTargets Ther., 2019, 12, 8653-8662.
[http://dx.doi.org/10.2147/OTT.S212352] [PMID: 31806989]
[139]
Yang, L.; Zhang, L.; Lu, L.; Wang, Y. lncRNA UCA1 increases proliferation and multidrug resistance of retinoblastoma cells through downregulating miR-513a-5p. DNA Cell Biol., 2020, 39(1), 69-77.
[http://dx.doi.org/10.1089/dna.2019.5063] [PMID: 31702387]
[140]
Yang, Y.; Peng, X-W. The silencing of long non-coding RNA ANRIL suppresses invasion, and promotes apoptosis of retinoblastoma cells through the ATM-E2F1 signaling pathway. Biosci. Rep., 2018, 38(6), BSR20180558.
[http://dx.doi.org/10.1042/BSR20180558] [PMID: 30355646]
[141]
Li, Z.; Hou, P.; Fan, D.; Dong, M.; Ma, M.; Li, H.; Yao, R.; Li, Y.; Wang, G.; Geng, P.; Mihretab, A.; Liu, D.; Zhang, Y.; Huang, B.; Lu, J. The degradation of EZH2 mediated by lncRNA ANCR attenuated the invasion and metastasis of breast cancer. Cell Death Differ., 2017, 24(1), 59-71.
[http://dx.doi.org/10.1038/cdd.2016.95] [PMID: 27716745]
[142]
Zheng, S.; Li, M.; Miao, K.; Xu, H. lncRNA GAS5-promoted apoptosis in triple-negative breast cancer by targeting miR-378a-5p/SUFU signaling. J. Cell. Biochem., 2020, 121(3), 2225-2235.
[http://dx.doi.org/10.1002/jcb.29445] [PMID: 31692053]
[143]
Tan, B-S.; Yang, M-C.; Singh, S.; Chou, Y-C.; Chen, H-Y.; Wang, M-Y.; Wang, Y-C.; Chen, R-H. LncRNA NORAD is repressed by the YAP pathway and suppresses lung and breast cancer metastasis by sequestering S100P. Oncogene, 2019, 38(28), 5612-5626.
[http://dx.doi.org/10.1038/s41388-019-0812-8] [PMID: 30967631]
[144]
Gao, X.; Wang, N.; Wu, S.; Cui, H.; An, X.; Yang, Y. Long non‑coding RNA FER1L4 inhibits cell proliferation and metastasis through regulation of the PI3K/AKT signaling pathway in lung cancer cells. Mol. Med. Rep., 2019, 20(1), 182-190.
[http://dx.doi.org/10.3892/mmr.2019.10219] [PMID: 31115514]
[145]
Tong, L.; Wu, W. Effects of long non-coding RNA (lncRNA) cancer susceptibility candidate 2c (CASC2c) on proliferation, metastasis and drug resistance of non-small cell lung cancer (NSCLC) cells through ERK1/2 and β-catenin signaling pathways. Pathol. Res. Pract., 2019, 215(9), 152522.
[http://dx.doi.org/10.1016/j.prp.2019.152522] [PMID: 31300295]
[146]
Wang, S.; Lan, F.; Xia, Y. lncRA ANCR inhibits non-small cell lung cancer cell migration and invasion by inactivating TGF-β pathway. Med. Sci. Monit., 2018, 24, 6002-6009.
[http://dx.doi.org/10.12659/MSM.911492] [PMID: 30154397]
[147]
Wei, G.H.; Wang, X. lncRNA MEG3 inhibit proliferation and metastasis of gastric cancer via p53 signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(17), 3850-3856.
[PMID: 28975980]
[148]
Zhai, W.; Sun, Y.; Guo, C.; Hu, G.; Wang, M.; Zheng, J.; Lin, W.; Huang, Q.; Li, G.; Zheng, J.; Chang, C. LncRNA-SARCC suppresses renal cell carcinoma (RCC) progression via altering the androgen receptor(AR)/miRNA-143-3p signals. Cell Death Differ., 2017, 24(9), 1502-1517.
[http://dx.doi.org/10.1038/cdd.2017.74] [PMID: 28644440]
[149]
Liu, B.; Wu, S.; Ma, J.; Yan, S.; Xiao, Z.; Wan, L.; Zhang, F.; Shang, M.; Mao, A. lncRNA GAS5 reverses EMT and tumor stem cell-mediated gemcitabine resistance and metastasis by targeting miR-221/SOCS3 in pancreatic cancer. Mol. Ther. Nucleic Acids, 2018, 13, 472-482.
[http://dx.doi.org/10.1016/j.omtn.2018.09.026] [PMID: 30388621]
[150]
Pei, Z.; Du, X.; Song, Y.; Fan, L.; Li, F.; Gao, Y.; Wu, R.; Chen, Y.; Li, W.; Zhou, H.; Yang, Y.; Zeng, J. Down-regulation of lncRNA CASC2 promotes cell proliferation and metastasis of bladder cancer by activation of the Wnt/β-catenin signaling pathway. Oncotarget, 2017, 8(11), 18145-18153.
[http://dx.doi.org/10.18632/oncotarget.15210] [PMID: 28199978]
[151]
Sun, K-X.; Wu, D-D.; Chen, S.; Zhao, Y.; Zong, Z-H. LncRNA MEG3 inhibit endometrial carcinoma tumorigenesis and progression through PI3K pathway. Apoptosis, 2017, 22(12), 1543-1552.
[http://dx.doi.org/10.1007/s10495-017-1426-7] [PMID: 29094270]
[152]
Xue, D.; Zhou, C.; Lu, H.; Xu, R.; Xu, X.; He, X. LncRNA GAS5 inhibits proliferation and progression of prostate cancer by targeting miR-103 through AKT/mTOR signaling pathway. Tumour Biol., 2016, 37(12), 16187-16197.
[http://dx.doi.org/10.1007/s13277-016-5429-8] [PMID: 27743383]
[153]
Bai, T.; Liu, Y.; Li, B. LncRNA LOXL1-AS1/miR-let-7a-5p/EGFR-related pathway regulates the doxorubicin resistance of prostate cancer DU-145 cells. IUBMB Life, 2019, 71(10), 1537-1551.
[http://dx.doi.org/10.1002/iub.2075] [PMID: 31188543]
[154]
Liao, Y.; Shen, L.; Zhao, H.; Liu, Q.; Fu, J.; Guo, Y.; Peng, R.; Cheng, L. LncRNA CASC2 interacts with miR-181a to modulate glioma growth and resistance to TMZ through PTEN pathway. J. Cell. Biochem., 2017, 118(7), 1889-1899.
[http://dx.doi.org/10.1002/jcb.25910] [PMID: 28121023]
[155]
Duan, Y.; Wang, Z.; Xu, L.; Sun, L.; Song, H.; Yin, H.; He, F. lncRNA SNHG3 acts as a novel tumor suppressor and regulates tumor proliferation and metastasis via AKT/mTOR/ERK pathway in papillary thyroid carcinoma. J. Cancer, 2020, 11(12), 3492-3501.
[http://dx.doi.org/10.7150/jca.42070] [PMID: 32284745]
[156]
Wang, X.; Gao, Z.; Liao, J.; Shang, M.; Li, X.; Yin, L.; Pu, Y.; Liu, R. lncRNA UCA1 inhibits esophageal squamous-cell carcinoma growth by regulating the Wnt signaling pathway. J. Toxicol. Environ. Health A, 2016, 79(9-10), 407-418.
[http://dx.doi.org/10.1080/15287394.2016.1176617] [PMID: 27267823]
[157]
Yang, N.; Chen, J.; Zhang, H.; Wang, X.; Yao, H.; Peng, Y.; Zhang, W. LncRNA OIP5-AS1 loss-induced microRNA-410 accumulation regulates cell proliferation and apoptosis by targeting KLF10 via activating PTEN/PI3K/AKT pathway in multiple myeloma. Cell Death Dis., 2017, 8(8), e2975.
[http://dx.doi.org/10.1038/cddis.2017.358] [PMID: 28796257]
[158]
Gao, X.; Qin, T.; Mao, J.; Zhang, J.; Fan, S.; Lu, Y.; Sun, Z.; Zhang, Q.; Song, B.; Li, L. PTENP1/miR-20a/PTEN axis contributes to breast cancer progression by regulating PTEN via PI3K/AKT pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 256-256.
[http://dx.doi.org/10.1186/s13046-019-1260-6] [PMID: 31196157]
[159]
Luo, K.; Geng, J.; Zhang, Q.; Xu, Y.; Zhou, X.; Huang, Z.; Shi, K-Q.; Pan, C.; Wu, J. LncRNA CASC9 interacts with CPSF3 to regulate TGF-β signaling in colorectal cancer. J. Exper. Clin. Cancer Res., 2019, 38(1), 249-249.
[160]
Sakai, S.; Ohhata, T.; Kitagawa, K.; Uchida, C.; Aoshima, T.; Niida, H.; Suzuki, T.; Inoue, Y.; Miyazawa, K.; Kitagawa, M. Long noncoding RNA ELIT-1 acts as a Smad3 cofactor to facilitate TGFβ/smad signaling and promote epithelial-mesenchymal transition. Cancer Res., 2019, 79(11), 2821-2838.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3210] [PMID: 30952633]
[161]
Zhou, K.; Ou, Q.; Wang, G.; Zhang, W.; Hao, Y.; Li, W. High long non-coding RNA NORAD expression predicts poor prognosis and promotes breast cancer progression by regulating TGF-β pathway. Cancer Cell Int., 2019, 19(1), 63.
[http://dx.doi.org/10.1186/s12935-019-0781-6] [PMID: 30930692]
[162]
Wang, X.; Lai, Q.; He, J.; Li, Q.; Ding, J.; Lan, Z.; Gu, C.; Yan, Q.; Fang, Y.; Zhao, X.; Liu, S. LncRNA SNHG6 promotes proliferation, invasion and migration in colorectal cancer cells by activating TGF-β/Smad signaling pathway via targeting UPF1 and inducing EMT via regulation of ZEB1. Int. J. Med. Sci., 2019, 16(1), 51-59.
[http://dx.doi.org/10.7150/ijms.27359] [PMID: 30662328]
[163]
Tang, J.; Yu, B.; Li, Y.; Zhang, W.; Alvarez, A.A.; Hu, B.; Cheng, S-Y.; Feng, H. TGF-β-activated lncRNA LINC00115 is a critical regulator of glioma stem-like cell tumorigenicity. EMBO Rep., 2019, 20(12), e48170.
[http://dx.doi.org/10.15252/embr.201948170] [PMID: 31599491]
[164]
Gong, X.; Liao, X.; Huang, M. LncRNA CASC7 inhibits the progression of glioma via regulating Wnt/β-catenin signaling pathway. Pathol. Res. Pract., 2019, 215(3), 564-570.
[http://dx.doi.org/10.1016/j.prp.2019.01.018] [PMID: 30661904]
[165]
Zhu, K.R.; Sun, Q.F.; Zhang, Y.Q. Long non-coding RNA LINP1 induces tumorigenesis of Wilms’ tumor by affecting Wnt/β-catenin signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(13), 5691-5698.
[PMID: 31298321]
[166]
Zhang, M.; Weng, W.; Zhang, Q.; Wu, Y.; Ni, S.; Tan, C.; Xu, M.; Sun, H.; Liu, C.; Wei, P.; Du, X. The lncRNA NEAT1 activates Wnt/β-catenin signaling and promotes colorectal cancer progression via interacting with DDX5. J. Hematol. Oncol., 2018, 11(1), 113.
[http://dx.doi.org/10.1186/s13045-018-0656-7] [PMID: 30185232]
[167]
Li, T.; Zhu, J.; Wang, X.; Chen, G.; Sun, L.; Zuo, S.; Zhang, J.; Chen, S.; Ma, J.; Yao, Z.; Zheng, Y.; Chen, Z.; Liu, Y.; Wang, P. Long non-coding RNA lncTCF7 activates the Wnt/β-catenin pathway to promote metastasis and invasion in colorectal cancer. Oncol. Lett., 2017, 14(6), 7384-7390.
[http://dx.doi.org/10.3892/ol.2017.7154] [PMID: 29344178]
[168]
Li, M.; Ding, X.; Zhang, Y.; Li, X.; Zhou, H.; Yang, L.; Li, Y.; Yang, P.; Zhang, X.; Hu, J.; Nice, E.; Wu, H.; Xu, H. Antisense oligonucleotides targeting lncRNA AC104041.1 induces antitumor activity through Wnt2B/β-catenin pathway in head and neck squamous cell carcinomas. Cell Death Dis., 2020, 11(8), 672.
[http://dx.doi.org/10.1038/s41419-020-02820-3] [PMID: 32826863]
[169]
Huang, Y.; Zhang, J.; Hou, L.; Wang, G.; Liu, H.; Zhang, R.; Chen, X.; Zhu, J. LncRNA AK023391 promotes tumorigenesis and invasion of gastric cancer through activation of the PI3K/Akt signaling pathway. J. Exp. Clin. Cancer Res., 2017, 36(1), 194.
[http://dx.doi.org/10.1186/s13046-017-0666-2] [PMID: 29282102]
[170]
Tang, J.; Zhong, G.; Zhang, H.; Yu, B.; Wei, F.; Luo, L.; Kang, Y.; Wu, J.; Jiang, J.; Li, Y.; Wu, S.; Jia, Y.; Liang, X.; Bi, A. LncRNA DANCR upregulates PI3K/AKT signaling through activating serine phosphorylation of RXRA. Cell Death Dis., 2018, 9(12), 1167.
[http://dx.doi.org/10.1038/s41419-018-1220-7] [PMID: 30518934]
[171]
Xiong, H-G.; Li, H.; Xiao, Y.; Yang, Q-C.; Yang, L-L.; Chen, L.; Bu, L-L.; Zhang, W-F.; Zhang, J-L.; Sun, Z-J. Long noncoding RNA MYOSLID promotes invasion and metastasis by modulating the partial epithelial-mesenchymal transition program in head and neck squamous cell carcinoma. J. Exp. Clin. Cancer Res., 2019, 38(1), 278.
[http://dx.doi.org/10.1186/s13046-019-1254-4] [PMID: 31238980]
[172]
Wang, W.; Yin, Z. Diagnostic value of long non-coding RNA H19, UCA1, and HOTAIR as promising biomarkers in human bladder cancer. Int. J. Clin. Exp. Pathol., 2017, 10(12), 11659-11665.
[PMID: 31966524]
[173]
Li, Y.; Cao, X.; Li, H. Identification and validation of novel long non-coding RNA biomarkers for early diagnosis of oral squamous cell carcinoma. Front. Bioeng. Biotechnol., 2020, 8(256), 256.
[http://dx.doi.org/10.3389/fbioe.2020.00256] [PMID: 32351944]
[174]
Li, R-H.; Chen, M.; Liu, J.; Shao, C-C.; Guo, C-P.; Wei, X-L.; Li, Y-C.; Huang, W-H.; Zhang, G-J. Long noncoding RNA ATB promotes the epithelial-mesenchymal transition by upregulating the miR-200c/Twist1 axe and predicts poor prognosis in breast cancer. Cell Death Dis., 2018, 9(12), 1171.
[http://dx.doi.org/10.1038/s41419-018-1210-9] [PMID: 30518916]
[175]
Zeng, W.; Jin, J. The correlation of serum long non-coding RNA ANRIL with risk factors, functional outcome, and prognosis in atrial fibrillation patients with ischemic stroke. J. Clin. Lab. Anal., 2020, 34(8), e23352.
[http://dx.doi.org/10.1002/jcla.23352] [PMID: 32358844]
[176]
Abildgaard, C.; Do Canto, L.M.; Steffensen, K.D.; Rogatto, S.R. Long non-coding RNAs involved in resistance to chemotherapy in ovarian cancer. Front. Oncol., 1549, 2020, 9.
[PMID: 32039022]
[177]
Mao, Z.; Wu, Y.; Zhou, J.; Xing, C. Salinomycin reduces epithelial-mesenchymal transition-mediated multidrug resistance by modifying long noncoding RNA HOTTIP expression in gastric cancer cells. Anticancer Drugs, 2019, 30(9), 892-899.
[http://dx.doi.org/10.1097/CAD.0000000000000786] [PMID: 30882398]
[178]
Chen, J.; Liu, X.; Xu, Y.; Zhang, K.; Huang, J.; Pan, B.; Chen, D.; Cui, S.; Song, H.; Wang, R.; Chu, X.; Zhu, X.; Chen, L. TFAP2C-activated MALAT1 modulates the chemoresistance of docetaxel-resistant lung adenocarcinoma cells. Mol. Ther. Nucleic Acids, 2019, 14, 567-582.
[http://dx.doi.org/10.1016/j.omtn.2019.01.005] [PMID: 30771618]
[179]
Li, P.; Zhang, X.; Wang, H.; Wang, L.; Liu, T.; Du, L.; Yang, Y.; Wang, C. MALAT1 is associated with poor response to oxaliplatin-based chemotherapy in colorectal cancer patients and promotes chemoresistance through EZH2. Mol. Cancer Ther., 2017, 16(4), 739-751.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0591] [PMID: 28069878]
[180]
An, J.; Lv, W.; Zhang, Y. LncRNA NEAT1 contributes to paclitaxel resistance of ovarian cancer cells by regulating ZEB1 expression via miR-194. OncoTargets Ther., 2017, 10, 5377-5390.
[http://dx.doi.org/10.2147/OTT.S147586] [PMID: 29180871]
[181]
Xiu, D-H.; Liu, G-F.; Yu, S-N.; Li, L-Y.; Zhao, G-Q.; Liu, L.; Li, X-F. Long non-coding RNA LINC00968 attenuates drug resistance of breast cancer cells through inhibiting the Wnt2/β-catenin signaling pathway by regulating WNT2. J. Exp. Clin. Cancer Res., 2019, 38(1), 94.
[http://dx.doi.org/10.1186/s13046-019-1100-8] [PMID: 30791958]
[182]
Hu, X.L.; Wang, J.; He, W.; Zhao, P.; Wu, W.Q. Down-regulation of lncRNA Linc00152 suppressed cell viability, invasion, migration, and epithelial to mesenchymal transition, and reversed chemo-resistance in breast cancer cells. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(10), 3074-3084.
[PMID: 29863253]
[183]
Sun, W.; Xu, X.; Jiang, Y.; Jin, X.; Zhou, P.; Liu, Y.; Guo, Y.; Ma, D.; Zuo, W.; Huang, S.; He, X.; Shao, Z. Transcriptome analysis of luminal breast cancer reveals a role for LOL in tumor progression and tamoxifen resistance. Int. J. Cancer, 2019, 145(3), 842-856.
[http://dx.doi.org/10.1002/ijc.32185] [PMID: 30720865]
[184]
Heery, R.; Finn, S.P.; Cuffe, S.; Gray, S.G. Long non-coding RNAs: Key regulators of epithelial-mesenchymal transition, tumour drug resistance and cancer stem cells. Cancers (Basel), 2017, 9(4), 38.
[http://dx.doi.org/10.3390/cancers9040038] [PMID: 28430163]
[185]
Dong, S.; Qu, X.; Li, W.; Zhong, X.; Li, P.; Yang, S.; Chen, X.; Shao, M.; Zhang, L. The long non-coding RNA, GAS5, enhances gefitinib-induced cell death in innate EGFR tyrosine kinase inhibitor-resistant lung adenocarcinoma cells with wide-type EGFR via downregulation of the IGF-1R expression. J. Hematol. Oncol., 2015, 8(1), 43.
[http://dx.doi.org/10.1186/s13045-015-0140-6] [PMID: 25925741]
[186]
Cheng, N.; Cai, W.; Ren, S.; Li, X.; Wang, Q.; Pan, H.; Zhao, M.; Li, J.; Zhang, Y.; Zhao, C.; Chen, X.; Fei, K.; Zhou, C.; Hirsch, F.R. Long non-coding RNA UCA1 induces non-T790M acquired resistance to EGFR-TKIs by activating the AKT/mTOR pathway in EGFR-mutant non-small cell lung cancer. Oncotarget, 2015, 6(27), 23582-23593.
[http://dx.doi.org/10.18632/oncotarget.4361] [PMID: 26160838]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy