Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Marine Polysaccharides in Tailor-made Drug Delivery

Author(s): Sreejan Manna and Sougata Jana*

Volume 28, Issue 13, 2022

Published on: 02 June, 2022

Page: [1046 - 1066] Pages: 21

DOI: 10.2174/1381612828666220328122539

Price: $65

Abstract

Marine sources have attracted much interest as an emerging source of biomaterials in drug delivery applications. Amongst all other marine biopolymers, polysaccharides have been the most investigated class of biomaterials. The low cytotoxic behavior, combined with the newly explored health benefits of marine polysaccharides, has made it one of the prime research areas in the pharmaceutical and biomedical fields. This review focused on all available marine polysaccharides, including their classification based on biological sources. The applications of several marine polysaccharides in recent years for tissue-specific novel drug delivery, including gastrointestinal, brain tissue, transdermal, ocular, liver, and lung, have also been discussed here. The abundant availability in nature, cost-effective extraction, and purification process, along with a favorable biodegradable profile, will encourage researchers to continue investigating marine polysaccharides to explore newer applications targeting the specific delivery of therapeutics.

Keywords: Marine polysaccharides, chitosan, alginate, carrageenan, hyaluronic acid, drug delivery applications.

[1]
Liu D, Yang F, Xiong F, Gu N. The smart drug delivery system and its clinical potential. Theranostics 2016; 6(9): 1306-23.
[http://dx.doi.org/10.7150/thno.14858] [PMID: 27375781]
[2]
Hrubý M, Filippov SK. Štěpánek P. Smart polymers in drug delivery systems on crossroads: Which way deserves following? Eur Polym J 2015; 65: 82-97.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.01.016]
[3]
Yun YH, Lee BK, Park K. Controlled drug delivery: Historical perspective for the next generation. J Control Release 2015; 219: 2-7.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.005] [PMID: 26456749]
[4]
Tiwari G, Tiwari R, Sriwastawa B, et al. Drug delivery systems: An updated review. Int J Pharm Investig 2012; 2(1): 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[5]
Jana S, Jasmin N, Sen KK, Maiti S. Alginate Nanostructures: Pharmaceutical Approaches.Encyclopedia of Marine Biotechnology. John Wiley & Sons Ltd 2020; pp. 767-82.
[6]
Cerciello A, Auriemma G, Del Gaudio P, Cantarini M, Aquino RP. Natural polysaccharides platforms for oral controlled release of ketoprofen lysine salt. Drug Dev Ind Pharm 2016; 42(12): 2063-9.
[http://dx.doi.org/10.1080/03639045.2016.1195401] [PMID: 27237337]
[7]
Jana S, Gangopadhaya A, Bhowmik BB, Nayak AK, Mukherjee A. Pharmacokinetic evaluation of testosterone-loaded nanocapsules in rats. Int J Biol Macromol 2015; 72: 28-30.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.08.001] [PMID: 25109454]
[8]
Swierczewska M, Han HS, Kim K, Park JH, Lee S. Polysaccharide-based nanoparticles for theranostic nanomedicine Adv Drug Deliv Rev 2016; 99(Pt A): 70-84..
[http://dx.doi.org/10.1016/j.addr.2015.11.015] [PMID: 26639578]
[9]
Jana S, Banerjee A, Sen KK, Maiti S. Gelatin-carboxymethyl tamarind gum biocomposites: In vitro characterization & anti-inflammatory pharmacodynamics. Mater Sci Eng C 2016; 69: 478-85.
[http://dx.doi.org/10.1016/j.msec.2016.07.008] [PMID: 27612738]
[10]
Mitura S, Sionkowska A, Jaiswal A. Biopolymers for hydrogels in cosmetics. [Review. J Mater Sci Mater Med 2020; 31(6): 50.
[http://dx.doi.org/10.1007/s10856-020-06390-w] [PMID: 32451785]
[11]
Karewicz A, Bielska D, Nowakowska M. Modified polysaccharides as versatile materials in controlled delivery of antidegenerative agents. Curr Pharm Des 2012; 18(18): 2518-35.
[http://dx.doi.org/10.2174/138161212800492831] [PMID: 22512440]
[12]
Ruocco N, Costantini S, Guariniello S, Costantini M. Polysaccharides from the marine environment with pharmacological, cosmeceutical and nutraceutical potential. Molecules 2016; 21(5): 551.
[http://dx.doi.org/10.3390/molecules21050551] [PMID: 27128892]
[13]
Skoog A, Benner R. Aldoses in various size fractions of marine organic matter: Implications for carbon cycling. Limnol Oceanogr 1997; 42: 1803-13.
[http://dx.doi.org/10.4319/lo.1997.42.8.1803]
[14]
Bhosle NB, Bhaskar PV, Ramachandran S. Abundance of dissolved polysaccharides in the oxygen minimum layer of northern Indian Ocean. Mar Chem 1998; 63: 171-82.
[http://dx.doi.org/10.1016/S0304-4203(98)00061-9]
[15]
Cardoso MJ, Costa RR, Mano JF. Marine origin polysaccharides in drug delivery systems. Mar Drugs 2016; 14(2): 34.
[http://dx.doi.org/10.3390/md14020034] [PMID: 26861358]
[16]
Silva TH, Alves A, Popa EG, et al. Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter 2012; 2(4): 278-89.
[http://dx.doi.org/10.4161/biom.22947] [PMID: 23507892]
[17]
Lee KY, Mooney DJ. Alginate: Properties and biomedical applications. Prog Polym Sci 2012; 37(1): 106-26.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003] [PMID: 22125349]
[18]
Laurienzo P. Marine polysaccharides in pharmaceutical applications: An overview. Mar Drugs 2010; 8(9): 2435-65.
[http://dx.doi.org/10.3390/md8092435] [PMID: 20948899]
[19]
Jana S, Sen KK, Gandhi A. Alginate based nanocarriers for drug delivery applications. Curr Pharm Des 2016; 22(22): 3399-410.
[http://dx.doi.org/10.2174/1381612822666160510125718] [PMID: 27160752]
[20]
Manna S, Mal M, Das S, Mandal D, Bhowmik M. Ionically gelled alginates in drug delivery.Ionically gelled biopolysaccharide based systems in drug delivery, Gels horizons: From science to smart materials Springer 2021; 29-53.
[http://dx.doi.org/10.1007/978-981-16-2271-7_2]
[21]
Jana S, Das A, Nayak AK, Sen KK, Basu SK. Aceclofenac-loaded unsaturated esterified alginate/gellan gum microspheres: In vitro and in vivo assessment. Int J Biol Macromol 2013; 57: 129-37.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.03.015] [PMID: 23499517]
[22]
Yermak IM, Mischchenko NP, Davydova VN, et al. Carrageenans - sulfated polysaccharides from red seaweeds as matrices for the inclusion of echinochrome. Mar Drugs 2017; 15(11): 337.
[http://dx.doi.org/10.3390/md15110337] [PMID: 29104249]
[23]
Manna S, Jana S. Carrageenan-based nanomaterials in drug delivery applications Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications. Elsevier 2021; pp. 365-82.
[http://dx.doi.org/10.1016/B978-0-12-820874-8.00007-5]
[24]
Salbach J, Kliemt S, Rauner M, et al. The effect of the degree of sulfation of glycosaminoglycans on osteoclast function and signaling pathways. Biomaterials 2012; 33(33): 8418-29.
[http://dx.doi.org/10.1016/j.biomaterials.2012.08.028] [PMID: 22954516]
[25]
Li B, Lu F, Wei X, Zhao R. Fucoidan: Structure and bioactivity. Molecules 2008; 13(8): 1671-95.
[http://dx.doi.org/10.3390/molecules13081671] [PMID: 18794778]
[26]
Luthuli S, Wu S, Cheng Y, Zheng X, Wu M, Tong H. Therapeutic effects of fucoidan: A review on recent studies. Mar Drugs 2019; 17(9): 487.
[http://dx.doi.org/10.3390/md17090487] [PMID: 31438588]
[27]
van Weelden G. Bobiński M, Okła K, van Weelden WJ, Romano A, Pijnenborg JMA. Fucoidan structure and activity in relation to anti-cancer mechanisms. Mar Drugs 2019; 17(1): 32.
[http://dx.doi.org/10.3390/md17010032] [PMID: 30621045]
[28]
Kaeffer B, Bénard C, Lahaye M, Blottière HM, Cherbut C. Biological properties of ulvan, a new source of green seaweed sulfated polysaccharides, on cultured normal and cancerous colonic epithelial cells. Planta Med 1999; 65(6): 527-31.
[http://dx.doi.org/10.1055/s-1999-14009] [PMID: 10483372]
[29]
Jiang F, Chi Z, Ding Y, et al. Wound dressing hydrogel of enteromorpha prolifera polysaccharide–polyacrylamide composite: A facile transformation of marine blooming into biomedical material. ACS Appl Mater Interfaces 2021; 13(12): 14530-42.
[http://dx.doi.org/10.1021/acsami.0c21543] [PMID: 33729756]
[30]
Beaumont M, Tran R, Vera G, et al. Hydrogel-forming algae polysaccharides: From seaweed to biomedical applications. Biomacromolecules 2021; 22(3): 1027-52.
[http://dx.doi.org/10.1021/acs.biomac.0c01406] [PMID: 33577286]
[31]
Melcher RL, Neumann M. Fuenzalida, Werner JP, Gröhn F, Moerschbacher BM. Revised domain structure of ulvan lyase and characterization of the first ulvan binding domain. Sci Rep 2017; 7: 44115.
[http://dx.doi.org/10.1038/srep44115] [PMID: 28327560]
[32]
Claverie M, McReynolds C, Petitpas A, Thomas M, Fernandes SCM. Marine-derived polymeric materials and biomimetics: An overview. Polymers (Basel) 2020; 12(5): 1002.
[http://dx.doi.org/10.3390/polym12051002] [PMID: 32357448]
[33]
Cheung RC, Ng TB, Wong JH, Chan WY. Chitosan: An update on potential biomedical and pharmaceutical applications. Mar Drugs 2015; 13(8): 5156-86.
[http://dx.doi.org/10.3390/md13085156] [PMID: 26287217]
[34]
Acarturk F, Sencan A, Celebi N. Enhancement of the dissolution of spironolactone with chitosan and low molecular weight gelatin. S.T.P. Pharm Sci 1993; 3: 369-73.
[35]
Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 2015; 13(3): 1133-74.
[http://dx.doi.org/10.3390/md13031133] [PMID: 25738328]
[36]
Jana S, Maji N, Nayak AK, Sen KK, Basu SK. Development of chitosan-based nanoparticles through inter-polymeric complexation for oral drug delivery. Carbohydr Polym 2013; 98(1): 870-6.
[http://dx.doi.org/10.1016/j.carbpol.2013.06.064] [PMID: 23987423]
[37]
Aranaz I, Mengíbar M, Harris R, et al. Functional characterization of chitin and chitosan. Curr Chem Biol 2009; 3: 203-30.
[38]
Kim IY, Seo SJ, Moon HS, et al. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 2008; 26(1): 1-21.
[http://dx.doi.org/10.1016/j.biotechadv.2007.07.009] [PMID: 17884325]
[39]
Jana S, Sen KK. Chitosan - Locust bean gum interpenetrating polymeric network nanocomposites for delivery of aceclofenac. Int J Biol Macromol 2017; 102: 878-84.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.097] [PMID: 28456644]
[40]
Gupta RC, Lall R, Srivastava A, Sinha A. Hyaluronic acid: Molecular mechanisms and therapeutic trajectory. Front Vet Sci 2019; 6: 192.
[http://dx.doi.org/10.3389/fvets.2019.00192] [PMID: 31294035]
[41]
Papakonstantinou E, Roth M, Karakiulakis G. Hyaluronic acid: A key molecule in skin aging. Dermatoendocrinol 2012; 4(3): 253-8.
[http://dx.doi.org/10.4161/derm.21923] [PMID: 23467280]
[42]
Goldberg VM, Buckwalter JA. Hyaluronans in the treatment of osteoarthritis of the knee: Evidence for disease-modifying activity. Osteoarthritis Cartilage 2005; 13(3): 216-24.
[http://dx.doi.org/10.1016/j.joca.2004.11.010] [PMID: 15727888]
[43]
Henrotin Y, Mathy M, Sanchez C, Lambert C. Chondroitin sulfate in the treatment of osteoarthritis: From in vitro studies to clinical recommendations. Ther Adv Musculoskelet Dis 2010; 2(6): 335-48.
[http://dx.doi.org/10.1177/1759720X10383076] [PMID: 22870459]
[44]
Djerbal L, Lortat-Jacob H, Kwok J. Chondroitin sulfates and their binding molecules in the central nervous system. Glycoconj J 2017; 34(3): 363-76.
[http://dx.doi.org/10.1007/s10719-017-9761-z] [PMID: 28101734]
[45]
Karim AA, Bhat R. Gelatin alternatives for the food industry: Recent developments, challenges and prospects. Trends Food Sci Technol 2008; 19: 644-56.
[http://dx.doi.org/10.1016/j.tifs.2008.08.001]
[46]
Khrunyk Y, Lach S, Petrenko I, Ehrlich H. Progress in modern marine biomaterials research. Mar Drugs 2020; 18(12): 589.
[http://dx.doi.org/10.3390/md18120589] [PMID: 33255647]
[47]
Gómez-Guillén M, Pérez-Mateos M, Gómez-Estaca J, López-Caballero E, Giménez B, Montero P. Fish gelatin: A renewable material for developing active biodegradable films. Trends Food Sci Technol 2009; 20: 3-16.
[http://dx.doi.org/10.1016/j.tifs.2008.10.002]
[48]
Boran G, Regenstein JM. Fish gelatin. Adv Food Nutr Res 2010; 60: 119-43.
[http://dx.doi.org/10.1016/S1043-4526(10)60005-8] [PMID: 20691955]
[49]
Merry CLR. Exciting new developments and emerging themes in glycosaminoglycan research. J Histochem Cytochem 2021; 69(1): 9-11.
[http://dx.doi.org/10.1369/0022155420974361] [PMID: 33180636]
[50]
Westergren-Thorsson G, Onnervik PO, Fransson LA, Malmström A. Proliferation of cultured fibroblasts is inhibited by L-iduronate-containing glycosaminoglycans. J Cell Physiol 1991; 147(3): 523-30.
[http://dx.doi.org/10.1002/jcp.1041470319] [PMID: 2066370]
[51]
Bernfield M, Sanderson RD. Syndecan, a developmentally regulated cell surface proteoglycan that binds extracellular matrix and growth factors. Philos Trans R Soc Lond B Biol Sci 1990; 327(1239): 171-86.
[http://dx.doi.org/10.1098/rstb.1990.0052] [PMID: 1969657]
[52]
Rostand KS, Esko JD. Microbial adherence to and invasion through proteoglycans. Infect Immun 1997; 65(1): 1-8.
[http://dx.doi.org/10.1128/iai.65.1.1-8.1997] [PMID: 8975885]
[53]
Esko JD, Kimata K, Lindahl U. Proteoglycans and Sulfated Glycosaminoglycans. In: Essentials of glycobiology. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press2009; 229-48.
[54]
Wang Z, Dhurandhare VM, Mahung CA, et al. Improving the sensitivity for quantifying heparan sulfate from biological samples. Anal Chem 2021; 93(32): 11191-9.
[http://dx.doi.org/10.1021/acs.analchem.1c01761] [PMID: 34355888]
[55]
Tai GH, Nieduszynski IA, Fullwood NJ, Huckerby TN. Human corneal keratan sulfates. J Biol Chem 1997; 272(45): 28227-31.
[http://dx.doi.org/10.1074/jbc.272.45.28227] [PMID: 9353273]
[56]
Caterson B, Melrose J. Keratan sulfate, a complex glycosaminoglycan with unique functional capability. Glycobiology 2018; 28(4): 182-206.
[http://dx.doi.org/10.1093/glycob/cwy003] [PMID: 29340594]
[57]
Armisen R. World-wide use and importance of Gracilaria. J Appl Phycol 1995; 7: 231-43.
[http://dx.doi.org/10.1007/BF00003998]
[58]
Hickson TG, Polson A. Some physical characteristics of the agarose molecule. Biochim Biophys Acta 1968; 165(1): 43-58.
[http://dx.doi.org/10.1016/0304-4165(68)90186-4] [PMID: 5672843]
[59]
Wang N, Wu XS. Preparation and characterization of agarose hydrogel nanoparticles for protein and peptide drug delivery. Pharm Dev Technol 1997; 2(2): 135-42.
[http://dx.doi.org/10.3109/10837459709022618] [PMID: 9552439]
[60]
Woraphatphadung T, Sajomsang W, Rojanarata T, Ngawhirunpat T, Tonglairoum P, Opanasopit P. Development of chitosan-based ph-sensitive polymeric micelles containing curcumin for colon-targeted drug delivery. AAPS PharmSciTech 2018; 19(3): 991-1000.
[http://dx.doi.org/10.1208/s12249-017-0906-y] [PMID: 29110292]
[61]
Zhang X, Gu X, Wang X, Wang H, Mao S. Tunable and sustained-release characteristics of venlafaxine hydrochloride from chitosan-carbomer matrix tablets based on in situ formed polyelectrolyte complex film coating. Asian J Pharm Sci 2018; 13(6): 566-74.
[http://dx.doi.org/10.1016/j.ajps.2018.01.004] [PMID: 32104430]
[62]
Boudoukhani M, Yahoum MM, Lefnaoui S, Moulai-Mostefa N, Banhobre M. Synthesis, characterization and evaluation of deacetylated xanthan derivatives as new excipients in the formulation of chitosan-based polyelectrolytes for the sustained release of tramadol. Saudi Pharm J 2019; 27(8): 1127-37.
[http://dx.doi.org/10.1016/j.jsps.2019.09.009] [PMID: 31885472]
[63]
Hussain T, Ijaz M, Shamim R, et al. In vivo evaluation of a novel chitosan-polycaprolactone based mucoadhesive gastro-retentive sustained release drug delivery system for milnacipran HCl. AAPS PharmSciTech 2020; 21(2): 58.
[http://dx.doi.org/10.1208/s12249-019-1606-6] [PMID: 31912249]
[64]
Yang Y, Liu Y, Chen S, Cheong KL, Teng B. Carboxymethyl β-cyclodextrin grafted carboxymethyl chitosan hydrogel-based microparticles for oral insulin delivery. Carbohydr Polym 2020; 246, 116617.
[http://dx.doi.org/10.1016/j.carbpol.2020.116617] [PMID: 32747257]
[65]
Jana S, Saha A, Nayak AK, Sen KK, Basu SK. Aceclofenac-loaded chitosan-tamarind seed polysaccharide interpenetrating polymeric network microparticles. Colloids Surf B Biointerfaces 2013; 105: 303-9.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.013] [PMID: 23399430]
[66]
Jana S, Laha B, Maiti S. Boswellia gum resin/chitosan polymer composites: Controlled delivery vehicles for aceclofenac. Int J Biol Macromol 2015; 77: 303-6.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.03.029] [PMID: 25825076]
[67]
Ayub AD, Chiu HI, Mat Yusuf SNA, Abd Kadir E, Ngalim SH, Lim V. Biocompatible disulphide cross-linked sodium alginate derivative nanoparticles for oral colon-targeted drug delivery. Artif Cells Nanomed Biotechnol 2019; 47(1): 353-69.
[http://dx.doi.org/10.1080/21691401.2018.1557672] [PMID: 30691309]
[68]
Cikrikci S, Mert B, Oztop MH. Development of pH sensitive alginate/gum tragacanth based hydrogels for oral insulin delivery. J Agric Food Chem 2018; 66(44): 11784-96.
[http://dx.doi.org/10.1021/acs.jafc.8b02525] [PMID: 30346766]
[69]
Shtenberg Y, Goldfeder M, Prinz H, et al. Mucoadhesive alginate pastes with embedded liposomes for local oral drug delivery. Int J Biol Macromol 2018; 111: 62-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.137] [PMID: 29292143]
[70]
Shamekhi F, Tamjid E, Khajeh K. Development of chitosan coated calcium-alginate nanocapsules for oral delivery of liraglutide to diabetic patients . Int J Biol Macromol 2018; 120(Pt A): 460-7..
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.078] [PMID: 30125628]
[71]
Cong Z, Shi Y, Wang Y, et al. A novel controlled drug delivery system based on alginate hydrogel/chitosan micelle composites. Int J Biol Macromol 2018; 107(Pt A): 855-64..
[http://dx.doi.org/10.1016/j.ijbiomac.2017.09.065] [PMID: 28935541]
[72]
Feng K, Li C, Wei YS, Zong MH, Wu H, Han SY. Development of a polysaccharide based multi-unit nanofiber mat for colon-targeted sustained release of Salmon calcitonin. J Colloid Interface Sci 2019; 552: 186-95.
[http://dx.doi.org/10.1016/j.jcis.2019.05.037] [PMID: 31125829]
[73]
Jana S, Gandhi A, Sheet S, Sen KK. Metal ion-induced alginate-locust bean gum IPN microspheres for sustained oral delivery of aceclofenac. Int J Biol Macromol 2015; 72: 47-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.07.054] [PMID: 25111495]
[74]
Mujtaba A, Kohli K. In vitro/In vivo evaluation of HPMC/alginate based extended-release matrix tablets of cefpodoxime proxetil. Int J Biol Macromol 2016; 89: 434-41.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.010] [PMID: 27155235]
[75]
Sharma S, Sarkar G, Srestha B, Chattopadhyay D, Bhowmik M. In-situ fast gelling formulation for oral sustained drug delivery of paracetamol to dysphagic patients. Int J Biol Macromol 2019; 134: 864-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.092] [PMID: 31102679]
[76]
Jana S, Samanta A, Nayak AK, Sen KK, Jana S. Novel alginate hydrogel core-shell systems for combination delivery of ranitidine HCl and aceclofenac. Int J Biol Macromol 2015; 74: 85-92.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.11.027] [PMID: 25478963]
[77]
Jana S, Sharma R, Maiti S, Sen KK. Interpenetrating hydrogels of O-carboxymethyl tamarind gum and alginate for monitoring delivery of acyclovir. Int J Biol Macromol 2016; 92: 1034-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.08.017] [PMID: 27514441]
[78]
Mundargi RC, Patil SA, Agnihotri SA, Aminabhavi TM. Development of polysaccharide-based colon targeted drug delivery systems for the treatment of amoebiasis. Drug Dev Ind Pharm 2007; 33(3): 255-64.
[http://dx.doi.org/10.1080/03639040600897127] [PMID: 17454058]
[79]
Li L, Wang L, Shao Y, et al. Elucidation of release characteristics of highly soluble drug trimetazidine hydrochloride from chitosan-carrageenan matrix tablets. J Pharm Sci 2013; 102(8): 2644-54.
[http://dx.doi.org/10.1002/jps.23632] [PMID: 23754467]
[80]
Pavli M. Vrečer F, Baumgartner S. Matrix tablets based on carrageenans with dual controlled release of doxazosin mesylate. Int J Pharm 2010; 400(1-2): 15-23.
[http://dx.doi.org/10.1016/j.ijpharm.2010.08.021] [PMID: 20727957]
[81]
Sun X, Liu C, Omer AM, Yang LY, Ouyang XK. Dual-layered pH-sensitive alginate/chitosan/kappa-carrageenan microbeads for colon-targeted release of 5-fluorouracil. Int J Biol Macromol 2019; 132: 487-94.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.225] [PMID: 30940590]
[82]
Kos P, Pavli M, Baumgartner S, Kogej K. Release mechanism of doxazosin from carrageenan matrix tablets: Effect of ionic strength and addition of sodium dodecyl sulphate. Int J Pharm 2017; 529(1-2): 557-67.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.067] [PMID: 28648579]
[83]
Vigani B, Rossi S, Gentile M, et al. Development of a mucoadhesive and an in situ gelling formulation based on κ-carrageenan for application on oral mucosa and esophagus walls. II. Loading of a bioactive hydroalcoholic extract. Mar Drugs 2019; 17(3): 153.
[http://dx.doi.org/10.3390/md17030153] [PMID: 30841540]
[84]
Miyazaki S, Ishitani M, Takahashi A, Shimoyama T, Itoh K, Attwood D. Carrageenan gels for oral sustained delivery of acetaminophen to dysphagic patients. Biol Pharm Bull 2011; 34(1): 164-6.
[http://dx.doi.org/10.1248/bpb.34.164] [PMID: 21212538]
[85]
Date P, Tanwar A, Ladage P, Kodam KM, Ottoor D. Carbon dots-incorporated pH-responsive agarose-PVA hydrogel nanocomposites for the controlled release of norfloxacin drug. Polym Bull 2020; 77: 5323-44.
[http://dx.doi.org/10.1007/s00289-019-03015-3]
[86]
Rehman U, Sarfraz RM, Mahmood A, et al. Smart pH-responsive co-polymeric hydrogels for controlled delivery of capecitabine: Fabrication, optimization and in vivo toxicology screening. Curr Drug Deliv 2021; 18(9): 1256-71.
[http://dx.doi.org/10.2174/1567201818666210212085912] [PMID: 33583374]
[87]
Zi-Chen Y, Yan-Ling W, Kun W. A pH-responsive composite hydrogel beads based on agar and alginate for oral drug delivery. J Drug Deliv Sci Technol 2018; 43: 12-8.
[http://dx.doi.org/10.1016/j.jddst.2017.09.009]
[88]
Raza H, Ranjha NM, Razzaq R, Ansari M, Mahmood A, Rashid Z. Fabrication and in vitro evaluation of 5-florouracil loaded chondroitin sulfate-sodium alginate microspheres for colon specific delivery. Acta Pol Pharm 2016; 73(2): 495-507.
[PMID: 27180443]
[89]
Ahmad N, Ahmad R, Ahmad FJ, et al. Poloxamer-chitosan-based Naringenin nanoformulation used in brain targeting for the treatment of cerebral ischemia. Saudi J Biol Sci 2020; 27(1): 500-17.
[http://dx.doi.org/10.1016/j.sjbs.2019.11.008] [PMID: 31889876]
[90]
Ramreddy S, Janapareddi K. Brain targeting of chitosan-based diazepam mucoadhesive microemulsions via nasal route: Formulation optimization, characterization, pharmacokinetic and pharmacodynamic evaluation. Drug Dev Ind Pharm 2019; 45(1): 147-58.
[http://dx.doi.org/10.1080/03639045.2018.1526186] [PMID: 30230386]
[91]
Shukr MH, Farid OAA. Brain targeting of agomelatine egg lecithin based chitosan coated nanoemulsion. Pharm Dev Technol 2021; 26(4): 464-75.
[http://dx.doi.org/10.1080/10837450.2021.1888980] [PMID: 33586593]
[92]
Shevtsov M, Nikolaev B, Marchenko Y, et al. Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs). Int J Nanomedicine 2018; 13: 1471-82.
[http://dx.doi.org/10.2147/IJN.S152461] [PMID: 29559776]
[93]
Xu Y, Asghar S, Yang L, et al. Lactoferrin-coated polysaccharide nanoparticles based on chitosan hydrochloride/hyaluronic acid/PEG for treating brain glioma. Carbohydr Polym 2017; 157: 419-28.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.085] [PMID: 27987946]
[94]
Taymouri S, Minaiyan M, Ebrahimi F, Tavakoli N. In-vitro and in-vivo evaluation of chitosan-based thermosensitive gel containing lorazepam NLCs for the treatment of status epilepticus. IET Nanobiotechnol 2020; 14(2): 148-54.
[http://dx.doi.org/10.1049/iet-nbt.2019.0156] [PMID: 32433032]
[95]
Wei H, Lai S, Wei J, et al. A novel delivery method of cyclovirobuxine D for brain-targeting: Chitosan coated nanoparticles loading cyclovirobuxine D by intranasal administration. J Nanosci Nanotechnol 2018; 18(8): 5274-82.
[http://dx.doi.org/10.1166/jnn.2018.15371] [PMID: 29458577]
[96]
Gu J, Al-Bayati K, Ho EA. Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes. Drug Deliv Transl Res 2017; 7(4): 497-506.
[http://dx.doi.org/10.1007/s13346-017-0368-5] [PMID: 28315051]
[97]
Zheng S, Xie Y, Li Y, et al. Development of high drug-loading nanomicelles targeting steroids to the brain. Int J Nanomedicine 2014; 9: 55-66.
[PMID: 24379663]
[98]
Nafee N, Ameen AER, Abdallah OY. Patient-friendly, olfactory-targeted, stimuli-responsive hydrogels for cerebral degenerative disorders ensured > 400% brain targeting efficiency in rats. AAPS PharmSciTech 2020; 22(1): 6.
[http://dx.doi.org/10.1208/s12249-020-01872-0] [PMID: 33222021]
[99]
Youssef NAHA, Kassem AA, Farid RM, Ismail FA, El-Massik MAE, Boraie NA. A novel nasal almotriptan loaded solid lipid nanoparticles in mucoadhesive in situ gel formulation for brain targeting: Preparation, characterization and in vivo evaluation. Int J Pharm 2018; 548(1): 609-24.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.014] [PMID: 30033394]
[100]
Hefnawy A, Khalil IA, El-Sherbiny IM. Facile development of nanocomplex-in-nanoparticles for enhanced loading and selective delivery of doxorubicin to brain. Nanomedicine (Lond) 2017; 12(24): 2737-61.
[http://dx.doi.org/10.2217/nnm-2017-0243] [PMID: 29135325]
[101]
Lee DW, Choi YS, Seo YJ, et al. High-throughput screening (HTS) of anticancer drug efficacy on a micropillar/microwell chip platform. Anal Chem 2014; 86(1): 535-42.
[http://dx.doi.org/10.1021/ac402546b] [PMID: 24199994]
[102]
Abbas H, Refai H, El Sayed N. Superparamagnetic iron oxide-loaded lipid nanocarriers incorporated in thermosensitive in situ gel for magnetic brain targeting of clonazepam. J Pharm Sci 2018; 107(8): 2119-27.
[http://dx.doi.org/10.1016/j.xphs.2018.04.007] [PMID: 29665379]
[103]
Omar MM, Eleraky NE, El Sisi AM, Ali Hasan O. Development and evaluation of in-situ nasal gel formulations of nanosized transferosomal sumatriptan: Design, optimization, in vitro and in vivo evaluation. Drug Des Devel Ther 2019; 13: 4413-30.
[http://dx.doi.org/10.2147/DDDT.S235004] [PMID: 31920290]
[104]
Bhandwalkar MJ, Avachat AM. Thermoreversible nasal in situ gel of venlafaxine hydrochloride: Formulation, characterization, and pharmacodynamic evaluation. AAPS PharmSciTech 2013; 14(1): 101-10.
[http://dx.doi.org/10.1208/s12249-012-9893-1] [PMID: 23229381]
[105]
Tian C, Asghar S, Hu Z, et al. Understanding the cellular uptake and biodistribution of a dual-targeting carrier based on redox-sensitive hyaluronic acid-ss-curcumin micelles for treating brain glioma. Int J Biol Macromol 2019; 136: 143-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.060] [PMID: 31199976]
[106]
Nasr M. Development of an optimized hyaluronic acid-based lipidic nanoemulsion co-encapsulating two polyphenols for nose to brain delivery. Drug Deliv 2016; 23(4): 1444-52.
[http://dx.doi.org/10.3109/10717544.2015.1092619] [PMID: 26401600]
[107]
Li Z, He Y, Deng L, Zhang ZR, Lin Y. A fast-dissolving microneedle array loaded with chitosan nanoparticles to evoke systemic immune responses in mice. J Mater Chem B Mater Biol Med 2020; 8(2): 216-25.
[http://dx.doi.org/10.1039/C9TB02061F] [PMID: 31803892]
[108]
Pawar S, Shende P. 22 factorial design-based biocompatible microneedle arrays containing artemether co-loaded with lumefantrine nanoparticles for transepidermal delivery. Biomed Microdevices 2020; 22(1): 19.
[http://dx.doi.org/10.1007/s10544-020-0476-8] [PMID: 32076890]
[109]
Chen MC, Lai KY, Ling MH, Lin CW. Enhancing immunogenicity of antigens through sustained intradermal delivery using chitosan microneedles with a patch-dissolvable design. Acta Biomater 2018; 65: 66-75.
[http://dx.doi.org/10.1016/j.actbio.2017.11.004] [PMID: 29109028]
[110]
Radwan-Pragłowska J, Janus ;;Ł, Piątkowski M, Sierakowska A, Matysek D. ZnO nanorods functionalized with chitosan hydrogels crosslinked with azelaic acid for transdermal drug delivery. Colloids Surf B Biointerfaces 2020; 194, 111170.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111170] [PMID: 32521459]
[111]
Dong W, Ye J, Wang W, et al. Self-assembled lecithin/chitosan nanoparticles based on phospholipid complex: A feasible strategy to improve entrapment efficiency and transdermal delivery of poorly lipophilic drug. Int J Nanomedicine 2020; 15: 5629-43.
[http://dx.doi.org/10.2147/IJN.S261162] [PMID: 32801706]
[112]
Al-Kassas R, Wen J, Cheng AE, Kim AM, Liu SSM, Yu J. Transdermal delivery of propranolol hydrochloride through chitosan nanoparticles dispersed in mucoadhesive gel. Carbohydr Polym 2016; 153: 176-86.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.096] [PMID: 27561485]
[113]
Sami AJ, Khalid M, Jamil T, et al. Formulation of novel chitosan guargum based hydrogels for sustained drug release of paracetamol. Int J Biol Macromol 2018; 108: 324-32.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.008] [PMID: 29217184]
[114]
Sadeghi M, Ganji F, Taghizadeh SM, Daraei B. Preparation and characterization of rivastigmine transdermal patch based on chitosan microparticles. Iran J Pharm Res 2016; 15(3): 283-94.
[PMID: 28479923]
[115]
Ning L, Lei W, Yao Y. Multifunctional double network hydrogel film for skin wound healing. Mater Exp 2021; 11: 1084-91.
[http://dx.doi.org/10.1166/mex.2021.2014]
[116]
Zhang H, Xu R, Yin Z, Yu J, Liang L, Geng Q. Antibacterial hydrogel microparticles with drug loading for wound healing. Mater Res Express 2021; 8, 095403.
[http://dx.doi.org/10.1088/2053-1591/ac25b8]
[117]
Jana S, Manna S, Nayak AK, Sen KK, Basu SK. Carbopol gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery. Colloids Surf B Biointerfaces 2014; 114: 36-44.
[http://dx.doi.org/10.1016/j.colsurfb.2013.09.045] [PMID: 24161504]
[118]
Wu M, Zhang Y, Huang H, et al. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Mater Sci Eng C 2020; 117, 111299.
[http://dx.doi.org/10.1016/j.msec.2020.111299] [PMID: 32919660]
[119]
Chen W, Tian R, Xu C, et al. Microneedle-array patches loaded with dual mineralized protein/peptide particles for type 2 diabetes therapy. Nat Commun 2017; 8(1): 1777.
[http://dx.doi.org/10.1038/s41467-017-01764-1] [PMID: 29176623]
[120]
Bektaş A, Cevher E, Güngör S, Ozsoy Y. Design and evaluation of polysaccharide-based transdermal films for the controlled delivery of nifedipine. Chem Pharm Bull (Tokyo) 2014; 62(2): 144-52.
[http://dx.doi.org/10.1248/cpb.c13-00579] [PMID: 24492584]
[121]
Al-Remawi M, Hamam F, Hamaidi M. Quality by design approach to prepare oleoyl alginate derivative and its use in transdermal delivery. Pharm Dev Technol 2015; 20(2): 227-36.
[http://dx.doi.org/10.3109/10837450.2013.860548] [PMID: 24266691]
[122]
Lefnaoui S, Moulai-Mostefa N, Yahoum MM, Gasmi SN. Design of antihistaminic transdermal films based on alginate-chitosan polyelectrolyte complexes: Characterization and permeation studies. Drug Dev Ind Pharm 2018; 44(3): 432-43.
[http://dx.doi.org/10.1080/03639045.2017.1395461] [PMID: 29098871]
[123]
Hu Q, Lin H, Wang Y, et al. Design, optimization and evaluation of a microemulsion-based hydrogel with high malleability for enhanced transdermal delivery of levamisole. Int J Pharm 2021; 605, 120829.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120829] [PMID: 34174358]
[124]
El Moussaoui S, Fernández-Campos F, Alonso C, et al. Topical mucoadhesive alginate-based hydrogel loading ketorolac for pain management after pharmacotherapy, ablation, or surgical removal in Condyloma acuminata. Gels 2021; 7(1): 8.
[http://dx.doi.org/10.3390/gels7010008] [PMID: 33498627]
[125]
Kaur R, Sharma A, Puri V, Singh I. Preparation and characterization of biocomposite films of carrageenan/locust bean gum/montmorrillonite for transdermal delivery of curcumin. Bioimpacts 2019; 9(1): 37-43.
[http://dx.doi.org/10.15171/bi.2019.05] [PMID: 30788258]
[126]
Balasubramanian R, Kim SS, Lee J. Novel synergistic transparent k-Carrageenan/Xanthan gum/Gellan gum hydrogel film: Mechanical, thermal and water barrier properties. Int J Biol Macromol 2018; 118(Pt A): 561-8..
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.110] [PMID: 29949745]
[127]
Liu Y, Zhu YY, Wei G, Lu WY. Effect of carrageenan on poloxamer-based in situ gel for vaginal use: Improved in vitro and in vivo sustained-release properties. Eur J Pharm Sci 2009; 37(3-4): 306-12.
[http://dx.doi.org/10.1016/j.ejps.2009.02.022] [PMID: 19491020]
[128]
Lefnaoui S, Moulai-Mostefa N. Formulation and In vitro evaluation of kappa-carrageenan-pregelatinized starch-based mucoadhesive gels containing miconazole. Stärke 2011; 63: 512-21.
[http://dx.doi.org/10.1002/star.201000141]
[129]
Kawata K, Hanawa T, Endo N, Suzuki M, Oguchi T. Formulation study on retinoic acid gel composed of iota-carrageenan, polyethylene oxide and Emulgen® 408. Chem Pharm Bull (Tokyo) 2012; 60(7): 825-30.
[http://dx.doi.org/10.1248/cpb.c110500] [PMID: 22790813]
[130]
Thompson BR, Zarket BC, Lauten EH, Amin S, Muthukrishnan S, Raghavan SR. Liposomes entrapped in biopolymer hydrogels can spontaneously release into the external solution. Langmuir 2020; 36(26): 7268-76.
[http://dx.doi.org/10.1021/acs.langmuir.0c00596] [PMID: 32543183]
[131]
Liao AH, Lu YJ, Hung CR, Yang MY. Efficacy of transdermal magnesium ascorbyl phosphate delivery after ultrasound treatment with microbubbles in gel-type surrounding medium in mice. Mater Sci Eng C 2016; 61: 591-8.
[http://dx.doi.org/10.1016/j.msec.2015.12.058] [PMID: 26838887]
[132]
Tyeb S, Kumar N, Kumar A, Verma V. Agar–iodine transdermal patches for infected diabetic wounds. ACS Appl Bio Mater 2020; 3(11): 7515-30.
[http://dx.doi.org/10.1021/acsabm.0c00722] [PMID: 35019493]
[133]
de Oliveira JK, Ueda-Nakamura T, Corrêa AG, et al. Liposome-based nanocarrier loaded with a new quinoxaline derivative for the treatment of cutaneous leishmaniasis. Mater Sci Eng C 2020; 110, 110720.
[http://dx.doi.org/10.1016/j.msec.2020.110720] [PMID: 32204033]
[134]
Yang L, Liu Y, Shou X, Ni D, Kong T, Zhao Y. Bio-inspired lubricant drug delivery particles for the treatment of osteoarthritis. Nanoscale 2020; 12(32): 17093-102.
[http://dx.doi.org/10.1039/D0NR04013D] [PMID: 32785325]
[135]
Zhou L, Xu T, Yan J, Li X, Xie Y, Chen H. Fabrication and characterization of matrine-loaded konjac glucomannan/fish gelatin composite hydrogel as antimicrobial wound dressing. Food Hydrocoll 2020; 104, 105702.
[http://dx.doi.org/10.1016/j.foodhyd.2020.105702]
[136]
Rattana M, Paradee N, Sirivat A, Niamlang S. Porcine and fish gelatin hydrogels for controlled release of salicylic acid and 5-sulfosalicylic acid. Int J Drug Dev Res 2015; 7: 107-17.
[137]
Cruz-Cazarim ELC, Cazarim MS, Ogunjimi AT, Petrilli R, Rocha EM, Lopez RFV. Prospective insulin-based ophthalmic delivery systems for the treatment of dry eye syndrome and corneal injuries. Eur J Pharm Biopharm 2019; 140: 1-10.
[http://dx.doi.org/10.1016/j.ejpb.2019.04.014] [PMID: 31015020]
[138]
Deng F, Hu W, Chen H, Tang Y, Zhang L. Development of a chitosan-based nanoparticle formulation for ophthalmic delivery of honokiol. Curr Drug Deliv 2018; 15(4): 594-600.
[http://dx.doi.org/10.2174/1567201814666170419113933] [PMID: 28425869]
[139]
Jeencham R, Sutheerawattananonda M, Rungchang S, Tiyaboonchai W. Novel daily disposable therapeutic contact lenses based on chitosan and regenerated silk fibroin for the ophthalmic delivery of diclofenac sodium. Drug Deliv 2020; 27(1): 782-90.
[http://dx.doi.org/10.1080/10717544.2020.1765432] [PMID: 32401068]
[140]
da Silva SB, Ferreira D, Pintado M, Sarmento B. Chitosan-based nanoparticles for rosmarinic acid ocular delivery-in vitro tests. Int J Biol Macromol 2016; 84: 112-20.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.11.070] [PMID: 26645149]
[141]
Dubashynskaya NV, Golovkin AS, Kudryavtsev IV, et al. Mucoadhesive cholesterol-chitosan self-assembled particles for topical ocular delivery of dexamethasone. Int J Biol Macromol 2020; 158: 811-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.251] [PMID: 32371131]
[142]
Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G. An alternative in situ gel-formulation of levofloxacin eye drops for prolong ocular retention. J Pharm Bioallied Sci 2015; 7(1): 9-14.
[http://dx.doi.org/10.4103/0975-7406.149810] [PMID: 25709330]
[143]
Krishnatreyya H, Hazarika H, Saha A, et al. Amelioration from the ocular irritant Capsaicin: Development and assessment of a Capsazepine in situ gel system for ocular delivery. Expert Opin Drug Deliv 2020; 17(6): 863-80.
[http://dx.doi.org/10.1080/17425247.2020.1754396] [PMID: 32274951]
[144]
Shi H, Wang Y, Bao Z, et al. Thermosensitive glycol chitosan-based hydrogel as a topical ocular drug delivery system for enhanced ocular bioavailability. Int J Pharm 2019; 570, 118688.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118688] [PMID: 31513870]
[145]
Ibrahim MM, Abd-Elgawad AH, Soliman OA, Jablonski MM. Natural bioadhesive biodegradable nanoparticle-based topical ophthalmic formulations for management of glaucoma. Transl Vis Sci Technol 2015; 4(3): 12.
[http://dx.doi.org/10.1167/tvst.4.3.12] [PMID: 26175958]
[146]
Wong FS, Wong CC, Chan BP, Lo AC. Sustained delivery of bioactive gdnf from collagen and alginate-based cell-encapsulating gel promoted photoreceptor survival in an inherited retinal degeneration model. PLoS One 2016; 11(7), e0159342.
[http://dx.doi.org/10.1371/journal.pone.0159342] [PMID: 27441692]
[147]
Ilka R, Mohseni M, Kianirad M, Naseripour M, Ashtari K, Mehravi B. Nanogel-based natural polymers as smart carriers for the controlled delivery of Timolol Maleate through the cornea for glaucoma. Int J Biol Macromol 2018; 109: 955-62.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.090] [PMID: 29154878]
[148]
Gilhotra RM, Nagpal K, Mishra DN. Azithromycin novel drug delivery system for ocular application. Int J Pharm Investig 2011; 1(1): 22-8.
[http://dx.doi.org/10.4103/2230-973X.76725] [PMID: 23071916]
[149]
Shelley H, Rodriguez-Galarza RM, Duran SH, Abarca EM, Babu RJ. In situ gel formulation for enhanced ocular delivery of nepafenac. J Pharm Sci 2018; 107(12): 3089-97.
[http://dx.doi.org/10.1016/j.xphs.2018.08.013] [PMID: 30170009]
[150]
Jain P, Jaiswal CP, Mirza MA, Anwer MK, Iqbal Z. Preparation of levofloxacin loaded in situ gel for sustained ocular delivery: In vitro and ex vivo evaluations. Drug Dev Ind Pharm 2020; 46(1): 50-6.
[http://dx.doi.org/10.1080/03639045.2019.1698598] [PMID: 31818154]
[151]
Noreen S, Ghumman SA, Batool F, et al. Terminalia arjuna gum/alginate in situ gel system with prolonged retention time for ophthalmic drug delivery. Int J Biol Macromol 2020; 152: 1056-67.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.193] [PMID: 31751751]
[152]
Thrimawithana TR, Young SA, Bunt CR, Green CR, Alany RG. In-vitro and in-vivo evaluation of carrageenan/methylcellulose polymeric systems for transscleral delivery of macromolecules. Eur J Pharm Sci 2011; 44(3): 399-409.
[http://dx.doi.org/10.1016/j.ejps.2011.08.026] [PMID: 21907798]
[153]
Li P, Wang S, Chen H, et al. A novel ion-activated in situ gelling ophthalmic delivery system based on κ-carrageenan for acyclovir. Drug Dev Ind Pharm 2018; 44(5): 829-36.
[http://dx.doi.org/10.1080/03639045.2017.1414232] [PMID: 29212376]
[154]
Fernández-Ferreiro A, Fernández Bargiela N, Varela MS, et al. Cyclodextrin-polysaccharide-based, in situ-gelled system for ocular antifungal delivery. Beilstein J Org Chem 2014; 10: 2903-11.
[http://dx.doi.org/10.3762/bjoc.10.308] [PMID: 25550757]
[155]
Fernández-Ferreiro A, González Barcia M, Gil-Martínez M, et al. In vitro and in vivo ocular safety and eye surface permanence determination by direct and Magnetic Resonance Imaging of ion-sensitive hydrogels based on gellan gum and kappa-carrageenan. Eur J Pharm Biopharm 2015; 94: 342-51.
[http://dx.doi.org/10.1016/j.ejpb.2015.06.003] [PMID: 26079831]
[156]
Bhowmick B, Sarkar G, Rana D, et al. Effect of carrageenan and potassium chloride on an in situ gelling ophthalmic drug delivery system based on methylcellulose. RSC Advances 2015; 5: 60386.
[http://dx.doi.org/10.1039/C5RA06858D]
[157]
Gavini E, Bonferoni MC, Rassu G, et al. Engineered microparticles based on drug-polymer coprecipitates for ocular-controlled delivery of Ciprofloxacin: Influence of technological parameters. Drug Dev Ind Pharm 2016; 42(4): 554-62.
[http://dx.doi.org/10.3109/03639045.2015.1100201] [PMID: 26482534]
[158]
Soiberman U, Kambhampati SP, Wu T, et al. Subconjunctival injectable dendrimer-dexamethasone gel for the treatment of corneal inflammation. Biomaterials 2017; 125: 38-53.
[http://dx.doi.org/10.1016/j.biomaterials.2017.02.016] [PMID: 28226245]
[159]
Zeng W, Li Q, Wan T, et al. Hyaluronic acid-coated niosomes facilitate tacrolimus ocular delivery: Mucoadhesion, precorneal retention, aqueous humor pharmacokinetics, and transcorneal permeability. Colloids Surf B Biointerfaces 2016; 141: 28-35.
[http://dx.doi.org/10.1016/j.colsurfb.2016.01.014] [PMID: 26820107]
[160]
Hefnawy A, Khalil IH, Arafa K, Emara M, El-Sherbiny IM. Dual-ligand functionalized core-shell chitosan-based nanocarrier for hepatocellular carcinoma-targeted drug delivery. Int J Nanomedicine 2020; 15: 821-37.
[http://dx.doi.org/10.2147/IJN.S240359] [PMID: 32103939]
[161]
Guo H, Zhang D, Li T, et al. In vitro and in vivo study of Gal-OS self-assembled nanoparticles for liver-targeting delivery of doxorubicin. J Pharm Sci 2014; 103(3): 987-93.
[http://dx.doi.org/10.1002/jps.23875] [PMID: 24549734]
[162]
Guo H, Zhang D, Li C, et al. Self-assembled nanoparticles based on galactosylated O-carboxymethyl chitosan-graft-stearic acid conjugates for delivery of doxorubicin. Int J Pharm 2013; 458(1): 31-8.
[http://dx.doi.org/10.1016/j.ijpharm.2013.10.020] [PMID: 24140544]
[163]
Xiang Y, Huang W, Huang C, et al. Facile fabrication of nanoparticles with dual-targeting ligands for precise hepatocellular carcinoma therapy in vitro and in vivo. Mol Pharm 2020; 17(9): 3223-35.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00327] [PMID: 32658485]
[164]
Xiao JQ, Shi XL, Tan JJ, Zhang L, Xu Q, Ding YT. A novel treatment regimen for acute liver failure based on a combination of mesenchymal stem cells transplantation and IL-lRa-loaded chitosan nanoparticles. Chung Hua Kan Tsang Ping Tsa Chih 2013; 21(4): 308-14.
[PMID: 24021796]
[165]
Tian Q, Wang XH, Wang W, Zhang CN, Wang P, Yuan Z. Self-assembly and liver targeting of sulfated chitosan nanoparticles functionalized with glycyrrhetinic acid. Nanomedicine 2012; 8(6): 870-9.
[http://dx.doi.org/10.1016/j.nano.2011.11.002] [PMID: 22100756]
[166]
Zhao FQ, Wang GF, Xu D, Zhang HY, Cui YL, Wang QS. Glycyrrhizin mediated liver-targeted alginate nanogels delivers quercetin to relieve acute liver failure. Int J Biol Macromol 2021; 168: 93-104.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.204] [PMID: 33278444]
[167]
Kim DH, Choy T, Huang S, Green RM, Omary RA, Larson AC. Microfluidic fabrication of 6-methoxyethylamino numonafide-eluting magnetic microspheres. Acta Biomater 2014; 10(2): 742-50.
[http://dx.doi.org/10.1016/j.actbio.2013.10.018] [PMID: 24161384]
[168]
Manatunga DC, de Silva RM, de Silva KMN, Wijeratne DT, Malavige GN, Williams G. Fabrication of 6-gingerol, doxorubicin and alginate hydroxyapatite into a bio-compatible formulation: Enhanced anti-proliferative effect on breast and liver cancer cells. Chem Cent J 2018; 12(1): 119.
[http://dx.doi.org/10.1186/s13065-018-0482-6] [PMID: 30470922]
[169]
Cheng Y, Yu S, Wang J, Qian H, Wu W, Jiang X. In vitro and in vivo antitumor activity of doxorubicin-loaded alginic-acid-based nanoparticles. Macromol Biosci 2012; 12(10): 1326-35.
[http://dx.doi.org/10.1002/mabi.201200165] [PMID: 22887841]
[170]
Wang X, Gu X, Wang H, Sun Y, Wu H, Mao S. Synthesis, characterization and liver targeting evaluation of self-assembled hyaluronic acid nanoparticles functionalized with glycyrrhetinic acid. Eur J Pharm Sci 2017; 96: 255-62.
[http://dx.doi.org/10.1016/j.ejps.2016.09.036] [PMID: 27693297]
[171]
Luo J, Zhang P, Zhao T, et al. Golgi apparatus-targeted chondroitin-modified nanomicelles suppress hepatic stellate cell activation for the management of liver fibrosis. ACS Nano 2019; 13(4): 3910-23.
[http://dx.doi.org/10.1021/acsnano.8b06924] [PMID: 30938986]
[172]
Hu H, Qi Q, Dong Z, et al. Albumin coated trimethyl chitosan-based targeting delivery platform for photothermal/chemo-synergistic cancer therapy. Carbohydr Polym 2020; 241, 116335.
[http://dx.doi.org/10.1016/j.carbpol.2020.116335] [PMID: 32507205]
[173]
Ahmad N, Ahmad R, Alrasheed RA, et al. A Chitosan-PLGA based catechin hydrate nanoparticles used in targeting of lungs and cancer treatment. Saudi J Biol Sci 2020; 27(9): 2344-57.
[http://dx.doi.org/10.1016/j.sjbs.2020.05.023] [PMID: 32884416]
[174]
On KC, Rho J, Yoon HY, et al. Tumor-targeting glycol chitosan nanoparticles for image-guided surgery of rabbit orthotopic VX2 lung cancer. Pharmaceutics 2020; 12(7): 621.
[http://dx.doi.org/10.3390/pharmaceutics12070621] [PMID: 32635231]
[175]
Guo X, Zhuang Q, Ji T, et al. Multi-functionalized chitosan nanoparticles for enhanced chemotherapy in lung cancer. Carbohydr Polym 2018; 195: 311-20.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.087] [PMID: 29804982]
[176]
Wang Y, Yu H, Wang S, et al. Targeted delivery of quercetin by nanoparticles based on chitosan sensitizing paclitaxel-resistant lung cancer cells to paclitaxel. Mater Sci Eng C 2021; 119, 111442.
[http://dx.doi.org/10.1016/j.msec.2020.111442] [PMID: 33321583]
[177]
Castro A, Berois N, Malanga A, et al. Docetaxel in chitosan-based nanocapsules conjugated with an anti-Tn antigen mouse/human chimeric antibody as a promising targeting strategy of lung tumors. Int J Biol Macromol 2021; 182: 806-14.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.054] [PMID: 33857513]
[178]
Wang X, Wei B, Cheng X, Wang J, Tang R. 3-Carboxyphenylboronic acid-modified carboxymethyl chitosan nanoparticles for improved tumor targeting and inhibitory. Eur J Pharm Biopharm 2017; 113: 168-77.
[http://dx.doi.org/10.1016/j.ejpb.2016.12.034] [PMID: 28089786]
[179]
Nguyen CT, Kim CR, Le TH, Koo KI, Hwang CH. Magnetically guided targeted delivery of erythropoietin using magnetic nanoparticles: Proof of concept. Medicine (Baltimore) 2020; 99(19), e19972.
[http://dx.doi.org/10.1097/MD.0000000000019972] [PMID: 32384447]
[180]
Scolari IR, Volpini X, Fanani ML, et al. Exploring the toxicity, lung distribution, and cellular uptake of rifampicin and ascorbic acid-loaded alginate nanoparticles as therapeutic treatment of lung intracellular infections. Mol Pharm 2021; 18(3): 807-21.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00692] [PMID: 33356316]
[181]
Hill M, Twigg M, Sheridan EA, et al. Alginate/chitosan particle-based drug delivery systems for pulmonary applications. Pharmaceutics 2019; 11(8): 379.
[http://dx.doi.org/10.3390/pharmaceutics11080379] [PMID: 31382357]
[182]
Cunha L, Rodrigues S, Rosa da Costa AM, Faleiro ML, Buttini F, Grenha A. Inhalable fucoidan microparticles combining two antitubercular drugs with potential application in pulmonary tuberculosis therapy. Polymers (Basel) 2018; 10(6): 636.
[http://dx.doi.org/10.3390/polym10060636] [PMID: 30966670]
[183]
Jeannot V, Gauche C, Mazzaferro S, et al. Anti-tumor efficacy of hyaluronan-based nanoparticles for the co-delivery of drugs in lung cancer. J Control Release 2018; 275: 117-28.
[http://dx.doi.org/10.1016/j.jconrel.2018.02.024] [PMID: 29474960]
[184]
Liu T, Huang X, Zhao L, et al. Distinguishable targeting of non-small cell lung cancer using hyaluronan functionalized platinum nanoclusters and their inhibition behaviors of proliferation, invasion, migration. ChemistryOpen 2021; 10(9): 882-8.
[http://dx.doi.org/10.1002/open.202100070] [PMID: 34363352]
[185]
Liu YS, Chiu CC, Chen HY, Chen SH, Wang LF. Preparation of chondroitin sulfate-g-poly(ε-caprolactone) copolymers as a CD44-targeted vehicle for enhanced intracellular uptake. Mol Pharm 2014; 11(4): 1164-75.
[http://dx.doi.org/10.1021/mp400607h] [PMID: 24592868]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy