Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

Mechanism of Mesenchymal Stem Cells as a Multitarget Disease- Modifying Therapy for Parkinson's Disease

Author(s): Aziz Unnisa, Kamal Dua and Mohammad Amjad Kamal*

Volume 21, Issue 4, 2023

Published on: 18 August, 2022

Page: [988 - 1000] Pages: 13

DOI: 10.2174/1570159X20666220327212414

Price: $65

Abstract

Parkinson’s disease (PD) is one of the most prevalent neurodegenerative disorders, affecting the basal nuclei, causing impairment of motor and cognitive functions. Loss of dopaminergic (DAergic) neurons or their degeneration and the aggregation of Lewy bodies is the hallmark of this disease. The medications used to treat PD relieve the symptoms and maintain quality of life, but currently, there is no cure. There is a need for the development of therapies that can cease or perhaps reverse neurodegeneration effectively. With the rapid advancements in cell replacement therapy techniques, medical professionals are trying to find a cure by which restoration of dopamine neurotransmitters can occur. Researchers have started focusing on cell-based therapies using mesenchymal stem cells (MSCs) due to their abundance in the body, the ability of proliferation, and immunomodulation. Here we review the MSC-based treatment in Parkinson's disease and the various mechanisms it repairs DAergic neurons in parkinsonian patients.

Keywords: Parkinson’s disease, dopaminergic neurons, stem cell, therapy, mesenchymal stem cells.

Graphical Abstract

[1]
Marvanova, M. Introduction to Parkinson disease (PD) and its complications. Ment. Health Clin., 2016, 6(5), 229-235.
[http://dx.doi.org/10.9740/mhc.2016.09.229] [PMID: 29955475]
[2]
Ball, N.; Teo, W.P.; Chandra, S.; Chapman, J. Parkinson’s disease and the environment. Front. Neurol., 2019, 10, 218.
[http://dx.doi.org/10.3389/fneur.2019.00218] [PMID: 30941085]
[3]
Fayyaz, M.; Jaffery, S.S.; Anwer, F.; Zil-E-Ali, A.; Anjum, I. The effect of physical activity in Parkinson’s disease: A mini-review. Cureus, 2018, 10(7), e2995.
[http://dx.doi.org/10.7759/cureus.2995] [PMID: 30245949]
[4]
Váradi, C. Clinical features of Parkinson’s disease: The evolution of critical symptoms. Biology (Basel), 2020, 9(5), 103.
[http://dx.doi.org/10.3390/biology9050103] [PMID: 32438686]
[5]
Massano, J.; Bhatia, K.P. Clinical approach to Parkinson’s disease: features, diagnosis, and principles of management. Cold Spring Harb. Perspect. Med., 2012, 2(6), a008870.
[http://dx.doi.org/10.1101/cshperspect.a008870] [PMID: 22675666]
[6]
Goldman, J.G.; Postuma, R. Premotor and nonmotor features of Parkinson’s disease. Curr. Opin. Neurol., 2014, 27(4), 434-441.
[http://dx.doi.org/10.1097/WCO.0000000000000112] [PMID: 24978368]
[7]
DeMaagd, G.; Philip, A. Parkinson’s disease and its management: Part 1: Disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. P&T, 2015, 40(8), 504-532.
[PMID: 26236139]
[8]
Stoker, T.B.; Barker, R.A. Recent developments in the treatment of Parkinson’s disease. F1000Res, 2020, 9, F1000 Faculty Rev-862.
[http://dx.doi.org/10.12688/f1000research.25634.1] [PMID: 32789002]
[9]
Salem, N.A. Mesenchymal stem cell based therapy for Parkinson’s disease. Int. J. Stem Cell Res. Ther., 2019, 6, 62.
[http://dx.doi.org/10.23937/2469-570X/1410062]
[10]
Lindvall, O.; Björklund, A. Cell therapy in Parkinson’s disease. NeuroRx, 2004, 1(4), 382-393.
[http://dx.doi.org/10.1602/neurorx.1.4.382] [PMID: 15717042]
[11]
Fan, Y.; Winanto, N.; Ng, S.Y. Replacing what’s lost: a new era of stem cell therapy for Parkinson’s disease. Transl. Neurodegener., 2020, 9(1), 2.
[http://dx.doi.org/10.1186/s40035-019-0180-x] [PMID: 31911835]
[12]
Yasuhara, T.; Kameda, M.; Sasaki, T.; Tajiri, N.; Date, I. Cell Therapy for Parkinson’s Disease. Cell Transplant., 2017, 26(9), 1551-1559.
[http://dx.doi.org/10.1177/0963689717735411] [PMID: 29113472]
[13]
Pawitan, J.A. Prospect of cell therapy for Parkinson’s disease. Anat. Cell Biol., 2011, 44(4), 256-264.
[http://dx.doi.org/10.5115/acb.2011.44.4.256] [PMID: 22254154]
[14]
Gugliandolo, A.; Bramanti, P.; Mazzon, E. Mesenchymal stem cell therapy in Parkinson’s disease animal models. Curr. Res. Transl. Med., 2017, 65(2), 51-60.
[http://dx.doi.org/10.1016/j.retram.2016.10.007] [PMID: 28466824]
[15]
Zhang, J.; Wang, X.; Li, J.; Huang, R.; Yu, X.; Dong, C.; Liu, P.; Zhang, F.; Hu, J.; Qi, Y.; Zhang, J.; Li, Q.; Yan, B. The preclinical research progress of stem cells therapy in Parkinson’s disease. BioMed Res. Int., 2016, 2016, 5683097.
[http://dx.doi.org/10.1155/2016/5683097] [PMID: 27379248]
[16]
Capitelli, C.S.; Lopes, C.S.; Alves, A.C.; Barbiero, J.; Oliveira, L.F.; da Silva, V.J.; Vital, M.A. Opposite effects of bone marrow-derived cells transplantation in MPTP-rat model of Parkinson’s disease: A comparison study of mononuclear and mesenchymal stem cells. Int. J. Med. Sci., 2014, 11(10), 1049-1064.
[http://dx.doi.org/10.7150/ijms.8182] [PMID: 25136260]
[17]
Venkataramana, N.K.; Pal, R.; Rao, S.A.; Naik, A.L.; Jan, M.; Nair, R.; Sanjeev, C.C.; Kamble, R.B.; Murthy, D.P.; Chaitanya, K. Bilateral transplantation of allogenic adult human bone marrow-derived mesenchymal stem cells into the subventricular zone of Parkinson’s disease: A pilot clinical study. Stem Cells Int., 2012, 2012, 931902.
[http://dx.doi.org/10.1155/2012/931902] [PMID: 22550521]
[18]
Trzaska, K.A.; Kuzhikandathil, E.V.; Rameshwar, P. Specification of a dopaminergic phenotype from adult human mesenchymal stem cells. Stem Cells, 2007, 25(11), 2797-2808.
[http://dx.doi.org/10.1634/stemcells.2007-0212] [PMID: 17656644]
[19]
Venkataramana, N.K.; Kumar, S.K.; Balaraju, S.; Radhakrishnan, R.C.; Bansal, A.; Dixit, A.; Rao, D.K.; Das, M.; Jan, M.; Gupta, P.K.; Totey, S.M. Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl. Res., 2010, 155(2), 62-70.
[http://dx.doi.org/10.1016/j.trsl.2009.07.006] [PMID: 20129486]
[20]
Politis, M.; Lindvall, O. Clinical application of stem cell therapy in Parkinson’s disease. BMC Med., 2012, 10(1), 1.
[http://dx.doi.org/10.1186/1741-7015-10-1] [PMID: 22216957]
[21]
Lan, X.; Sun, Z.; Chu, C.; Boltze, J.; Li, S. Dental pulp stem cells: An attractive alternative for cell therapy in ischemic stroke. Front. Neurol., 2019, 10, 824.
[http://dx.doi.org/10.3389/fneur.2019.00824] [PMID: 31428038]
[22]
Xiao, Z.; Lei, T.; Liu, Y.; Yang, Y.; Bi, W.; Du, H. The potential therapy with dental tissue-derived mesenchymal stem cells in Parkinson’s disease. Stem Cell Res. Ther., 2021, 12(1), 5.
[http://dx.doi.org/10.1186/s13287-020-01957-4] [PMID: 33407864]
[23]
Ueda, T.; Inden, M.; Ito, T.; Kurita, H.; Hozumi, I. Characteristics and therapeutic potential of dental pulp stem cells on neurodegenerative diseases. Front. Neurosci., 2020, 14, 407.
[http://dx.doi.org/10.3389/fnins.2020.00407] [PMID: 32457568]
[24]
Priyan, G.L.S.; Ramalingam, S.; Udhayakumar, Y. Human dental pulp stem cells and its applications in regenerative medicine – A literature review. J Global Oral Health, 2019, 2(1), 59-67.
[http://dx.doi.org/10.25259/JGOH_54_2019]
[25]
Yamada, Y.; Nakamura-Yamada, S.; Kusano, K.; Baba, S. Clinical potential and current progress of dental pulp stem cells for various systemic diseases in regenerative medicine: A concise review. Int. J. Mol. Sci., 2019, 20(5), 1132.
[http://dx.doi.org/10.3390/ijms20051132] [PMID: 30845639]
[26]
Tsuji, W.; Rubin, J.P.; Marra, K.G. Adipose-derived stem cells: Implications in tissue regeneration. World J. Stem Cells, 2014, 6(3), 312-321.
[http://dx.doi.org/10.4252/wjsc.v6.i3.312] [PMID: 25126381]
[27]
Banas, A.; Teratani, T.; Yamamoto, Y.; Tokuhara, M.; Takeshita, F.; Quinn, G.; Okochi, H.; Ochiya, T. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology, 2007, 46(1), 219-228.
[http://dx.doi.org/10.1002/hep.21704] [PMID: 17596885]
[28]
Wu, Y.; Hoogduijn, M.J.; Baan, C.C.; Korevaar, S.S.; de Kuiper, R.; Yan, L.; Wang, L.; van Besouw, N.M. Adipose tissue-derived mesenchymal stem cells have a heterogenic cytokine secretion profile. Stem Cells Int., 2017, 2017, 4960831.
[http://dx.doi.org/10.1155/2017/4960831] [PMID: 28642794]
[29]
Tobita, M.; Tajima, S.; Mizuno, H. Adipose tissue-derived mesenchymal stem cells and platelet-rich plasma: stem cell transplantation methods that enhance stemness. Stem Cell Res. Ther., 2015, 6(1), 215.
[http://dx.doi.org/10.1186/s13287-015-0217-8] [PMID: 26541973]
[30]
Yin, L.; Zhu, Y.; Yang, J.; Ni, Y.; Zhou, Z.; Chen, Y.; Wen, L. Adipose tissue-derived mesenchymal stem cells differentiated into hepatocyte-like cells in vivo and in vitro. Mol. Med. Rep., 2015, 11(3), 1722-1732.
[http://dx.doi.org/10.3892/mmr.2014.2935] [PMID: 25395242]
[31]
Nakao, N.; Nakayama, T.; Yahata, T.; Muguruma, Y.; Saito, S.; Miyata, Y.; Yamamoto, K.; Naoe, T. Adipose tissue-derived mesenchymal stem cells facilitate hematopoiesis in vitro and in vivo: advantages over bone marrow-derived mesenchymal stem cells. Am. J. Pathol., 2010, 177(2), 547-554.
[http://dx.doi.org/10.2353/ajpath.2010.091042] [PMID: 20558580]
[32]
Nagamura-Inoue, T.; He, H. Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility. World J. Stem Cells, 2014, 6(2), 195-202.
[http://dx.doi.org/10.4252/wjsc.v6.i2.195] [PMID: 24772246]
[33]
Tesarova, L.; Jaresova, K.; Simara, P.; Koutna, I. Umbilical Cord-Derived Mesenchymal Stem Cells Are Able to Use bFGF Treatment and Represent a Superb Tool for Immunosuppressive Clinical Applications. Int. J. Mol. Sci., 2020, 21(15), 5366.
[http://dx.doi.org/10.3390/ijms21155366] [PMID: 32731615]
[34]
Chao, Y.H.; Wu, H.P.; Chan, C.K.; Tsai, C.; Peng, C.T.; Wu, K.H. Umbilical cord-derived mesenchymal stem cells for hematopoietic stem cell transplantation. J. Biomed. Biotechnol., 2012, 2012, 759503.
[http://dx.doi.org/10.1155/2012/759503] [PMID: 23093863]
[35]
Kitada, M.; Dezawa, M. Parkinson’s disease and mesenchymal stem cells: potential for cell-based therapy. Parkinsons Dis., 2012, 2012, 873706.
[http://dx.doi.org/10.1155/2012/873706] [PMID: 22530164]
[36]
Oliveira, M.S.; Barreto-Filho, J.B. Placental-derived stem cells: Culture, differentiation and challenges. World J. Stem Cells, 2015, 7(4), 769-775.
[http://dx.doi.org/10.4252/wjsc.v7.i4.769] [PMID: 26029347]
[37]
Siddesh, S.E.; Gowda, D.M.; Jain, R.; Gulati, A.; Patil, G.S.; Anudeep, T.C.; Jeyaraman, N.; Muthu, S.; Jeyaraman, M. Placenta-derived mesenchymal stem cells (P-MSCs) for COVID-19 pneumonia-a regenerative dogma. Stem Cell Investig., 2021, 8, 3.
[http://dx.doi.org/10.21037/sci-2020-034] [PMID: 33688491]
[38]
Wouters, G.; Grossi, S.; Mesoraca, A.; Bizzoco, D.; Mobili, L.; Cignini, P.; Giorlandino, C. Isolation of amniotic fluid-derived mesenchymal stem cells. J. Prenat. Med., 2007, 1(3), 39-40.
[PMID: 22470826]
[39]
Spitzhorn, L.S.; Rahman, M.S.; Schwindt, L.; Ho, H.T.; Wruck, W.; Bohndorf, M.; Wehrmeyer, S.; Ncube, A.; Beyer, I.; Hagenbeck, C.; Balan, P.; Fehm, T.; Adjaye, J. Isolation and Molecular Characterization of Amniotic Fluid-Derived Mesenchymal Stem Cells Obtained from Caesarean Sections. Stem Cells Int., 2017, 2017, 5932706.
[http://dx.doi.org/10.1155/2017/5932706] [PMID: 29225627]
[40]
Srivastava, M.; Ahlawat, N.; Srivastava, A. Amniotic Fluid Stem Cells: A New Era in Regenerative Medicine. J. Obstet. Gynaecol. India, 2018, 68(1), 15-19.
[http://dx.doi.org/10.1007/s13224-017-1034-z] [PMID: 29391670]
[41]
Ahmed, H.H.; Salem, A.M.; Atta, H.M.; Eskandar, E.F.; Farrag, A.R.; Ghazy, M.A.; Salem, N.A.; Aglan, H.A. Updates in the pathophysiological mechanisms of Parkinson’s disease: Emerging role of bone marrow mesenchymal stem cells. World J. Stem Cells, 2016, 8(3), 106-117.
[http://dx.doi.org/10.4252/wjsc.v8.i3.106] [PMID: 27022441]
[42]
Andrzejewska, A.; Dabrowska, S.; Lukomska, B.; Janowski, M. Mesenchymal Stem Cells for Neurological Disorders. Adv. Sci. (Weinh.), 2021, 8(7), 2002944.
[http://dx.doi.org/10.1002/advs.202002944] [PMID: 33854883]
[43]
Rajpoot, S.; Tewar, G. Review on stem cells: Basics classification and applications. Int. J. Pharm. Sci. Rev. Res., 2018, 49(2), 48-52.
[44]
Barky, AR.; Ali, E.M.M.; Mohamed, T.M. Stem cells, classifications and their clinical applications. Am. J. Pharmacol. Ther, 2017, 1(1), 001-007.
[45]
Yang, C.; Dai, W.; Chen, H.; Wu, B. Application of human bone marrow-derived mesenchymal stem cells in the treatment of radiation-induced Gastrointestinal syndrome. Sci. China Life Sci., 2014, 57(12), 1177-1182.
[http://dx.doi.org/10.1007/s11427-014-4721-3] [PMID: 25205377]
[46]
Kemp, K.C.; Hows, J.; Donaldson, C. Bone marrow-derived mesenchymal stem cells. Leuk. Lymphoma, 2005, 46(11), 1531-1544.
[http://dx.doi.org/10.1080/10428190500215076] [PMID: 16236607]
[47]
Ming, Li.; Ikehara, S. Bone-marrow-derived mesenchymal stem cells for organ repair. Stem Cells Int., 2013, 2013, 132642.
[http://dx.doi.org/10.1155/2013/132642] [PMID: 23554816]
[48]
Drzewiecki, B.A.; Thomas, J.C.; Tanaka, S.T. Bone marrow-derived mesenchymal stem cells: Current and future applications in the urinary bladder. Stem Cells Int., 2010, 2010, 765167.
[http://dx.doi.org/10.4061/2010/765167] [PMID: 21253479]
[49]
Wang, J.; Ju, B.; Pan, C.; Gu, Y.; Zhang, Y.; Sun, L.; Zhang, B.; Zhang, Y. Application of Bone Marrow-Derived Mesenchymal Stem Cells in the Treatment of Intrauterine Adhesions in Rats. Cell. Physiol. Biochem., 2016, 39(4), 1553-1560.
[http://dx.doi.org/10.1159/000447857] [PMID: 27614987]
[50]
Miana, V.V.; González, E.A.P. Adipose tissue stem cells in regenerative medicine. Ecancermedicalscience, 2018, 12, 822.
[http://dx.doi.org/10.3332/ecancer.2018.822] [PMID: 29662535]
[51]
Zhang, J.; Liu, Y.; Chen, Y.; Yuan, L.; Liu, H.; Wang, J.; Liu, Q.; Zhang, Y. Adipose-derived stem cells: current applications and future directions in the regeneration of multiple tissues. Stem Cells Int., 2020, 2020, 8810813.
[http://dx.doi.org/10.1155/2020/8810813] [PMID: 33488736]
[52]
Wu, L.; Tang, Q.; Yin, X.; Yan, D.; Tang, M.; Xin, J.; Pan, Q.; Ma, C.; Yan, S. The therapeutic potential of adipose tissue-derived mesenchymal stem cells to enhance radiotherapy effects on hepatocellular carcinoma. Front. Cell Dev. Biol., 2019, 7, 267.
[http://dx.doi.org/10.3389/fcell.2019.00267] [PMID: 31781559]
[53]
Minteer, D.; Marra, K.G.; Rubin, J.P. Adipose-derived mesenchymal stem cells: biology and potential applications. Adv. Biochem. Eng. Biotechnol., 2013, 129, 59-71.
[http://dx.doi.org/10.1007/10_2012_146] [PMID: 22825719]
[54]
Ma, H.; Lam, P.K.; Siu, W.S.; Tong, C.S.W.; Lo, K.K.Y.; Koon, C.M.; Wu, X.X.; Li, X.; Cheng, W.; Shum, W.T.; Leung, P.C. Adipose Tissue-Derived Mesenchymal Stem Cells (ADMSCs) and ADMSC-Derived Secretome Expedited Wound Healing in a Rodent Model - A Preliminary Study. Clin. Cosmet. Investig. Dermatol., 2021, 14, 753-764.
[http://dx.doi.org/10.2147/CCID.S298105] [PMID: 34234501]
[55]
Krawczenko, A.; Klimczak, A. Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells and Their Contribution to Angiogenic Processes in Tissue Regeneration. Int. J. Mol. Sci., 2022, 23(5), 2425.
[http://dx.doi.org/10.3390/ijms23052425] [PMID: 35269568]
[56]
Frese, L.; Dijkman, P.E.; Hoerstrup, S.P. Adipose Tissue-Derived Stem Cells in Regenerative Medicine. Transfus. Med. Hemother., 2016, 43(4), 268-274.
[http://dx.doi.org/10.1159/000448180] [PMID: 27721702]
[57]
Alonso-Goulart, V.; Ferreira, L.B.; Duarte, C.A.; de Lima, I.L.; Ferreira, E.R. Mesenchymal stem cells from human adipose tissue and bone repair: a literature review. Biotechnology Research and Innovation, 2018, 2(1), 74-80.
[http://dx.doi.org/10.1016/j.biori.2017.10.005]
[58]
Aly, R.M. Current state of stem cell-based therapies: an overview. Stem Cell Investig., 2020, 7, 8.
[http://dx.doi.org/10.21037/sci-2020-001] [PMID: 32695801]
[59]
Potdar, P.D.; Jethmalani, Y.D. Human dental pulp stem cells: Applications in future regenerative medicine. World J. Stem Cells, 2015, 7(5), 839-851.
[http://dx.doi.org/10.4252/wjsc.v7.i5.839] [PMID: 26131314]
[60]
Ledesma-Martínez, E.; Mendoza-Núñez, V.M.; Santiago-Osorio, E. Mesenchymal stem cells derived from dental pulp: a review. Stem Cells Int., 2016, 2016, 4709572.
[http://dx.doi.org/10.1155/2016/4709572] [PMID: 26779263]
[61]
Li, B.; Ouchi, T.; Cao, Y.; Zhao, Z.; Men, Y. Dental-derived mesenchymal stem cells: state of the art. Front. Cell Dev. Biol., 2021, 9, 654559.
[http://dx.doi.org/10.3389/fcell.2021.654559] [PMID: 34239870]
[62]
Masuda, K.; Han, X.; Kato, H.; Sato, H.; Zhang, Y.; Sun, X.; Hirofuji, Y.; Yamaza, H.; Yamada, A.; Fukumoto, S. Dental pulp-derived mesenchymal stem cells for modeling genetic disorders. Int. J. Mol. Sci., 2021, 22(5), 2269.
[http://dx.doi.org/10.3390/ijms22052269] [PMID: 33668763]
[63]
Shi, X.; Mao, J.; Liu, Y. Pulp stem cells derived from human permanent and deciduous teeth: Biological characteristics and therapeutic applications. Stem Cells Transl. Med., 2020, 9(4), 445-464.
[http://dx.doi.org/10.1002/sctm.19-0398] [PMID: 31943813]
[64]
Deedwania, P.; Deka, D.; Mohanty, S.; Dadhwal, V.; Sharma, A. Isolation and characterization of mesenchymal stem cells derived from amniotic fluid: A prospective study. Int. J. MolImmuno. Oncol., 2020, 5(2), 67-72.
[http://dx.doi.org/10.25259/IJMIO_22_2019]
[65]
Kim, E.Y.; Lee, K.B.; Kim, M.K. The potential of mesenchymal stem cells derived from amniotic membrane and amniotic fluid for neuronal regenerative therapy. BMB Rep., 2014, 47(3), 135-140.
[http://dx.doi.org/10.5483/BMBRep.2014.47.3.289] [PMID: 24499672]
[66]
Jafari, A.; Rezaei-Tavirani, M.; Farhadihosseinabadi, B.; Zali, H.; Niknejad, H. Human amniotic mesenchymal stem cells to promote/suppress cancer: two sides of the same coin. Stem Cell Res. Ther., 2021, 12(1), 126.
[http://dx.doi.org/10.1186/s13287-021-02196-x] [PMID: 33579346]
[67]
Huang, B.; Ding, C.; Zou, Q.; Lu, J.; Wang, W.; Li, H. Human amniotic fluid mesenchymal stem cells improve ovarian function during physiological aging by resisting DNA damage. Front. Pharmacol., 2020, 11, 272.
[http://dx.doi.org/10.3389/fphar.2020.00272] [PMID: 32273842]
[68]
Zhou, J.; Wang, D.; Liang, T.; Guo, Q.; Zhang, G. Amniotic fluid-derived mesenchymal stem cells: characteristics and therapeutic applications. Arch. Gynecol. Obstet., 2014, 290(2), 223-231.
[http://dx.doi.org/10.1007/s00404-014-3231-7] [PMID: 24744053]
[69]
Zhu, Y.; Yang, Y.; Zhang, Y.; Hao, G.; Liu, T.; Wang, L.; Yang, T.; Wang, Q.; Zhang, G.; Wei, J.; Li, Y. Placental mesenchymal stem cells of fetal and maternal origins demonstrate different therapeutic potentials. Stem Cell Res. Ther., 2014, 5(2), 48.
[http://dx.doi.org/10.1186/scrt436] [PMID: 24721710]
[70]
Chia, W.K.; Cheah, F.C.; Abdul Aziz, N.H.; Kampan, N.C.; Shuib, S.; Khong, T.Y.; Tan, G.C.; Wong, Y.P. A review of placenta and umbilical cord-derived stem cells and the immunomodulatory basis of their therapeutic potential in bronchopulmonary dysplasia. Front Pediatr., 2021, 9, 615508.
[http://dx.doi.org/10.3389/fped.2021.615508] [PMID: 33791258]
[71]
Farini, A.; Sitzia, C.; Erratico, S.; Meregalli, M.; Torrente, Y. Clinical applications of mesenchymal stem cells in chronic diseases. Stem Cells Int., 2014, 2014, 306573.
[http://dx.doi.org/10.1155/2014/306573] [PMID: 24876848]
[72]
Abbaspanah, B.; Reyhani, S.; Mousavi, S.H. Applications of Umbilical Cord Derived Mesenchymal Stem Cells in Autoimmune and Immunological Disorders: From Literature to Clinical Practice. Curr. Stem Cell Res. Ther., 2021, 16(4), 454-464.
[http://dx.doi.org/10.2174/1574888X16999201124153000] [PMID: 33238859]
[73]
Kim, J.Y.; Jeon, H.B.; Yang, Y.S.; Oh, W.; Chang, J.W. Application of human umbilical cord blood-derived mesenchymal stem cells in disease models. World J. Stem Cells, 2010, 2(2), 34-38.
[http://dx.doi.org/10.4252/wjsc.v2.i2.34] [PMID: 21607114]
[74]
Marino, L.; Castaldi, M.A.; Rosamilio, R.; Ragni, E.; Vitolo, R.; Fulgione, C.; Castaldi, S.G.; Serio, B.; Bianco, R.; Guida, M.; Selleri, C. Mesenchymal Stem Cells from the Wharton’s Jelly of the Human Umbilical Cord: Biological Properties and Therapeutic Potential. Int. J. Stem Cells, 2019, 12(2), 218-226.
[http://dx.doi.org/10.15283/ijsc18034] [PMID: 31022994]
[75]
Sabapathy, V.; Sundaram, B. v M, S.; Mankuzhy, P.; Kumar, S. Human Wharton’s Jelly Mesenchymal Stem Cells plasticity augments scar-free skin wound healing with hair growth. PLoS One, 2014, 9(4), e93726.
[http://dx.doi.org/10.1371/journal.pone.0093726] [PMID: 24736473]
[76]
Rocha, J.L.M.; de Oliveira, W.C.F.; Noronha, N.C.; Dos Santos, N.C.D.; Covas, D.T.; Picanço-Castro, V.; Swiech, K.; Malmegrim, K.C.R. Mesenchymal Stromal Cells in Viral Infections: Implications for COVID-19. Stem Cell Rev. Rep., 2021, 17(1), 71-93.
[http://dx.doi.org/10.1007/s12015-020-10032-7] [PMID: 32895900]
[77]
Hmadcha, A.; Martin-Montalvo, A.; Gauthier, B.R.; Soria, B.; Capilla-Gonzalez, V. Therapeutic Potential of Mesenchymal Stem Cells for Cancer Therapy. Front. Bioeng. Biotechnol., 2020, 8, 43.
[http://dx.doi.org/10.3389/fbioe.2020.00043] [PMID: 32117924]
[78]
Kim, N.; Cho, S.G. Clinical applications of mesenchymal stem cells. Korean J. Intern. Med. (Korean. Assoc. Intern. Med.), 2013, 28(4), 387-402.
[http://dx.doi.org/10.3904/kjim.2013.28.4.387] [PMID: 23864795]
[79]
Fričová, D.; Korchak, J.A.; Zubair, A.C. Challenges and translational considerations of mesenchymal stem/stromal cell therapy for Parkinson’s disease. NPJ Regen. Med., 2020, 5(1), 20.
[http://dx.doi.org/10.1038/s41536-020-00106-y] [PMID: 33298940]
[80]
Shin, J.Y.; Lee, P.H. Mesenchymal stem cells modulate misfolded α-synuclein in parkinsonian disorders: A multitarget disease-modifying strategy. Stem Cell Res. (Amst.), 2020, 47, 101908.
[http://dx.doi.org/10.1016/j.scr.2020.101908] [PMID: 32683319]
[81]
Yao, P.; Zhou, L.; Zhu, L.; Zhou, B.; Yu, Q. Mesenchymal Stem Cells: A Potential Therapeutic Strategy for Neurodegenerative Diseases. Eur. Neurol., 2020, 83(3), 235-241.
[http://dx.doi.org/10.1159/000509268] [PMID: 32690856]
[82]
Dimarino, A.M.; Caplan, A.I.; Bonfield, T.L. Mesenchymal stem cells in tissue repair. Front. Immunol., 2013, 4, 201.
[http://dx.doi.org/10.3389/fimmu.2013.00201] [PMID: 24027567]
[83]
Chen, Y.; Shen, J.; Ke, K.; Gu, X. Clinical potential and current progress of mesenchymal stem cells for Parkinson’s disease: a systematic review. Neurol. Sci., 2020, 41(5), 1051-1061.
[http://dx.doi.org/10.1007/s10072-020-04240-9] [PMID: 31919699]
[84]
Dezawa, M.; Kanno, H.; Hoshino, M.; Cho, H.; Matsumoto, N.; Itokazu, Y.; Tajima, N.; Yamada, H.; Sawada, H.; Ishikawa, H.; Mimura, T.; Kitada, M.; Suzuki, Y.; Ide, C. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J. Clin. Invest., 2004, 113(12), 1701-1710.
[http://dx.doi.org/10.1172/JCI200420935] [PMID: 15199405]
[85]
Park, H.J.; Lee, P.H.; Bang, O.Y.; Lee, G.; Ahn, Y.H. Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinson’s disease. J. Neurochem., 2008, 107(1), 141-151.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05589.x] [PMID: 18665911]
[86]
Hima Bindu, A.; Srilatha, B. Potency of Various Types of Stem Cells and their Transplantation. J. Stem Cell Res. Ther., 2011, 1(3), 115.
[http://dx.doi.org/10.4172/2157-7633.1000115]
[87]
Berrío Sánchez, J.; Cucarian Hurtado, J.; Barcos Nunes, R.; de Oliveira, A.A. Mesenchymal stem cell transplantation and aerobic exercise for Parkinson’s disease: therapeutic assets beyond the motor domain. Rev. Neurosci., 2019, 30(2), 165-178.
[http://dx.doi.org/10.1515/revneuro-2018-0011] [PMID: 29959887]
[88]
Musiał-Wysocka, A.; Kot, M.; Majka, M. The pros and cons of mesenchymal stem cell-based therapies. Cell Transplant., 2019, 28(7), 801-812.
[http://dx.doi.org/10.1177/0963689719837897] [PMID: 31018669]
[89]
Caplan, H.; Olson, S.D.; Kumar, A.; George, M.; Prabhakara, K.S.; Wenzel, P.; Bedi, S.; Toledano-Furman, N.E.; Triolo, F.; Kamhieh-Milz, J.; Moll, G.; Cox, C.S., Jr Mesenchymal stromal cell therapeutic delivery: translational challenges to clinical application. Front. Immunol., 2019, 10, 1645.
[http://dx.doi.org/10.3389/fimmu.2019.01645] [PMID: 31417542]
[90]
Shi, Y.; Su, J.; Roberts, A.I.; Shou, P.; Rabson, A.B.; Ren, G. How mesenchymal stem cells interact with tissue immune responses. Trends Immunol., 2012, 33(3), 136-143.
[http://dx.doi.org/10.1016/j.it.2011.11.004] [PMID: 22227317]
[91]
Glavaski-Joksimovic, A.; Bohn, M.C. Mesenchymal stem cells and neuroregeneration in Parkinson’s disease. Exp. Neurol., 2013, 247, 25-38.
[http://dx.doi.org/10.1016/j.expneurol.2013.03.016] [PMID: 23542820]
[92]
Lee, P.H.; Park, H.J. Bone marrow-derived mesenchymal stem cell therapy as a candidate disease-modifying strategy in Parkinson’s disease and multiple system atrophy. J. Clin. Neurol., 2009, 5(1), 1-10.
[http://dx.doi.org/10.3988/jcn.2009.5.1.1] [PMID: 19513327]
[93]
Li, Y.; Chen, J.; Wang, L.; Zhang, L.; Lu, M.; Chopp, M. Intracerebral transplantation of bone marrow stromal cells in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Neurosci. Lett., 2001, 316(2), 67-70.
[http://dx.doi.org/10.1016/S0304-3940(01)02384-9] [PMID: 11742717]
[94]
Riecke, J.; Johns, K.M.; Cai, C.; Vahidy, F.S.; Parsha, K.; Furr-Stimming, E.; Schiess, M.; Savitz, S.I. A Meta-Analysis of Mesenchymal Stem Cells in Animal Models of Parkinson’s Disease. Stem Cells Dev., 2015, 24(18), 2082-2090.
[http://dx.doi.org/10.1089/scd.2015.0127] [PMID: 26134374]
[95]
Jinfeng, L.; Yunliang, W.; Xinshan, L.; Yutong, W.; Shanshan, W.; Peng, X.; Xiaopeng, Y.; Zhixiu, X.; Qingshan, L.; Honglei, Y.; Xia, C.; Hongwei, W.; Bingzhen, C. Therapeutic Effects of CUR-Activated Human Umbilical Cord Mesenchymal Stem Cells on 1-Methyl-4-phenylpyridine-Induced Parkinson’s Disease Cell Model. BioMed Res. Int., 2016, 2016, 9140541.
[http://dx.doi.org/10.1155/2016/9140541] [PMID: 27340670]
[96]
Schwerk, A.; Altschüler, J.; Roch, M.; Gossen, M.; Winter, C.; Berg, J.; Kurtz, A.; Akyüz, L.; Steiner, B. Adipose-derived human mesenchymal stem cells induce long-term neurogenic and anti-inflammatory effects and improve cognitive but not motor performance in a rat model of Parkinson’s disease. Regen. Med., 2015, 10(4), 431-446.
[http://dx.doi.org/10.2217/rme.15.17] [PMID: 26022763]
[97]
De Becker, A.; Riet, I.V. Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World J. Stem Cells, 2016, 8(3), 73-87.
[http://dx.doi.org/10.4252/wjsc.v8.i3.73] [PMID: 27022438]
[98]
Mendes Filho, D.; Ribeiro, P.D.C.; Oliveira, L.F.; de Paula, D.R.M.; Capuano, V.; de Assunção, T.S.F.; da Silva, V.J.D. Therapy With Mesenchymal Stem Cells in Parkinson Disease: History and Perspectives. Neurologist, 2018, 23(4), 141-147.
[http://dx.doi.org/10.1097/NRL.0000000000000188] [PMID: 29953040]
[99]
Ramot, Y.; Steiner, M.; Morad, V.; Leibovitch, S.; Amouyal, N.; Cesta, M.F.; Nyska, A. Pulmonary thrombosis in the mouse following intravenous administration of quantum dot-labeled mesenchymal cells. Nanotoxicology, 2010, 4(1), 98-105.
[http://dx.doi.org/10.3109/17435390903470093] [PMID: 20795905]
[100]
Kuroda, Y.; Kitada, M.; Wakao, S.; Nishikawa, K.; Tanimura, Y.; Makinoshima, H.; Goda, M.; Akashi, H.; Inutsuka, A.; Niwa, A.; Shigemoto, T.; Nabeshima, Y.; Nakahata, T.; Nabeshima, Y.; Fujiyoshi, Y.; Dezawa, M. Unique multipotent cells in adult human mesenchymal cell populations. Proc. Natl. Acad. Sci. USA, 2010, 107(19), 8639-8643.
[http://dx.doi.org/10.1073/pnas.0911647107] [PMID: 20421459]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy