Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Indole-3-carbinol (I3C) as Leukemia Therapeutic Agents: Review

Author(s): Mojgan Noroozi Karimabad, Maryam Mohamadi, Seyedeh Atekeh Torabizadeh and Gholamhossein Hassanshahi*

Volume 23, Issue 2, 2023

Published on: 22 August, 2022

Page: [150 - 158] Pages: 9

DOI: 10.2174/1389557522666220325145003

Price: $65

Abstract

Leukemia or blood cancer was initially discovered in 1845 and this malignancy was reported in patients who had an amplified number of blood cells, in particular, White Blood Cells (WBC), due to this disease. The event of leukemia was further identified as a malignant hematopoietic disorder due to both uncontrolled and unlimited proliferation in combination with a lack of differentiation of the leukemic stem cells. Furthermore, 75 to 80% of the global population use herbal remedies as primary therapy, mainly because of their better efficiency and satisfaction, which elevate the human body symmetry with the minimum unwanted adverse effects. For the control of cancer, plant products, and fruits have been considered promising tools and are being consumed for centuries. Several plant extracts are also being used for the therapy and prevention of different types of known cancers. Indole-3-carbinol (I3C) is a natural material obtained from Brassica diversity of vegetables and has been reported to serve as a promising cancer preventative agent. In the present review, the authors mainly tried to focus on and emphasize I3C applications in leukemia treatment.

Keywords: I3C, Anticancer, Phytochemical, Leukemia, Vegetable, Malignancy

Graphical Abstract

[1]
Naumburg, E. Results of recent research on perinatal risk factors: Resuscitation using oxygen increases the risk of childhood leukemia. Lakartidningen, 2002, 99(24), 2745-2747.
[PMID: 12101601]
[2]
Karimabad, M.N.; Mahmoodi, M.; Jafarzadeh, A.; Darehkordi, A.; Hajizadeh, M.R.; Khorramdelazad, H.; Sayadi, A.R.; Rahmani, F.; Has-sanshahi, G. Evaluating of OCT-4 and NANOG was differentially regulated by a new derivative indole in leukemia cell line. Immunol. Lett., 2017, 190, 7-14.
[http://dx.doi.org/10.1016/j.imlet.2017.06.012] [PMID: 28690187]
[3]
Sheikhrezaei, Z.; Heydari, P.; Farsinezhad, A.; Fatemi, A.; Khanamani Falahati-Pour, S.; Darakhshan, S.; Noroozi Karimabad, M.; Da-rekordi, A.; Khorramdelazad, H.; Hassanshahi, G. A new indole derivative decreased SALL4 gene expression in acute promyelocytic leu-kemia cell line (NB4). Iran. Biomed. J., 2018, 22(2), 99-106.
[PMID: 28800701]
[4]
Noroozi, M.K.; Mahmoodi, M.; Jafarzadeh, A.; Darehkordi, A.; Hajizadeh, M.R.; Khorramdelazad, H.; Sayadi, A.R.; Falahati-Pour, S.K.; Hassanshahi, G. Indole itself and its novel derivative affect PML cells proliferation via controlling the expression of cell cycle genes. Cell. Mol. Biol., 2019, 65(3), 41-47.
[http://dx.doi.org/10.14715/cmb/2019.65.3.6] [PMID: 30942154]
[5]
Katoueezadeh, M.; Pilehvari, N.; Fatemi, A.; Hassanshahi, G.; Torabizadeh, S.A. Inhibition of DNA damage response pathway using com-bination of DDR pathway inhibitors and radiation in treatment of acute lymphoblastic leukemia cells. Future Oncol., 2021, 17(21), 2803-2816.
[http://dx.doi.org/10.2217/fon-2020-1072] [PMID: 33960207]
[6]
Giordano, P.; Muggeo, P.; Delvecchio, M.; Carbonara, S.; Romano, A.; Altomare, M.; Ricci, G.; Valente, F.; Zito, A.; Scicchitano, P.; Cava-llo, L.; Ciccone, M.M.; Santoro, N.; Faienza, M.F. Endothelial dysfunction and cardiovascular risk factors in childhood acute lymphoblas-tic leukemia survivors. Int. J. Cardiol., 2017, 228, 621-627.
[http://dx.doi.org/10.1016/j.ijcard.2016.11.025] [PMID: 27889551]
[7]
Chiang, L.C.; Cheng, H.Y.; Liu, M.C.; Chiang, W.; Lin, C.C. In vitro anti-herpes simplex viruses and anti-adenoviruses activity of twelve traditionally used medicinal plants in Taiwan. Biol. Pharm. Bull., 2003, 26(11), 1600-1604.
[http://dx.doi.org/10.1248/bpb.26.1600] [PMID: 14600409]
[8]
Khalafalla, M.M.; Abdellatef, E.; Daffalla, H.M.; Nassrallah, A.A.; Aboul-Enein, K.M.; Lightfoot, D.A.; Cocchetto, A.; El-Shemy, H.A. Antileukemia activity from root cultures of Vernonia amygdalina. J. Med. Plants Res., 2009, 3(8), 556-562.
[9]
Janda, K.; Taukin, A.; Kałduńska, J.; Jakubczyk, K. Chemopreventive mechanisms and other properties of glucosinolates. Pomeranian J. Life Sci., 2019, 65(4), 78-82.
[http://dx.doi.org/10.21164/pomjlifesci.638]
[10]
Rezai, M.; Mahmoodi, M.; Kaeidi, A.; Karimabad, M.N.; Khoshdel, A.; Hajizadeh, M.R. Effect of crocin carotenoid on BDNF and CREB gene expression in brain ventral tegmental area of morphine treated rats. Asian Pac. J. Trop. Biomed., 2018, 8(8), 387-393.
[http://dx.doi.org/10.4103/2221-1691.239426]
[11]
Akbarpoor, V.; Karimabad, M.N.; Mahmoodi, M.; Mirzaei, M.R. The saffron effects on expression pattern of critical self-renewal genes in adenocarcinoma tumor cell line (AGS). Gene Rep., 2020, 19, 100629.
[http://dx.doi.org/10.1016/j.genrep.2020.100629]
[12]
Di Gioia, F.; Pinela, J.; de Haro Bailón, A.; Fereira, I.C.; Petropoulos, S.A. The dilemma of “good” and “bad” glucosinolates and the poten-tial to regulate their content. In: Glucosinolates: Properties, Recovery, and Applications; Galanakis, C.M., Ed.; Elsevier: Cambridge, Massachusetts, 2020; pp. 1-45.
[http://dx.doi.org/10.1016/B978-0-12-816493-8.00001-9]
[13]
COWLEY, P.M.; Wise, A.; KICZUN, M.; Davis, S. Indole derivatives for use in medicine. Google Patents 2019.
[14]
Karimabad, M.N.; Mahmoodi, M.; Jafarzadeh, A.; Darekordi, A.; Hajizadeh, M.R.; Hassanshahi, G. Molecular targets, anti-cancer proper-ties and potency of synthetic indole-3-carbinol derivatives. Mini Rev. Med. Chem., 2019, 19(7), 540-554.
[http://dx.doi.org/10.2174/1389557518666181116120145] [PMID: 30444199]
[15]
Howells, L.M.; Gallacher-Horley, B.; Houghton, C.E.; Manson, M.M.; Hudson, E.A. Indole-3-carbinol inhibits protein kinase B/Akt and induces apoptosis in the human breast tumor cell line MDA MB468 but not in the nontumorigenic HBL100 line. Mol. Cancer Ther., 2002, 1(13), 1161-1172.
[PMID: 12479697]
[16]
Kim, S.H.; Kim, H.J.; Park, H.S.; Gu, S.Y.; Kwak, H.S.; Park, D.H.; Kim, H.S.; Cho, H.J.; Kim, J.H.; Kim, J.Y. Pharmaceutical composition comprising indole compound. U.S, Patent 10322135, 2019.
[17]
Wu, Y.; Li, R.W.; Huang, H. Inhibition of tumor growth by dietary indole-3-carbinol in a prostate cancer xenograft model may be associa-ted with disrupted gut microbial interactions. Nutrients, 2019, 11(2), 467.
[http://dx.doi.org/10.3390/nu11020467]
[18]
Tian, X.; Liu, K.; Zu, X.; Ma, F.; Li, Z.; Lee, M.; Chen, H.; Li, Y.; Zhao, Y.; Liu, F.; Oi, N.; Bode, A.M.; Dong, Z.; Kim, D.J. 3,3′-Diindolylmethane inhibits patient-derived xenograft colon tumor growth by targeting COX1/2 and ERK1/2. Cancer Lett., 2019, 448, 20-30.
[http://dx.doi.org/10.1016/j.canlet.2019.01.031] [PMID: 30716361]
[19]
Kim, B.G.; Kim, J.W.; Kim, S.M.; Go, R.E.; Hwang, K.A.; Choi, K.C. 3,3′-diindolylmethane suppressed cyprodinil-induced epithelial-mesenchymal transition and metastatic-related behaviors of human endometrial ishikawa cells via an estrogen receptor-dependent pathway. Int. J. Mol. Sci., 2018, 19(1), 189.
[20]
Retraction: Therapeutic intervention of experimental breast cancer bone metastasis by indole-3-carbinol in SCID-human mouse model. Mol. Cancer Ther., 2018, 17(10), 2267.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0525] [PMID: 30275272]
[21]
Aggarwal, B.B.; Ichikawa, H. Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle, 2005, 4(9), 1201-1215.
[http://dx.doi.org/10.4161/cc.4.9.1993] [PMID: 16082211]
[22]
Weng, J.R.; Tsai, C.H.; Kulp, S.K.; Chen, C.S. Indole-3-carbinol as a chemopreventive and anti-cancer agent. Cancer Lett., 2008, 262(2), 153-163.
[http://dx.doi.org/10.1016/j.canlet.2008.01.033] [PMID: 18314259]
[23]
Moreno, C.; Greil, R.; Demirkan, F.; Tedeschi, A.; Anz, B.; Larratt, L.; Simkovic, M.; Samoilova, O.; Novak, J.; Ben-Yehuda, D.; Strugov, V.; Gill, D.; Gribben, J.G.; Hsu, E.; Lih, C.J.; Zhou, C.; Clow, F.; James, D.F.; Styles, L.; Flinn, I.W. Ibrutinib plus obinutuzumab versus chlorambucil plus obinutuzumab in first-line treatment of chronic lymphocytic leukaemia (iLLUMINATE): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol., 2019, 20(1), 43-56.
[http://dx.doi.org/10.1016/S1470-2045(18)30788-5] [PMID: 30522969]
[24]
Conneely, S.E.; Rau, R.E. The genomics of acute myeloid leukemia in children. Cancer Metastasis Rev., 2020, 39(1), 189-209.
[http://dx.doi.org/10.1007/s10555-020-09846-1] [PMID: 31925603]
[25]
Singh, M.; Kumar, D.; Sharma, D.; Singh, G. Typhonium flagelliforme: A multipurpose plant. Int. Res. J. Pharm., 2013, 4(3), 45-48.
[http://dx.doi.org/10.7897/2230-8407.04308]
[26]
Mohammadi, S.; Jafari, B.; Asgharian, P.; Martorell, M.; Sharifi-Rad, J. Medicinal plants used in the treatment of Malaria: A key emphasis to Artemisia, Cinchona, Cryptolepis, and Tabebuia genera. Phytother. Res., 2020, 34(7), 15596-1569.
[27]
Ramakrishnan, P.; Loh, W.M.; Gopinath, S.C.B.; Bonam, S.R.; Fareez, I.M.; MacGuad, R.; Sim, M.S.; Wu, Y.S. Selective phytochemicals targeting pancreatic stellate cells as new anti-fibrotic agents for chronic pancreatitis and pancreatic cancer. Acta Pharm. Sin. B, 2020, 10(3), 399-413.
[http://dx.doi.org/10.1016/j.apsb.2019.11.008] [PMID: 32140388]
[28]
Liu, W.; Yang, B.; Yang, L.; Kaur, J.; Jessop, C.; Fadhil, R.; Good, D. Therapeutic effects of ten commonly used Chinese herbs and their bioactive compounds on cancers. Evid. Based Complement. Alternat. Med., 2019, 2019, 6057837.
[29]
Mohammadi, S.; Seyedhosseini, F.S.; Behnampour, N.; Yazdani, Y. Indole-3-carbinol induces G1 cell cycle arrest and apoptosis through aryl hydrocarbon receptor in THP-1 monocytic cell line. J. Recept. Signal Transduct., 2017, 37(5), 506-514.
[30]
Warner, N.L.; Moore, M.A.; Metcalf, D. A transplantable myelomonocytic leukemia in BALB-c mice: Cytology, karyotype, and murami-dase content. J. Natl. Cancer Inst., 1969, 43(4), 963-982.
[PMID: 5259325]
[31]
Foo, J.B.; Yazan, L.S.; Chan, K.W.; Tahir, P.M.; Ismail, M. Kenaf seed oil from supercritical carbon dioxide fluid extraction induced G1 phase cell cycle arrest and apoptosis in leukemia cells. Afr. J. Biotechnol., 2011, 10(27), 5389-5397.
[32]
Saedi, T.A.; Md Noor, S.; Ismail, P.; Othman, F. The effects of herbs and fruits on leukaemia. Evid. Based Complement. Alternat. Med., 2014, 2014, 494136.
[http://dx.doi.org/10.1155/2014/494136]
[33]
Choi, Y.J.; Yoon, J.H.; Cha, S.W.; Lee, S.G. Ginsenoside Rh1 inhibits the invasion and migration of THP-1 acute monocytic leukemia cells via inactivation of the MAPK signaling pathway. Fitoterapia, 2011, 82(6), 911-919.
[http://dx.doi.org/10.1016/j.fitote.2011.05.005] [PMID: 21605636]
[34]
Okay, M.; Haznedaroglu, I.C. Protein kinases in hematological disorders. Adv. Exp. Med. Biol., 2021, 1275, 383-393.
[http://dx.doi.org/10.1007/978-3-030-49844-3_15] [PMID: 33539024]
[35]
Cruz, L.S.; Kanunfre, C.C.; de Andrade, E.A.; de Oliveira, A.A.; Cruz, L.S.; de Faria Moss, M.; Sassaki, G.L.; Alencar Menezes, L.R.; Wang, M.; Khan, I.A.; Beltrame, F.L. Enriched terpenes fractions of the latex of Euphorbia umbellata promote apoptosis in leukemic ce-lls. Chem. Biodivers., 2020, 17(9), e2000369.
[http://dx.doi.org/10.1002/cbdv.202000369] [PMID: 32644295]
[36]
Ekta, K.; Gaurav, K.S.; Ankit, K. A review on leukemia by novel bio-active natural product. J. Pharmacogn. Phytochem., 2019, 8(4), 1229-1232.
[37]
Hsieh, Y-J.; Chang, C-J.; Wan, C-F.; Chen, C-P.; Chiu, Y-H.; Leu, Y-L.; Peng, K-C. Euphorbia formosana root extract induces apoptosis by caspase-dependent cell death via Fas and mitochondrial pathway in THP-1 human leukemic cells. Molecules, 2013, 18(2), 1949-1962.
[http://dx.doi.org/10.3390/molecules18021949] [PMID: 23377135]
[38]
Johnson, K.; Yedjou, C. Cytotoxic efficacy and inhibitory effect of garlic extract to human leukemia (Hl-60) cells Proceedings of the 10th International Symposium on Recent Advances in Environmental Health Research, 2013.
[39]
Dirsch, V.M.; Gerbes, A.L.; Vollmar, A.M. Ajoene, a compound of garlic, induces apoptosis in human promyeloleukemic cells, accompa-nied by generation of reactive oxygen species and activation of nuclear factor kappaB. Mol. Pharmacol., 1998, 53(3), 402-407.
[http://dx.doi.org/10.1124/mol.53.3.402] [PMID: 9495804]
[40]
Hassan, H.T. Ajoene (natural garlic compound): A new anti-leukaemia agent for AML therapy. Leuk. Res., 2004, 28(7), 667-671.
[http://dx.doi.org/10.1016/j.leukres.2003.10.008] [PMID: 15158086]
[41]
Dirsch, V.M.; Antlsperger, D.S.; Hentze, H.; Vollmar, A.M. Ajoene, an experimental anti-leukemic drug: Mechanism of cell death. Leukemia, 2002, 16(1), 74-83.
[http://dx.doi.org/10.1038/sj.leu.2402337] [PMID: 11840266]
[42]
Lamm, D.L.; Riggs, D.R. Enhanced immunocompetence by garlic: Role in bladder cancer and other malignancies. J. Nutr., 2001, 131(3s), 1067S-1070S.
[http://dx.doi.org/10.1093/jn/131.3.1067S] [PMID: 11238818]
[43]
Torres, J.; Romero, H. In vitro antifungal activity of ajoene on five clinical isolates of Histoplasma capsulatum var. capsulatum. Rev. Iberoam. Micol., 2012, 29(1), 24-28.
[http://dx.doi.org/10.1016/j.riam.2011.04.001] [PMID: 21635962]
[44]
Abdellatef, E.; Nassrallah, H.M.D.A.A.; Aboul-Enein, K.M.; El-Shemy, H.A.; Khalafalla, M.M. Antiproliferative action of Moringa oleife-ra lam. root extracts in acute myeloid leukemia (AML) cell line. J. Exp. Sci., 2010, 1(8)
[45]
Abd-Rabou, A.A.; Abdalla, A.M.; Ali, N.A.; Zoheir, K.M. Moringa oleifera root induces cancer apoptosis more effectively than leave nanocomposites and its free counterpart. Asian Pac. J. Cancer Prev., 2017, 18(8), 2141-2149.
[PMID: 28843248]
[46]
Khalafalla, M.M.; Abdellatef, E.; Dafalla, H.M.; Nassrallah, A.A.; Aboul-Enein, K.M.; Lightfoot, D.A.; El-Deeb, F.E.; El-Shemy, H.A. Active principle from Moringa oleifera Lam leaves effective against two leukemias and a hepatocarcinoma. Afr. J. Biotechnol., 2010, 9(49), 8467-8471.
[47]
El-Shemy, H.A.; Aboul-Enein, A.M.; Aboul-Enein, K.M.; Fujita, K. Willow leaves’ extracts contain anti-tumor agents effective against three cell types. PLoS One, 2007, 2(1), e178.
[http://dx.doi.org/10.1371/journal.pone.0000178] [PMID: 17264881]
[48]
Yedjou, C.G.; Sims, J.N.; Njiki, S.; Tsabang, N.; Ogungbe, I.V.; Tchounwou, P.B. Vernonia amygdalina delile exhibits a potential for the treatment of acute promyelocytic leukemia. Glob. J. Adv. Eng. Technol. Sci., 2018, 5(8), 1-9.
[PMID: 30310827]
[49]
Maher, T.; Ahmad Raus, R.; Daddiouaissa, D.; Ahmad, F.; Adzhar, N.S.; Latif, E.S.; Abdulhafiz, F.; Mohammed, A. Medicinal plants with anti-leukemic effects: A review. Molecules, 2021, 26(9), 2741.
[http://dx.doi.org/10.3390/molecules26092741] [PMID: 34066963]
[50]
Tarawneh, K.A.; Irshaid, F.; Jaran, A.S.; Ezealarab, M.; Khleifat, K.M. Evaluation of antibacterial and antioxidant activities of methanolic extracts of some medicinal plants in northern part of Jordan. J. Biol. Sci., 2010, 10(4), 325-332.
[http://dx.doi.org/10.3923/jbs.2010.325.332]
[51]
Alenad, A.M.; Al-Jaber, N.A.; Krishnaswamy, S.; Yakout, S.M.; Al-Daghri, N.M.; Alokail, M.S. Achillea fragrantissima extract exerts its anticancer effect via induction of differentiation, cell cycle arrest and apoptosis in Chronic Myeloid Leukemia (CML) cell line K562. J. Med. Plants Res., 2013, 7(21), 1561-1567.
[52]
Mohan, S.; Abdul, A.B.; Abdelwahab, S.I.; Al-Zubairi, A.S.; Aspollah Sukari, M.; Abdullah, R.; Taha, M.M.E.; Beng, N.K.; Isa, N.M. Typhonium flagelliforme inhibits the proliferation of murine leukemia WEHI-3 cells in vitro and induces apoptosis in vivo. Leuk. Res., 2010, 34(11), 1483-1492.
[http://dx.doi.org/10.1016/j.leukres.2010.04.023] [PMID: 20569984]
[53]
Nyam, K.L.; Tan, C.P.; Lai, O.M.; Long, K.; Man, Y.C. Physicochemical properties and bioactive compounds of selected seed oils. Lebensm. Wiss. Technol., 2009, 42(8), 1396-1403.
[http://dx.doi.org/10.1016/j.lwt.2009.03.006]
[54]
Dahlawi, H.; Jordan-Mahy, N.; Clench, M.; McDougall, G.J.; Maitre, C.L. Polyphenols are responsible for the proapoptotic properties of pomegranate juice on leukemia cell lines. Food Sci. Nutr., 2013, 1(2), 196-208.
[http://dx.doi.org/10.1002/fsn3.26] [PMID: 24804028]
[55]
Zaini, G. R.; Brandt, K.; R Clench, M.; L Le Maitre, C. Effects of bioactive compounds from carrots (Daucus carota L.), polyacetylenes, beta-carotene and lutein on human lymphoid leukaemia cells. Anticancer. Agents Med. Chem., 2012, 12(6), 640-652.
[56]
Zaini, R.; Clench, M.R.; Le Maitre, C.L. Bioactive chemicals from carrot (Daucus carota) juice extracts for the treatment of leukemia. J. Med. Food, 2011, 14(11), 1303-1312.
[http://dx.doi.org/10.1089/jmf.2010.0284] [PMID: 21864090]
[57]
Chang, Y-H.; Yang, J.S.; Yang, J.L.; Wu, C.L.; Chang, S-J.; Lu, K.W.; Lin, J.J.; Hsia, T.C.; Lin, Y.T.; Ho, C.C.; Wood, W.G.; Chung, J.G. Ganoderma lucidum extracts inhibited leukemia WEHI-3 cells in BALB/c mice and promoted an immune response in vivo. Biosci. Biotechnol. Biochem., 2009, 73(12), 2589-2594.
[http://dx.doi.org/10.1271/bbb.90357] [PMID: 19966494]
[58]
Lin, C.C.; Kao, S.T.; Chen, G.W.; Chung, J.G. Berberine decreased N-acetylation of 2-aminofluorene through inhibition of N-acetyltransferase gene expression in human leukemia HL-60 cells. Anticancer Res., 2005, 25(6B), 4149-4155.
[PMID: 16309210]
[59]
Safa, M.; Tavasoli, B.; Manafi, R.; Kiani, F.; Kashiri, M.; Ebrahimi, S.; Kazemi, A. Indole-3-carbinol suppresses NF-κB activity and sti-mulates the p53 pathway in pre-B acute lymphoblastic leukemia cells. Tumour Biol., 2015, 36(5), 3919-3930.
[http://dx.doi.org/10.1007/s13277-014-3035-1] [PMID: 25589462]
[60]
Bai, L.Y.; Weng, J.R.; Chiu, C.F.; Wu, C.Y.; Yeh, S.P.; Sargeant, A.M.; Lin, P.H.; Liao, Y.M. OSU-A9, an indole-3-carbinol derivative, induces cytotoxicity in acute myeloid leukemia through reactive oxygen species-mediated apoptosis. Biochem. Pharmacol., 2013, 86(10), 1430-1440.
[http://dx.doi.org/10.1016/j.bcp.2013.09.002] [PMID: 24041743]
[61]
Machijima, Y.; Ishikawa, C.; Sawada, S.; Okudaira, T.; Uchihara, J.N.; Tanaka, Y.; Taira, N.; Mori, N. Anti-adult T-cell leu-kemia/lymphoma effects of indole-3-carbinol. Retrovirology, 2009, 6(1), 7.
[http://dx.doi.org/10.1186/1742-4690-6-7] [PMID: 19146708]
[62]
Takada, Y.; Andreeff, M.; Aggarwal, B.B. Indole-3-carbinol suppresses NF-kappaB and IkappaBalpha kinase activation, causing inhibition of expression of NF-kappaB-regulated antiapoptotic and metastatic gene products and enhancement of apoptosis in myeloid and leukemia cells. Blood, 2005, 106(2), 641-649.
[http://dx.doi.org/10.1182/blood-2004-12-4589] [PMID: 15811958]
[63]
Arora, A.; Seth, K.; Kalra, N.; Shukla, Y. Modulation of P-glycoprotein-mediated multidrug resistance in K562 leukemic cells by indole-3-carbinol. Toxicol. Appl. Pharmacol., 2005, 202(3), 237-243.
[http://dx.doi.org/10.1016/j.taap.2004.06.017] [PMID: 15667829]
[64]
Sharma, S.; Stutzman, J.D.; Kelloff, G.J.; Steele, V.E. Screening of potential chemopreventive agents using biochemical markers of carci-nogenesis. Cancer Res., 1994, 54(22), 5848-5855.
[PMID: 7954413]
[65]
Abbaspour Sani, N.; Hasani, M.; Kianmehr, A.; Mohammadi, S.; Sheikh Arabi, M.; Yazdani, Y. Enhanced nuclear translocation and acti-vation of aryl hydrocarbon receptor (AhR) in THP-1 monocytic cell line by a novel niosomal formulation of indole-3-carbinol. J. Liposome Res., 2020, 30(2), 117-125.
[PMID: 30917715]
[66]
Chai, B.Y.; Gong, F.K.; Chen, Z.H.; Li, Z.X.; Zhang, B. System prediction and validation of TCM for chronic myeloid leukemia treatment from the perspective of low-toxicity chemotherapy: A stilbene alpha-viniferin has a proapoptotic effect on K562 cells via the mitochon-drial pathway. Evid. Based Complement. Alternat. Med., 2020, 2020, 1986962.
[http://dx.doi.org/10.1155/2020/1986962]
[67]
Chang, Y.L.; Xu, G.L.; Wang, X.P.; Yan, X.; Xu, X.; Li, X.; Chen, Z.K.; Ren, X.; Chen, X.Q.; Zhang, J.H.; Wang, X.H.; Ren, X.Y.; Liu, X.Y.; Wang, Y.; Sun, S.Q.; Li, X.; She, G.M. Anti-tumor activity and linear-diarylheptanoids of herbal couple Curcumae Rhizoma-Sparganii Rhizoma and the single herbs. J. Ethnopharmacol., 2020, 250, 112465.
[http://dx.doi.org/10.1016/j.jep.2019.112465] [PMID: 31821851]
[68]
Gasparello, J.; Gambari, L.; Papi, C.; Rozzi, A.; Manicardi, A.; Corradini, R.; Gambari, R.; Finotti, A. High levels of apoptosis are induced in the human colon cancer HT-29 cell line by co-administration of sulforaphane and a peptide nucleic acid targeting miR-15b-5p. Nucleic Acid Ther., 2020, 30(3), 164-174.
[http://dx.doi.org/10.1089/nat.2019.0825] [PMID: 32069125]
[69]
Zagrodzki, P.; Pasko, P.; Galanty, A.; Tyszka-Czochara, M.; Wietecha-Posluszny, R.; Rubio, P.S.; Barton, H.; Prochownik, E.; Muszynska, B.; Sulkowska-Ziaja, K.; Bierla, K.; Lobinski, R.; Szpunar, J.; Gorinstein, S. Does selenium fortification of kale and kohlrabi sprouts change significantly their biochemical and cytotoxic properties? J. Trace Elem. Med. Biol., 2020, 59, 126466.
[70]
Chiu, C.F.; Weng, J.R.; Lee, S.L.; Wu, C.Y.; Chu, P.C.; Shan, Y.S.; Yang, H.R.; Bai, L.Y. OSU-A9 induced-reactive oxygen species cause cytotoxicity in duodenal and gastric cancer cells by decreasing phosphorylated nuclear pyruvate kinase M2 protein levels. Biochem. Pharmacol., 2020, 174, 113811.
[http://dx.doi.org/10.1016/j.bcp.2020.113811] [PMID: 31954719]
[71]
Krajka-Kuzniak, V.; Cykowiak, M.; Szaefer, H.; Kleszcz, R.; Baer-Dubowska, W. Combination of xanthohumol and phenethyl isothiocya-nate inhibits NF-kappaB and activates Nrf2 in pancreatic cancer cells. Toxicol. In Vitro, 2020, 65, 104799.
[72]
Suparman, I.P. PhonchaiA.WilairatP.ChantiwasR.Rapid measurement of indole levels in Brassica vegetables using one millilitre binary orga-nic extraction solvent and capillary electrophoresis-UV analysis. Phytochem. Anal., 2020, 31(4), 522-530.
[73]
Jiang, Y.; Fang, Y.; Ye, Y.; Xu, X.; Wang, B.; Gu, J.; Aschner, M.; Chen, J.; Lu, R. Anti-cancer effects of 3, 3′-diindolylmethane on human hepatocellular carcinoma cells is enhanced by calcium ionophore: The role of cytosolic CA2+ and p38 MAPK. Front. Pharmacol., 2019, 10, 1167.
[http://dx.doi.org/10.3389/fphar.2019.01167] [PMID: 31649538]
[74]
Perez-Chacon, G.; Martinez-Laperche, C.; Rebolleda, N.; Somovilla-Crespo, B.; Muñoz-Calleja, C.; Buño, I.; Zapata, J.M. Indole-3-carbinol synergizes with and restores fludarabine sensitivity in chronic lymphocytic leukemia cells irrespective of p53 activity and treat-ment resistances. Clin. Cancer Res., 2016, 22(1), 134-145.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0736] [PMID: 26324744]
[75]
Benninghoff, A.D.; Williams, D.E. The role of estrogen receptor β in transplacental cancer prevention by indole-3-carbinol. Cancer Prev. Res. (Phila.), 2013, 6(4), 339-348.
[http://dx.doi.org/10.1158/1940-6207.CAPR-12-0311] [PMID: 23447562]
[76]
Lu, H-F.; Tung, W-L.; Yang, J-S.; Huang, F-M.; Lee, C-S.; Huang, Y-P.; Liao, W-Y.; Chen, Y-L.; Chung, J-G. In vitro suppression of growth of murine WEHI-3 leukemia cells and in vivo promotion of phagocytosis in a leukemia mice model by indole-3-carbinol. J. Agric. Food Chem., 2012, 60(31), 7634-7643.
[http://dx.doi.org/10.1021/jf300963t] [PMID: 22775144]
[77]
Liu, F-C.; Lai, M-T.; Chen, Y-Y.; Lin, W-H.; Chang, S-J.; Sheu, M-J.; Wu, C-H. Elucidating the inhibitory mechanisms of the ethano-lic extract of the fruiting body of the mushroom Antrodia cinnamomea on the proliferation and migration of murine leukemia WEHI-3 ce-lls and their tumorigenicity in a BALB/c allograft tumor model. Phytomedicine, 2013, 20(10), 874-882.
[http://dx.doi.org/10.1016/j.phymed.2013.03.008] [PMID: 23611488]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy