Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Mini-Review Article

Protein Structure Readouts of Cancer Drivers for Precision Medicine

Author(s): Jaspreet Kaur Dhanjal* and Rajkumar Singh Kalra*

Volume 23, Issue 3, 2022

Published on: 09 June, 2022

Page: [158 - 165] Pages: 8

DOI: 10.2174/1389203723666220324141754

Price: $65

Abstract

Cancer is fundamentally a disease of perturbed genes. Although many mutations can be marked in the genome of cancer or a transformed cell, the initiation and progression are driven by only a few mutational events, viz., driver mutations that progressively govern and execute the functional impacts. The driver mutations are thus believed to dictate and dysregulate the subsequent cellular proliferative function/decisions, thereby producing a cancerous state. Therefore, identifying the driver events from the genomic alterations in a patient’s cancer cell gained enormous attention recently for designing better targeting therapies and paving the way for precision cancer medicine. With rolling advancements in high-throughput omic technologies, analysis of genetic variations and gene expression profiles for cancer patients has become a routine clinical practice. However, it is anticipated that protein structural alterations resulting from such driver mutations can provide more direct and clinically relevant evidence of disease states than genetic signatures alone. This review comprehensively discusses various aspects and approaches that have been developed for the prediction of cancer drivers using genetic signatures and protein structures and their potential application in developing precision cancer therapies.

Keywords: Mutations, cancer drivers, prediction algorithm, oncogenes, tumor suppressors, personalized medicine, genetic signatures.

Graphical Abstract

[1]
Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.; Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J.M. The cancer genome atlas pan-cancer analysis project. Nat. Genet., 2013, 45(10), 1113-1120.
[http://dx.doi.org/10.1038/ng.2764] [PMID: 24071849]
[2]
Hudson, T.J.; Anderson, W.; Artez, A.; Barker, A.D.; Bell, C.; Bernabé, R.R.; Bhan, M.K.; Calvo, F.; Eerola, I.; Gerhard, D.S.; Guttmacher, A.; Guyer, M.; Hemsley, F.M.; Jennings, J.L.; Kerr, D.; Klatt, P.; Kolar, P.; Kusada, J.; Lane, D.P.; Laplace, F.; Youyong, L.; Nettekoven, G.; Ozenberger, B.; Peterson, J.; Rao, T.S.; Remacle, J.; Schafer, A.J.; Shibata, T.; Stratton, M.R.; Vockley, J.G.; Watanabe, K.; Yang, H.; Yuen, M.M.; Knoppers, B.M.; Bobrow, M.; Cambon-Thomsen, A.; Dressler, L.G.; Dyke, S.O.; Joly, Y.; Kato, K.; Kennedy, K.L.; Nicolás, P.; Parker, M.J.; Rial-Sebbag, E.; Romeo-Casabona, C.M.; Shaw, K.M.; Wallace, S.; Wiesner, G.L.; Zeps, N.; Lichter, P.; Biankin, A.V.; Chabannon, C.; Chin, L.; Clément, B.; de Alava, E.; Degos, F.; Ferguson, M.L.; Geary, P.; Hayes, D.N.; Hudson, T.J.; Johns, A.L.; Kasprzyk, A.; Nakagawa, H.; Penny, R.; Piris, M.A.; Sarin, R.; Scarpa, A.; Shibata, T.; van de Vijver, M.; Futreal, P.A.; Aburatani, H.; Bay-és, M.; Botwell, D.D.; Campbell, P.J.; Estivill, X.; Gerhard, D.S.; Grimmond, S.M.; Gut, I.; Hirst, M.; López-Otín, C.; Majumder, P.; Marra, M.; McPherson, J.D.; Nakagawa, H.; Ning, Z.; Puente, X.S.; Ruan, Y.; Shibata, T.; Stratton, M.R.; Stunnenberg, H.G.; Swerdlow, H.; Vel-culescu, V.E.; Wilson, R.K.; Xue, H.H.; Yang, L.; Spellman, P.T.; Bader, G.D.; Boutros, P.C.; Campbell, P.J.; Flicek, P.; Getz, G.; Guigó, R.; Guo, G.; Haussler, D.; Heath, S.; Hubbard, T.J.; Jiang, T.; Jones, S.M.; Li, Q.; López-Bigas, N.; Luo, R.; Muthuswamy, L.; Ouellette, B.F.; Pearson, J.V.; Puente, X.S.; Quesada, V.; Raphael, B.J.; Sander, C.; Shibata, T.; Speed, T.P.; Stein, L.D.; Stuart, J.M.; Teague, J.W.; Totoki, Y.; Tsunoda, T.; Valencia, A.; Wheeler, D.A.; Wu, H.; Zhao, S.; Zhou, G.; Stein, L.D.; Guigó, R.; Hubbard, T.J.; Joly, Y.; Jones, S.M.; Kasprzyk, A.; Lathrop, M.; López-Bigas, N.; Ouellette, B.F.; Spellman, P.T.; Teague, J.W.; Thomas, G.; Valencia, A.; Yoshida, T.; Kennedy, K.L.; Axton, M.; Dyke, S.O.; Futreal, P.A.; Gerhard, D.S.; Gunter, C.; Guyer, M.; Hudson, T.J.; McPherson, J.D.; Miller, L.J.; Ozenberger, B.; Shaw, K.M.; Kasprzyk, A.; Stein, L.D.; Zhang, J.; Haider, S.A.; Wang, J.; Yung, C.K.; Cros, A.; Liang, Y.; Gnaneshan, S.; Guberman, J.; Hsu, J.; Bobrow, M.; Chalmers, D.R.; Hasel, K.W.; Joly, Y.; Kaan, T.S.; Kennedy, K.L.; Knoppers, B.M.; Lowrance, W.W.; Masui, T.; Nicolás, P.; Rial-Sebbag, E.; Rodriguez, L.L.; Vergely, C.; Yoshida, T.; Grimmond, S.M.; Biankin, A.V.; Bowtell, D.D.; Cloonan, N.; deFazio, A.; Eshleman, J.R.; Etemadmoghadam, D.; Gardiner, B.B.; Kench, J.G.; Scarpa, A.; Sutherland, R.L.; Tempero, M.A.; Waddell, N.J.; Wilson, P.J.; McPherson, J.D.; Gallinger, S.; Tsao, M.S.; Shaw, P.A.; Petersen, G.M.; Mukhopadhyay, D.; Chin, L.; DePinho, R.A.; Thayer, S.; Muthuswamy, L.; Shazand, K.; Beck, T.; Sam, M.; Timms, L.; Ballin, V.; Lu, Y.; Ji, J.; Zhang, X.; Chen, F.; Hu, X.; Zhou, G.; Yang, Q.; Tian, G.; Zhang, L.; Xing, X.; Li, X.; Zhu, Z.; Yu, Y.; Yu, J.; Yang, H.; Lathrop, M.; Tost, J.; Brennan, P.; Holca-tova, I.; Zaridze, D.; Brazma, A.; Egevard, L.; Prokhortchouk, E.; Banks, R.E.; Uhlén, M.; Cambon-Thomsen, A.; Viksna, J.; Ponten, F.; Skryabin, K.; Stratton, M.R.; Futreal, P.A.; Birney, E.; Borg, A.; Børresen-Dale, A.L.; Caldas, C.; Foekens, J.A.; Martin, S.; Reis-Filho, J.S.; Richardson, A.L.; Sotiriou, C.; Stunnenberg, H.G.; Thoms, G.; van de Vijver, M.; van’t Veer, L.; Calvo, F.; Birnbaum, D.; Blanche, H.; Boucher, P.; Boyault, S.; Chabannon, C.; Gut, I.; Masson-Jacquemier, J.D.; Lathrop, M.; Pauporté, I.; Pivot, X.; Vincent-Salomon, A.; Tabone, E.; Theillet, C.; Thomas, G.; Tost, J.; Treilleux, I.; Calvo, F.; Bioulac-Sage, P.; Clément, B.; Decaens, T.; Degos, F.; Franco, D.; Gut, I.; Gut, M.; Heath, S.; Lathrop, M.; Samuel, D.; Thomas, G.; Zucman-Rossi, J.; Lichter, P.; Eils, R.; Brors, B.; Korbel, J.O.; Korshunov, A.; Landgraf, P.; Lehrach, H.; Pfister, S.; Radlwimmer, B.; Reifenberger, G.; Taylor, M.D.; von Kalle, C.; Majumder, P.P.; Sar-in, R.; Rao, T.S.; Bhan, M.K.; Scarpa, A.; Pederzoli, P.; Lawlor, R.A.; Delledonne, M.; Bardelli, A.; Biankin, A.V.; Grimmond, S.M.; Gress, T.; Klimstra, D.; Zamboni, G.; Shibata, T.; Nakamura, Y.; Nakagawa, H.; Kusada, J.; Tsunoda, T.; Miyano, S.; Aburatani, H.; Kato, K.; Fu-jimoto, A.; Yoshida, T.; Campo, E.; López-Otín, C.; Estivill, X.; Guigó, R.; de Sanjosé, S.; Piris, M.A.; Montserrat, E.; González-Díaz, M.; Puente, X.S.; Jares, P.; Valencia, A.; Himmelbauer, H.; Quesada, V.; Bea, S.; Stratton, M.R.; Futreal, P.A.; Campbell, P.J.; Vincent-Salomon, A.; Richardson, A.L.; Reis-Filho, J.S.; van de Vijver, M.; Thomas, G.; Masson-Jacquemier, J.D.; Aparicio, S.; Borg, A.; Børresen-Dale, A.L.; Caldas, C.; Foekens, J.A.; Stunnenberg, H.G.; van’t Veer, L.; Easton, D.F.; Spellman, P.T.; Martin, S.; Barker, A.D.; Chin, L.; Collins, F.S.; Compton, C.C.; Ferguson, M.L.; Gerhard, D.S.; Getz, G.; Gunter, C.; Guttmacher, A.; Guyer, M.; Hayes, D.N.; Lander, E.S.; Ozenberger, B.; Penny, R.; Peterson, J.; Sander, C.; Shaw, K.M.; Speed, T.P.; Spellman, P.T.; Vockley, J.G.; Wheeler, D.A.; Wilson, R.K.; Hudson, T.J.; Chin, L.; Knoppers, B.M.; Lander, E.S.; Lichter, P.; Stein, L.D.; Stratton, M.R.; Anderson, W.; Barker, A.D.; Bell, C.; Bobrow, M.; Burke, W.; Collins, F.S.; Compton, C.C.; DePinho, R.A.; Easton, D.F.; Futreal, P.A.; Gerhard, D.S.; Green, A.R.; Guyer, M.; Hamilton, S.R.; Hubbard, T.J.; Kallioniemi, O.P.; Kennedy, K.L.; Ley, T.J.; Liu, E.T.; Lu, Y.; Majumder, P.; Marra, M.; Ozen-berger, B.; Peterson, J.; Schafer, A.J.; Spellman, P.T.; Stunnenberg, H.G.; Wainwright, B.J.; Wilson, R.K.; Yang, H. The International Can-cer Genome Consortium. International network of cancer genome projects. Nature, 2010, 464, 993-998.
[http://dx.doi.org/10.1038/nature08987]
[3]
Martincorena, I.; Campbell, P.J. Somatic mutation in cancer and normal cells. Science, 2015, 349(6255), 1483-1489.
[http://dx.doi.org/10.1126/science.aab4082] [PMID: 26404825]
[4]
Martincorena, I.; Raine, K.M.; Gerstung, M.; Dawson, K.J.; Haase, K.; Van Loo, P.; Davies, H.; Stratton, M.R.; Campbell, P.J. Universal patterns of selection in cancer and somatic tissues. Cell, 2017, 171(5), 1029-1041.
[http://dx.doi.org/10.1016/j.cell.2017.09.042]
[5]
Nowell, P.C.J.S. The clonal evolution of tumor cell populations. Science, 1976, 194(4260), 23-28.
[http://dx.doi.org/10.1126/science.959840] [PMID: 959840]
[6]
Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; Davis, N.; Dicks, E.; Ewing, R.; Floyd, Y.; Gray, K.; Hall, S.; Hawes, R.; Hughes, J.; Kosmidou, V.; Menzies, A.; Mould, C.; Parker, A.; Stevens, C.; Watt, S.; Hooper, S.; Wilson, R.; Jayatilake, H.; Gusterson, B.A.; Cooper, C.; Shipley, J.; Hargrave, D.; Pritchard-Jones, K.; Maitland, N.; Chenevix-Trench, G.; Riggins, G.J.; Bigner, D.D.; Palmieri, G.; Cossu, A.; Flanagan, A.; Nicholson, A.; Ho, J.W.; Leung, S.Y.; Yuen, S.T.; Weber, B.L.; Seigler, H.F.; Darrow, T.L.; Paterson, H.; Marais, R.; Marshall, C.J.; Wooster, R.; Stratton, M.R.; Futreal, P.A. Mutations of the BRAF gene in human cancer. Nature, 2002, 417(6892), 949-954.
[http://dx.doi.org/10.1038/nature00766] [PMID: 12068308]
[7]
Bos, J.L. The ras gene family and human carcinogenesis. Mutat. Res., 1988, 195(3), 255-271.
[http://dx.doi.org/10.1016/0165-1110(88)90004-8] [PMID: 3283542]
[8]
Olivier, M.; Hollstein, M.; Hainaut, P. TP53 mutations in human cancers: Origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol., 2010, 2(1), a001008.
[http://dx.doi.org/10.1101/cshperspect.a001008] [PMID: 20182602]
[9]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[10]
Miller, M.L.; Reznik, E.; Gauthier, N.P.; Aksoy, B.A.; Korkut, A.; Gao, J.; Ciriello, G.; Schultz, N.; Sander, C. Pan-cancer analysis of mu-tation hotspots in protein domains. Cell Syst., 2015, 1(3), 197-209.
[http://dx.doi.org/10.1016/j.cels.2015.08.014] [PMID: 27135912]
[11]
Ryslik, G.A.; Cheng, Y.; Modis, Y.; Zhao, H. Leveraging protein quaternary structure to identify oncogenic driver mutations. BMC Bioinformatics, 2016, 17(1), 137.
[http://dx.doi.org/10.1186/s12859-016-0963-3] [PMID: 27001666]
[12]
Pham, V.V.H.; Liu, L.; Bracken, C.; Goodall, G.; Li, J.; Le, T.D. Computational methods for cancer driver discovery: A survey. Theranostics, 2021, 11(11), 5553-5568.
[http://dx.doi.org/10.7150/thno.52670] [PMID: 33859763]
[13]
Zhao, J.; Cheng, F.; Wang, Y.; Arteaga, C.L.; Zhao, Z. Systematic prioritization of druggable mutations in∼ 5000 genomes across 16 cancer types using a structural genomics-based approach. Mol. Cell. Proteomics, 2016, 15(2), 642-656.
[http://dx.doi.org/10.1074/mcp.M115.053199] [PMID: 26657081]
[14]
Gao, J.; Chang, M.T.; Johnsen, H.C.; Gao, S.P.; Sylvester, B.E.; Sumer, S.O.; Zhang, H.; Solit, D.B.; Taylor, B.S.; Schultz, N.; Sander, C. 3D clusters of somatic mutations in cancer reveal numerous rare mutations as functional targets. Genome Med., 2017, 9(1), 4.
[http://dx.doi.org/10.1186/s13073-016-0393-x] [PMID: 28115009]
[15]
Song, K.; Li, Q.; Gao, W.; Lu, S.; Shen, Q.; Liu, X.; Wu, Y.; Wang, B.; Lin, H.; Chen, G.; Zhang, J. AlloDriver: A method for the identifica-tion and analysis of cancer driver targets. Nucleic Acids Res., 2019, 47(W1), W315-W321.
[http://dx.doi.org/10.1093/nar/gkz350] [PMID: 31069394]
[16]
Tokheim, C.; Bhattacharya, R.; Niknafs, N.; Gygax, D.M.; Kim, R.; Ryan, M.; Masica, D.L.; Karchin, R. Exome-scale discovery of hotspot mutation regions in human cancer using 3D protein structure. Cancer Res., 2016, 76(13), 3719-3731.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3190] [PMID: 27197156]
[17]
Niu, B.; Scott, A.D.; Sengupta, S.; Bailey, M.H.; Batra, P.; Ning, J.; Wyczalkowski, M.A.; Liang, W-W.; Zhang, Q.; McLellan, M.D.; Sun, S.Q.; Tripathi, P.; Lou, C.; Ye, K.; Mashl, R.J.; Wallis, J.; Wendl, M.C.; Chen, F.; Ding, L. Protein-structure-guided discovery of functional mutations across 19 cancer types. Nat. Genet., 2016, 48(8), 827-837.
[http://dx.doi.org/10.1038/ng.3586] [PMID: 27294619]
[18]
Pandurangan, A.P.; Blundell, T.L. Prediction of impacts of mutations on protein structure and interactions: SDM, a statistical approach, and mCSM, using machine learning. Protein Sci., 2020, 29(1), 247-257.
[http://dx.doi.org/10.1002/pro.3774] [PMID: 31693276]
[19]
Tsai, C-J.; Nussinov, R. The free energy landscape in translational science: How can somatic mutations result in constitutive oncogenic activation? Phys. Chem. Chem. Phys., 2014, 16(14), 6332-6341.
[http://dx.doi.org/10.1039/c3cp54253j] [PMID: 24445437]
[20]
(a) Henzler-Wildman, K.; Kern, D. Dynamic personalities of proteins. Nature, 2007, 450(7172), 964-972.
[http://dx.doi.org/10.1038/nature06522] [PMID: 18075575]
(b) Mitternacht, S.; Berezovsky, I.N. Binding leverage as a molecular basis for allosteric regulation. PLOS Comput. Biol., 2011, 7(9), e1002148.
[http://dx.doi.org/10.1371/journal.pcbi.1002148] [PMID: 21935347]
(c) Kumar, S.; Clarke, D.; Gerstein, M.B. Leveraging protein dynamics to identify cancer mutational hotspots using 3D structures. Proc. Natl. Acad. Sci. USA, 2019, 116(38), 18962-18970.
[http://dx.doi.org/10.1073/pnas.1901156116] [PMID: 31462496]
[21]
Lawrence, M.S.; Stojanov, P.; Polak, P.; Kryukov, G.V.; Cibulskis, K.; Sivachenko, A.; Carter, S.L.; Stewart, C.; Mermel, C.H.; Roberts, S.A.; Kiezun, A.; Hammerman, P.S.; McKenna, A.; Drier, Y.; Zou, L.; Ramos, A.H.; Pugh, T.J.; Stransky, N.; Helman, E.; Kim, J.; Sougnez, C.; Ambrogio, L.; Nickerson, E.; Shefler, E.; Cortés, M.L.; Auclair, D.; Saksena, G.; Voet, D.; Noble, M.; DiCara, D.; Lin, P.; Lichtenstein, L.; Heiman, D.I.; Fennell, T.; Imielinski, M.; Hernandez, B.; Hodis, E.; Baca, S.; Dulak, A.M.; Lohr, J.; Landau, D.A.; Wu, C.J.; Melendez-Zajgla, J.; Hidalgo-Miranda, A.; Koren, A.; McCarroll, S.A.; Mora, J.; Crompton, B.; Onofrio, R.; Parkin, M.; Winckler, W.; Ardlie, K.; Gabriel, S.B.; Roberts, C.W.M.; Biegel, J.A.; Stegmaier, K.; Bass, A.J.; Garraway, L.A.; Meyerson, M.; Golub, T.R.; Gordenin, D.A.; Sunyaev, S.; Lander, E.S.; Getz, G. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature, 2013, 499(7457), 214-218.
[http://dx.doi.org/10.1038/nature12213] [PMID: 23770567]
[22]
Gonzalez-Perez, A.; Lopez-Bigas, N. Functional impact bias reveals cancer drivers. Nucleic Acids Res., 2012, 40(21), e169-e169.
[http://dx.doi.org/10.1093/nar/gks743] [PMID: 22904074]
[23]
Mularoni, L.; Sabarinathan, R.; Deu-Pons, J.; Gonzalez-Perez, A.; López-Bigas, N. OncodriveFML: A general framework to identify coding and non-coding regions with cancer driver mutations. Genome Biol., 2016, 17(1), 128.
[http://dx.doi.org/10.1186/s13059-016-0994-0] [PMID: 27311963]
[24]
Han, Y.; Yang, J.; Qian, X.; Cheng, W-C.; Liu, S-H.; Hua, X.; Zhou, L.; Yang, Y.; Wu, Q.; Liu, P.; Lu, Y. DriverML: A machine learning algorithm for identifying driver genes in cancer sequencing studies. Nucleic Acids Res., 2019, 47(8), e45-e45.
[http://dx.doi.org/10.1093/nar/gkz096] [PMID: 30773592]
[25]
Tamborero, D.; Gonzalez-Perez, A.; Lopez-Bigas, N. OncodriveCLUST: Exploiting the positional clustering of somatic mutations to identi-fy cancer genes. Bioinformatics, 2013, 29(18), 2238-2244.
[http://dx.doi.org/10.1093/bioinformatics/btt395] [PMID: 23884480]
[26]
Gonzalez-Perez, A.; Perez-Llamas, C.; Deu-Pons, J.; Tamborero, D.; Schroeder, M.P.; Jene-Sanz, A.; Santos, A.; Lopez-Bigas, N. IntOGen-mutations identifies cancer drivers across tumor types. Nat. Methods, 2013, 10(11), 1081-1082.
[http://dx.doi.org/10.1038/nmeth.2642] [PMID: 24037244]
[27]
Wendl, M.C.; Wallis, J.W.; Lin, L.; Kandoth, C.; Mardis, E.R.; Wilson, R.K.; Ding, L. PathScan: A tool for discerning mutational signifi-cance in groups of putative cancer genes. Bioinformatics, 2011, 27(12), 1595-1602.
[http://dx.doi.org/10.1093/bioinformatics/btr193] [PMID: 21498403]
[28]
Pham, V.V.H.; Liu, L.; Bracken, C.P.; Goodall, G.J.; Long, Q.; Li, J.; Le, T.D. CBNA: A control theory based method for identifying cod-ing and non-coding cancer drivers. PLOS Comput. Biol., 2019, 15(12), e1007538.
[http://dx.doi.org/10.1371/journal.pcbi.1007538] [PMID: 31790386]
[29]
Bashashati, A.; Haffari, G.; Ding, J.; Ha, G.; Lui, K.; Rosner, J.; Huntsman, D.G.; Caldas, C.; Aparicio, S.A.; Shah, S.P. DriverNet: Uncov-ering the impact of somatic driver mutations on transcriptional networks in cancer. Genome Biol., 2012, 13(12), R124.
[http://dx.doi.org/10.1186/gb-2012-13-12-r124] [PMID: 23383675]
[30]
Sakoparnig, T.; Fried, P.; Beerenwinkel, N. Identification of constrained cancer driver genes based on mutation timing. PLOS Comput. Biol., 2015, 11(1), e1004027.
[http://dx.doi.org/10.1371/journal.pcbi.1004027] [PMID: 25569148]
[31]
Paull, E.O.; Carlin, D.E.; Niepel, M.; Sorger, P.K.; Haussler, D.; Stuart, J.M. Discovering causal pathways linking genomic events to tran-scriptional states using Tied Diffusion Through Interacting Events (TieDIE). Bioinformatics, 2013, 29(21), 2757-2764.
[http://dx.doi.org/10.1093/bioinformatics/btt471] [PMID: 23986566]
[32]
Tian, L.; Li, Y.; Edmonson, M.N.; Zhou, X.; Newman, S.; McLeod, C.; Thrasher, A.; Liu, Y.; Tang, B.; Rusch, M.C.; Easton, J.; Ma, J.; Davis, E.; Trull, A.; Michael, J.R.; Szlachta, K.; Mullighan, C.; Baker, S.J.; Downing, J.R.; Ellison, D.W.; Zhang, J. CICERO: A versatile method for detecting complex and diverse driver fusions using cancer RNA sequencing data. Genome Biol., 2020, 21(1), 126.
[http://dx.doi.org/10.1186/s13059-020-02043-x] [PMID: 32466770]
[33]
Reimand, J.; Bader, G.D. Systematic analysis of somatic mutations in phosphorylation signaling predicts novel cancer drivers. Mol. Syst. Biol., 2013, 9(1), 637.
[http://dx.doi.org/10.1038/msb.2012.68] [PMID: 23340843]
[34]
Porta-Pardo, E.; Godzik, A. e-Driver: A novel method to identify protein regions driving cancer. Bioinformatics, 2014, 30(21), 3109-3114.
[http://dx.doi.org/10.1093/bioinformatics/btu499] [PMID: 25064568]
[35]
Gress, A.; Ramensky, V.; Büch, J.; Keller, A.; Kalinina, O.V. StructMAn: Annotation of single-nucleotide polymorphisms in the structural context. Nucleic Acids Res., 2016, 44(W1), W463-8.
[http://dx.doi.org/10.1093/nar/gkw364] [PMID: 27150811]
[36]
Ryslik, G.A.; Cheng, Y.; Cheung, K.H.; Bjornson, R.D.; Zelterman, D.; Modis, Y.; Zhao, H. A spatial simulation approach to account for protein structure when identifying non-random somatic mutations. BMC Bioinformatics, 2014, 15(1), 231.
[http://dx.doi.org/10.1186/1471-2105-15-231] [PMID: 24990767]
[37]
Meyer, M.J.; Lapcevic, R.; Romero, A.E.; Yoon, M.; Das, J.; Beltrán, J.F.; Mort, M.; Stenson, P.D.; Cooper, D.N.; Paccanaro, A.; Yu, H. mutation3D: Cancer gene prediction through atomic clustering of coding variants in the structural proteome. Hum. Mutat., 2016, 37(5), 447-456.
[http://dx.doi.org/10.1002/humu.22963] [PMID: 26841357]
[38]
Sayılgan, J.F.; Haliloğlu, T.; Gönen, M. Protein dynamics analysis identifies candidate cancer driver genes and mutations in TCGA data. Proteins, 2021, 89(6), 721-730.
[http://dx.doi.org/10.1002/prot.26054] [PMID: 33550612]
[39]
Hou, J.P.; Ma, J. DawnRank: Discovering personalized driver genes in cancer. Genome Med., 2014, 6(7), 56.
[http://dx.doi.org/10.1186/s13073-014-0056-8] [PMID: 25177370]
[40]
Guo, W-F.; Zhang, S-W.; Liu, L-L.; Liu, F.; Shi, Q-Q.; Zhang, L.; Tang, Y.; Zeng, T.; Chen, L. Discovering personalized driver mutation profiles of single samples in cancer by network control strategy. Bioinformatics, 2018, 34(11), 1893-1903.
[http://dx.doi.org/10.1093/bioinformatics/bty006] [PMID: 29329368]
[41]
Guo, W-F.; Zhang, S-W.; Zeng, T.; Li, Y.; Gao, J.; Chen, L. A novel network control model for identifying personalized driver genes in cancer. PLOS Comput. Biol., 2019, 15(11), e1007520.
[http://dx.doi.org/10.1371/journal.pcbi.1007520] [PMID: 31765387]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy