Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

A Therapeutic Journey of Pyridine-based Heterocyclic Compounds as Potent Anticancer Agents: A Review (From 2017 to 2021)

Author(s): Munira Alrooqi, Sikandar Khan*, Fahad A. Alhumaydhi, Saeed A. Asiri, Meshal Alshamrani, Mutaib M. Mashraqi, Ahmad Alzamami, Asma M. Alshahrani and Afaf A. Aldahish

Volume 22, Issue 15, 2022

Published on: 12 May, 2022

Page: [2775 - 2787] Pages: 13

DOI: 10.2174/1871520622666220324102849

Price: $65

Abstract

Pyridine derivatives are the most common and significant heterocyclic compounds, which show their fundamental characteristics to various pharmaceutical agents and natural products. Pyridine derivatives possess several pharmacological properties and a broad degree of structural diversity that is most valuable for exploring novel therapeutic agents. These compounds have an extensive range of biological activities such as antifungal, antibacterial, anticancer, anti-obesity, anti-inflammatory, antitubercular, antihypertensive, antineuropathic, antihistaminic, antiviral activities, and antiparasitic. The potent therapeutic properties of pyridine derivatives allow medicinal chemists to synthesize novel and effective chemotherapeutic agents. Consequently, the imperative objective of this comprehensive review is to summarize and investigate the literature regarding recent advancements in pyridine-based heterocycles to treat several kinds of cancer. Furthermore, the performances of pyridine derivatives were compared with some standard drugs, including etoposide, sorafenib, cisplatin, and triclosan, against different cancer cell lines. We hope this study will support the new thoughts to pursue the most active and less toxic rational designs.

Keywords: Pyridine, heterocycles, therapeutic agents, antibacterial, anticancer, cisplatin.

Graphical Abstract

[1]
Nural, Y.; Ozdemir, S.; Doluca, O.; Demir, B.; Yalcin, M.S.; Atabey, H.; Kanat, B.; Erat, S.; Sari, H.; Seferoglu, Z. Synthesis, biological properties, and acid dissociation constant of novel naphthoquinone-triazole hybrids. Bioorg. Chem., 2020, 105, 104441.
[http://dx.doi.org/10.1016/j.bioorg.2020.104441] [PMID: 33181409]
[2]
Gemili, M.; Nural, Y.; Keleş, E.; Aydıner, B.; Seferoğlu, N.; Ülger, M.; Şahin, E.; Erat, S.; Seferoğlu, Z. Novel highly functionalized 1,4-naphthoquinone 2-iminothiazole hybrids: Synthesis, photophysical properties, crystal structure, DFT studies, and An-ti(Myco)Bacterial/Antifungal activity. J. Mol. Struct., 2019, 1196, 536-546.
[http://dx.doi.org/10.1016/j.molstruc.2019.06.087]
[3]
Nural, Y.; Gemili, M.; Ulger, M.; Sari, H.; De Coen, L.M.; Sahin, E. Synthesis, antimicrobial activity and acid dissociation constants of methyl 5,5-diphenyl-1-(thiazol-2-yl)pyrrolidine-2-carboxylate derivatives. Bioorg. Med. Chem. Lett., 2018, 28(5), 942-946.
[http://dx.doi.org/10.1016/j.bmcl.2018.01.045] [PMID: 29433925]
[4]
Gemili, M.; Sari, H.; Ulger, M.; Sahin, E.; Nural, Y. Pt(II) and Ni(II) Complexes of octahydropyrrolo[3,4-c]pyrrole N-benzoylthiourea derivatives: Synthesis, characterization, physical parameters and biological activity. Inorg. Chim. Acta, 2017, 463, 88-96.
[http://dx.doi.org/10.1016/j.ica.2017.04.026]
[5]
Nural, Y.; Kilincarslan, R.; Dondas, H.A.; Cetinkaya, B.; Serin, M.S.; Grigg, R.; Ince, T.; Kilner, C. Synthesis of Ni(II), Pd(II) and Cu(II) metal complexes of novel highly functionalized aroylaminocarbo-N-thioyl pyrrolidines and their activity against fungi and yeast. Polyhedron, 2009, 28(14), 2847-2854.
[http://dx.doi.org/10.1016/j.poly.2009.06.028]
[6]
Amatori, S.; Mazzoni, L.; Alvarez-Suarez, J.M.; Giampieri, F.; Gasparrini, M.; Forbes-Hernandez, T.Y.; Afrin, S.; Errico Provenzano, A.; Persico, G.; Mezzetti, B.; Amici, A.; Fanelli, M.; Battino, M. Polyphenol-rich strawberry extract (PRSE) shows in vitro and in vivo biologi-cal activity against invasive breast cancer cells. Sci. Rep., 2016, 6(1), 30917.
[http://dx.doi.org/10.1038/srep30917] [PMID: 27498973]
[7]
Poynton, F.E.; Bright, S.A.; Blasco, S.; Williams, D.C.; Kelly, J.M.; Gunnlaugsson, T. The development of ruthenium(ii) polypyridyl com-plexes and conjugates for in vitro cellular and in vivo applications. Chem. Soc. Rev., 2017, 46(24), 7706-7756.
[http://dx.doi.org/10.1039/C7CS00680B] [PMID: 29177281]
[8]
O’Reilly, C.; Blasco, S.; Parekh, B.; Collins, H.; Cooke, G.; Gunnlaugsson, T.; Byrne, J.P. Ruthenium-centred Btp glycoclusters as inhibi-tors for: Pseudomonas aeruginosa biofilm formation. RSC Advances, 2021, 11(27), 16318-16325.
[http://dx.doi.org/10.1039/D0RA05107A]
[9]
Elmes, R.B.P.; Ryan, G.J.; Erby, M.L.; Frimannsson, D.O.; Kitchen, J.A.; Lawler, M.; Williams, D.C.; Quinn, S.J.; Gunnlaugsson, T. Syn-thesis, characterization, and biological profiling of Ruthenium(II)-Based 4-Nitro- and 4-Amino-1,8-naphthalimide conjugates. Inorg. Chem., 2020, 59(15), 10874-10893.
[http://dx.doi.org/10.1021/acs.inorgchem.0c01395] [PMID: 32672449]
[10]
Khan, E.; Khan, S.; Gul, Z.; Muhammad, M. Medicinal importance, coordination chemistry with selected metals (cu, ag, au) and chemo-sensing of thiourea derivatives. A review. Crit. Rev. Anal. Chem., 2021, 51(8), 812-834.
[http://dx.doi.org/10.1080/10408347.2020.1777523] [PMID: 32571090]
[11]
Han, Y.; Tian, Z.; Zhang, S.; Liu, X.; Li, J.; Li, Y.; Liu, Y.; Gao, M.; Liu, Z. Half-sandwich IridiumIIIN-heterocyclic carbene antitumor complexes and biological applications. J. Inorg. Biochem., 2018, 189, 163-171.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.09.009] [PMID: 30268969]
[12]
Patel, M.P.; Braden, M. Heterocyclic methacrylates for clinical applications: III. Water absorption characteristics. Biomaterials, 1991, 12(7), 653-657.
[http://dx.doi.org/10.1016/0142-9612(91)90112-N]
[13]
Oehninger, L.; Rubbiani, R.; Ott, I. N-Heterocyclic carbene metal complexes in medicinal chemistry. Dalton Trans., 2013, 42(10), 3269-3284.
[http://dx.doi.org/10.1039/C2DT32617E] [PMID: 23223752]
[14]
Havrylyuk, D.; Roman, O.; Lesyk, R. Synthetic approaches, structure activity relationship and biological applications for pharmacological-ly attractive pyrazole/pyrazoline-thiazolidine-based hybrids. Eur. J. Med. Chem., 2016, 113, 145-166.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.030] [PMID: 26922234]
[15]
Kotian, S.Y.; Mohan, C.D.; Merlo, A.A.; Rangappa, S.; Nayak, S.C.; Rai, K.M.L.; Rangappa, K.S. Small molecule based five-membered heterocycles: A view of liquid crystalline properties beyond the biological applications. J. Mol. Liq., 2020, 297, 111686.
[http://dx.doi.org/10.1016/j.molliq.2019.111686]
[16]
Jampilek, J. Heterocycles in medicinal chemistry. Molecules, 2019, 24(21), 3839.
[http://dx.doi.org/10.3390/molecules24213839] [PMID: 31731387]
[17]
Yaqoob, M.; Gul, S.; Zubair, N.F.; Iqbal, J.; Iqbal, M.A. Theoretical calculation of selenium N-heterocyclic carbene compounds through DFT studies: Synthesis, characterization and biological potential. J. Mol. Struct., 2020, 1204, 127462.
[http://dx.doi.org/10.1016/j.molstruc.2019.127462]
[18]
Riener, K.; Haslinger, S.; Raba, A.; Högerl, M.P.; Cokoja, M.; Herrmann, W.A.; Kühn, F.E. Chemistry of iron N-heterocyclic carbene com-plexes: Syntheses, structures, reactivities, and catalytic applications. Chem. Rev., 2014, 114(10), 5215-5272.
[http://dx.doi.org/10.1021/cr4006439] [PMID: 24655079]
[19]
Khan, S.; Chen, X.; Almahri, A.; Allehyani, E.S.; Alhumaydhi, F.A.; Ibrahim, M.M.; Ali, S. Recent developments in fluorescent and color-imetric chemosensors based on schiff bases for metallic cations detection: A review. J. Environ. Chem. Eng., 2021, 9(6), 106381.
[http://dx.doi.org/10.1016/j.jece.2021.106381]
[20]
Prachayasittikul, S.; Pingaew, R.; Worachartcheewan, A.; Sinthupoom, N.; Prachayasittikul, V.; Ruchirawat, S.; Prachayasittikul, V. Roles of pyridine and pyrimidine derivatives as privileged scaffolds in anticancer agents. Mini Rev. Med. Chem., 2017, 17(10), 869-901.
[http://dx.doi.org/10.2174/1389557516666160923125801] [PMID: 27670581]
[21]
Altaf, A.; Shahzad, A.; Gul, Z.; Badshah, A. A review on the medicinal importance of pyridine derivatives. J. Drug Des. Med. Chem, 2015, 1(1), 1-11.
[http://dx.doi.org/10.11648/j.jddmc.20150101.11]
[22]
Abele, E.; Abele, R.; Lukevics, E. Pyridine oximes: Synthesis, reactions, and biological activity. (Review) Chem. Heterocycl. Compd., 2003, 39(7), 825-865.
[http://dx.doi.org/10.1023/A:1026181918567]
[23]
Nural, Y.; Ozdemir, S.; Yalcin, M.S.; Demir, B.; Atabey, H.; Seferoglu, Z.; Ece, A. New bis- and tetrakis-1,2,3-triazole derivatives: Synthe-sis, DNA cleavage, molecular docking, antimicrobial, antioxidant activity and acid dissociation constants. Bioorg. Med. Chem. Lett., 2022, 55, 128453.
[http://dx.doi.org/10.1016/j.bmcl.2021.128453] [PMID: 34801684]
[24]
Nural, Y.; Ozdemir, S.; Yalcin, M.S.; Demir, B.; Atabey, H.; Ece, A.; Seferoglu, Z. Synthesis, biological evaluation, molecular docking, and acid dissociation constant of new bis-1,2,3-triazole compounds. ChemistrySelect, 2021, 6(28), 6994-7001.
[http://dx.doi.org/10.1002/slct.202101148]
[25]
Doğan, A.; Özdemir, S.; Yalçin, M.S.; Sari, H.; Nural, Y. Naphthoquinone-thiazole hybrids bearing adamantane: Synthesis, antimicrobial, DNA cleavage, antioxidant activity, acid dissociation constant, and drug-likeness. J. Res. Pharm., 2021, 25(3), 292-304.
[http://dx.doi.org/10.29228/jrp.20]
[26]
Ince, T.; Serttas, R.; Demir, B.; Atabey, H.; Seferoglu, N.; Erdogan, S.; Sahin, E.; Erat, S.; Nural, Y. Polysubstituted pyrrolidines linked to 1,2,3-triazoles: Synthesis, crystal structure, dft studies, acid dissociation constant, drug-likeness, and anti-proliferative activity. J. Mol. Struct., 2020, 1217, 128400.
[http://dx.doi.org/10.1016/j.molstruc.2020.128400]
[27]
Fantacuzzi, M.; Gallorini, M.; Gambacorta, N.; Ammazzalorso, A.; Aturki, Z.; Balaha, M.; Carradori, S.; Giampietro, L.; Maccallini, C.; Cataldi, A.; Nicolotti, O.; Amoroso, R.; De Filippis, B. Design, synthesis and biological evaluation of aromatase inhibitors based on sul-fonates and sulfonamides of resveratrol. Pharmaceuticals (Basel), 2021, 14(10), 984.
[http://dx.doi.org/10.3390/ph14100984] [PMID: 34681208]
[28]
Grande, R.; Carradori, S. Novel biologically active molecules, biomaterials, and nanoparticles for microbial biofilm control in human med-icine. Molecules, 2021, 26(9), 2749.
[http://dx.doi.org/10.3390/molecules26092749] [PMID: 34067036]
[29]
Angeli, A.; Berrino, E.; Carradori, S.; Supuran, C.T.; Cirri, M.; Carta, F.; Costantino, G. Amine- and amino acid-based compounds as car-bonic anhydrase activators. Molecules, 2021, 26(23), 7331.
[http://dx.doi.org/10.3390/molecules26237331] [PMID: 34885917]
[30]
Carradori, S.; Bizzarri, B.; D’Ascenzio, M.; De Monte, C.; Grande, R.; Rivanera, D.; Zicari, A.; Mari, E.; Sabatino, M.; Patsilinakos, A.; Ragno, R.; Secci, D. Synthesis, biological evaluation and quantitative structure-active relationships of 1,3-thiazolidin-4-one derivatives. A promising chemical scaffold endowed with high antifungal potency and low cytotoxicity. Eur. J. Med. Chem., 2017, 140, 274-292.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.026] [PMID: 28963991]
[31]
Kargar, H.; Kia, R.; Jamshidvand, A.; Fun, H.K. 6,6'-Dieth-oxy-2,2'-[4,5-dimethyl-o-phenyl-enebis(nitrilo-methyl-idyne)]diphenol-ethanol-water (1/1/1). Acta Crystallogr. Sect. E Struct. Rep. Online, 2009, 65(Pt 4), o776-o777.
[http://dx.doi.org/10.1107/S1600536809008903] [PMID: 21582502]
[32]
Pierini, M.; Carradori, S.; Menta, S.; Secci, D.; Cirilli, R. 3-(Phenyl-4-oxy)-5-phenyl-4,5-dihydro-(1H)-pyrazole: A fascinating molecular framework to study the enantioseparation ability of the amylose (3,5-dimethylphenylcarbamate) chiral stationary phase. Part II. Sol-vophobic effects in enantiorecognition process. J. Chromatogr. A, 2017, 1499, 140-148.
[http://dx.doi.org/10.1016/j.chroma.2017.04.001] [PMID: 28416216]
[33]
Carradori, S.; Secci, D.; Bizzarri, B.; Chimenti, P.; De Monte, C.; Guglielmi, P.; Campestre, C.; Rivanera, D.; Bordón, C.; Jones-Brando, L. Synthesis and biological evaluation of anti-Toxoplasma gondii activity of a novel scaffold of thiazolidinone derivatives. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 746-758.
[http://dx.doi.org/10.1080/14756366.2017.1316494] [PMID: 28537532]
[34]
Guglielmi, P.; Carradori, S.; Poli, G.; Secci, D.; Cirilli, R.; Rotondi, G.; Chimenti, P.; Petzer, A.; Petzer, J.P. Design, Synthesis, docking studies and monoamine oxidase inhibition of a small library of 1-acetyl- and 1-thiocarbamoyl-3,5-diphenyl-4,5-dihydro-(1h)-pyrazoles. Molecules, 2019, 24(3), E484.
[http://dx.doi.org/10.3390/molecules24030484] [PMID: 30700029]
[35]
Rotondi, G.; Guglielmi, P.; Carradori, S.; Secci, D.; De Monte, C.; De Filippis, B.; Maccallini, C.; Amoroso, R.; Cirilli, R.; Akdemir, A.; Angeli, A.; Supuran, C.T. Design, synthesis and biological activity of selective hCAs inhibitors based on 2-(benzylsulfinyl)benzoic acid scaffold. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1400-1413.
[http://dx.doi.org/10.1080/14756366.2019.1651315] [PMID: 31401897]
[36]
Guglielmi, P.; Secci, D.; Petzer, A.; Bagetta, D.; Chimenti, P.; Rotondi, G.; Ferrante, C.; Recinella, L.; Leone, S.; Alcaro, S.; Zengin, G.; Petzer, J.P.; Ortuso, F.; Carradori, S. Benzo[b]tiophen-3-ol derivatives as effective inhibitors of human monoamine oxidase: Design, syn-thesis, and biological activity. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1511-1525.
[http://dx.doi.org/10.1080/14756366.2019.1653864] [PMID: 31422706]
[37]
Florio, R.; Veschi, S.; di Giacomo, V.; Pagotto, S.; Carradori, S.; Verginelli, F.; Cirilli, R.; Casulli, A.; Grassadonia, A.; Tinari, N.; Cataldi, A.; Amoroso, R.; Cama, A.; De Lellis, L. The benzimidazole-based anthelmintic parbendazole: A repurposed drug candidate that synergiz-es with gemcitabine in pancreatic cancer. Cancers (Basel), 2019, 11(12), E2042.
[http://dx.doi.org/10.3390/cancers11122042] [PMID: 31861153]
[38]
Özdemir, Z.; Utku, S.; Mathew, B.; Carradori, S.; Orlando, G.; Di Simone, S.; Alagöz, M.A.; Özçelik, A.B.; Uysal, M.; Ferrante, C. Synthe-sis and biological evaluation of new 3(2H)-pyridazinone derivatives as non-toxic anti-proliferative compounds against human colon car-cinoma HCT116 cells. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1100-1109.
[http://dx.doi.org/10.1080/14756366.2020.1755670] [PMID: 32321320]
[39]
Alagöz, M.A.; Özdemir, Z.; Uysal, M.; Carradori, S.; Gallorini, M.; Ricci, A.; Zara, S.; Mathew, B. Synthesis, cytotoxicity and anti-proliferative activity against AGS cells of new 3(2H)-pyridazinone derivatives endowed with a piperazinyl linker. Pharmaceuticals (Basel), 2021, 14(3), 1-27.
[http://dx.doi.org/10.3390/ph14030183] [PMID: 33668893]
[40]
Karki, R.; Park, C.; Jun, K.Y.; Kadayat, T.M.; Lee, E.S.; Kwon, Y. Synthesis and biological activity of 2,4-di-p-phenolyl-6-2-furanyl-pyridine as a potent topoisomerase II poison. Eur. J. Med. Chem., 2015, 90, 360-378.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.045] [PMID: 25437622]
[41]
Haginoya, N.; Kobayashi, S.; Komoriya, S.; Yoshino, T.; Nagata, T.; Hirokawa, Y.; Nagahara, T. Design, synthesis, and biological activity of non-amidine factor Xa inhibitors containing pyridine N-oxide and 2-carbamoylthiazole units. Bioorg. Med. Chem., 2004, 12(21), 5579-5586.
[http://dx.doi.org/10.1016/j.bmc.2004.08.001] [PMID: 15465335]
[42]
Kennis, L.E.J.; Bischoff, F.P.; Mertens, C.J.; Love, C.J.; Van den Keybus, F.A.F.; Pieters, S.; Braeken, M.; Megens, A.A.H.P.; Leysen, J.E. New 2-substituted 1,2,3,4-tetrahydrobenzofuro[3,2-c]pyridine having highly active and potent central alpha 2-antagonistic activity as po-tential antidepressants. Bioorg. Med. Chem. Lett., 2000, 10(1), 71-74.
[http://dx.doi.org/10.1016/S0960-894X(99)00591-0] [PMID: 10636247]
[43]
Helal, M.H.; El-Awdan, S.A.; Salem, M.A.; Abd-elaziz, T.A.; Moahamed, Y.A.; El-Sherif, A.A.; Mohamed, G.A.M. Synthesis, biological evaluation and molecular modeling of novel series of pyridine derivatives as anticancer, anti-inflammatory and analgesic agents. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 135, 764-773.
[http://dx.doi.org/10.1016/j.saa.2014.06.145] [PMID: 25150427]
[44]
Mohamed, R.G.; Elantabli, F.M.; Helal, N.H.; El-Medani, S.M. New group 6 metal carbonyl complexes with 4,5-dimethyl-N,N-bis(pyridine-2-yl-methylene)benzene-1,2-diimine Schiff base: Synthesis, spectral, cyclic voltammetry and biological activity studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 141, 316-326.
[http://dx.doi.org/10.1016/j.saa.2015.01.054] [PMID: 25670089]
[45]
Larsen, S.D.; Zhang, Z.; DiPaolo, B.A.; Manninen, P.R.; Rohrer, D.C.; Hageman, M.J.; Hopkins, T.A.; Knechtel, M.L.; Oien, N.L.; Rush, B.D.; Schwende, F.J.; Stefanski, K.J.; Wieber, J.L.; Wilkinson, K.F.; Zamora, K.M.; Wathen, M.W.; Brideau, R.J. 7-Oxo-4,7-dihydrothieno[3,2-b]pyridine-6-carboxamides: Synthesis and biological activity of a new class of highly potent inhibitors of human cy-tomegalovirus DNA polymerase. Bioorg. Med. Chem. Lett., 2007, 17(14), 3840-3844.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.010] [PMID: 17513108]
[46]
Hranjec, M.; Lučić, B.; Ratkaj, I.; Pavelić, S.K.; Piantanida, I.; Pavelić, K.; Karminski-Zamola, G. Novel imidazo[4,5-b]pyridine and triaza-benzo[c]fluorene derivatives: Synthesis, antiproliferative activity and DNA binding studies. Eur. J. Med. Chem., 2011, 46(7), 2748-2758.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.062] [PMID: 21524829]
[47]
Rajanarendar, E.; Raju, S.; Reddy, M.N.; Krishna, S.R.; Kiran, L.H.; Narasimha Reddy, A.R.; Reddy, Y.N. Multi-component synthesis and in vitro and in vivo anticancer activity of novel arylmethylene bis-isoxazolo[4,5-b]pyridine-N-oxides. Eur. J. Med. Chem., 2012, 50, 274-279.
[http://dx.doi.org/10.1016/j.ejmech.2012.02.004] [PMID: 22377593]
[48]
Kamatchi, T.S.; Chitrapriya, N.; Lee, H.; Fronczek, C.F.; Fronczek, F.R.; Natarajan, K. Ruthenium(II)/(III) complexes of 4-hydroxy-pyridine-2,6-dicarboxylic acid with PPh3/AsPh3 as co-ligand: Impact of oxidation state and co-ligands on anticancer activity in vitro. Dalton Trans., 2012, 41(7), 2066-2077.
[http://dx.doi.org/10.1039/C1DT11273B] [PMID: 22183160]
[49]
Onnis, V.; Cocco, M.T.; Fadda, R.; Congiu, C. Synthesis and evaluation of anticancer activity of 2-arylamino-6-trifluoromethyl-3-(hydrazonocarbonyl)pyridines. Bioorg. Med. Chem., 2009, 17(17), 6158-6165.
[http://dx.doi.org/10.1016/j.bmc.2009.07.066] [PMID: 19679483]
[50]
Leal, B.; Afonso, I.F.; Rodrigues, C.R.; Abreu, P.A.; Garrett, R.; Pinheiro, L.C.; Azevedo, A.R.; Borges, J.C.; Vegi, P.F.; Santos, C.C.; da Silveira, F.C.; Cabral, L.M.; Frugulhetti, I.C.; Bernardino, A.M.; Santos, D.O.; Castro, H.C. Antibacterial profile against drug-resistant Staphylococcus epidermidis clinical strain and structure-activity relationship studies of 1H-pyrazolo[3,4-b]pyridine and thieno[2,3-b]pyridine derivatives. Bioorg. Med. Chem., 2008, 16(17), 8196-8204.
[http://dx.doi.org/10.1016/j.bmc.2008.07.035] [PMID: 18701299]
[51]
Alizadeh, S.R.; Ebrahimzadeh, M.A. Antiviral activities of pyridine fused and pyridine containing heterocycles, a review (from 2000 to 2020). Mini Rev. Med. Chem., 2021, 21(17), 2584-2611.
[http://dx.doi.org/10.2174/1389557521666210126143558]
[52]
Salem, M.S.; Sakr, S.I.; El-Senousy, W.M.; Madkour, H.M. Synthesis, antibacterial, and antiviral evaluation of new heterocycles contain-ing the pyridine moiety. Arch. Pharm. (Weinheim), 2013, 346(10), 766-773.
[http://dx.doi.org/10.1002/ardp.201300183] [PMID: 24105721]
[53]
Judge, V.; Narasimhan, B.; Ahuja, M.; Sriram, D.; Yogeeswari, P.; De Clercq, E.; Pannecouque, C.; Balzarini, J. Synthesis, antimycobacte-rial, antiviral, antimicrobial activities, and QSAR studies of isonicotinic acid-1-(Substituted Phenyl)-Ethylidene/Cycloheptylidene hydra-zides. Med. Chem. Res., 2011, 21(8), 1935-1952.
[http://dx.doi.org/10.1007/s00044-011-9705-2]
[54]
Patel, N.B.; Agravat, S.N.; Shaikh, F.M. Synthesis and antimicrobial activity of new pyridine derivatives-I. Med. Chem. Res., 2011, 20(7), 1033-1041.
[http://dx.doi.org/10.1007/s00044-010-9440-0]
[55]
Balzarini, J.; Keyaerts, E.; Vijgen, L.; Vandermeer, F.; Stevens, M.; De Clercq, E.; Egberink, H.; Van Ranst, M. Pyridine N-oxide deriva-tives are inhibitory to the human SARS and feline infectious peritonitis coronavirus in cell culture. J. Antimicrob. Chemother., 2006, 57(3), 472-481.
[http://dx.doi.org/10.1093/jac/dki481] [PMID: 16387746]
[56]
El-Naggar, M.; Almahli, H.; Ibrahim, H.S.; Eldehna, W.M.; Abdel-Aziz, H.A. Pyridine-ureas as potential anticancer agents: Synthesis and in vitro biological evaluation. Mol., 2018, 23(6), 1459.
[http://dx.doi.org/10.3390/molecules23061459]
[57]
Murthy, I.S.; Sreenivasulu, R.; Alluraiah, G.; Ramesh Raju, R. Design, synthesis, and anticancer activity of 1,2,3-triazole linked 1,2-isoxazole-imidazo[4,5-b]pyridine derivatives. Russ. J. Gen. Chem., 2019, 89(8), 1718-1723.
[http://dx.doi.org/10.1134/S1070363219080279]
[58]
Androutsopoulos, V.P.; Spandidos, D.A. Anticancer pyridines induce G2/M arrest and apoptosis via p53 and JNK upregulation in liver and breast cancer cells. Oncol. Rep., 2018, 39(2), 519-524.
[http://dx.doi.org/10.3892/or.2017.6116] [PMID: 29207138]
[59]
Metwally, N.H.; Deeb, E.A. Synthesis, anticancer assessment on human breast, liver and colon carcinoma cell lines and molecular model-ing study using novel pyrazolo[4,3-c]pyridine derivatives. Bioorg. Chem., 2018, 77, 203-214.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.032] [PMID: 29367077]
[60]
Murugavel, S.; Ravikumar, C.; Jaabil, G.; Alagusundaram, P. Synthesis, computational quantum chemical study, in silico ADMET and molecular docking analysis, in vitro biological evaluation of a novel sulfur heterocyclic thiophene derivative containing 1,2,3-triazole and pyridine moieties as a potential human topoisomerase IIα inhibiting anticancer agent. Comput. Biol. Chem., 2019, 79, 73-82.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.01.013] [PMID: 30731361]
[61]
Gomha, S.M.; Muhammad, Z.A.; Abdel-aziz, M.R.; Abdel-aziz, H.M.; Gaber, H.M.; Elaasser, M.M. One-pot synthesis of new thiadiazol-yl-pyridines as anticancer and antioxidant agents. J. Heterocycl. Chem., 2018, 55(2), 530-536.
[http://dx.doi.org/10.1002/jhet.3088]
[62]
Shringare, S.N.; Chavan, H.V.; Bhale, P.S.; Dongare, S.B.; Mule, Y.B.; Patil, S.B.; Bandgar, B.P. Synthesis and pharmacological evaluation of combretastatin-A4 analogs of pyrazoline and pyridine derivatives as anticancer, anti-inflammatory and antioxidant agents. Med. Chem. Res., 2018, 27(4), 1226-1237.
[http://dx.doi.org/10.1007/s00044-018-2142-8]
[63]
Das, R.; Chevret, E.; Desplat, V.; Rubio, S.; Mergny, J-L.; Guillon, J. Design, synthesis and biological evaluation of new substituted diquinolinyl-pyridine ligands as anticancer agents by targeting G-quadruplex. Molecules, 2017, 23(1), 81.
[http://dx.doi.org/10.3390/molecules23010081]
[64]
Şenkardeş, S.; Türe, A.; Ekrek, S.; Durak, A.T.; Abbak, M.; Çevik, Ö.; Kaşkatepe, B.; Küçükgüzel, İ.; Güniz Küçükgüzel, Ş. Novel 2,6-disubstituted pyridine hydrazones: Synthesis, anticancer activity, docking studies and effects on caspase-3-mediated apoptosis. J. Mol. Struct., 2021, 1223, 128962.
[http://dx.doi.org/10.1016/j.molstruc.2020.128962]
[65]
Verma, R.; Bairy, I.; Tiwari, M.; Bhat, G.V.; Shenoy, G.G. In silico studies, synthesis and anticancer activity of novel diphenyl ether-based pyridine derivatives. Mol. Divers., 2019, 23(3), 541-554.
[http://dx.doi.org/10.1007/s11030-018-9889-1] [PMID: 30430400]
[66]
Arafa, W.A.A.; Hussein, M.F. Design, sonosynthesis, quantum-chemical calculations, and evaluation of new Mono- and Bis-pyridine dicarbonitriles as antiproliferative agents. Chin. J. Chem., 2020, 38(5), 501-508.
[http://dx.doi.org/10.1002/cjoc.201900494]
[67]
Chougala, B.M.; Samundeeswari, S.; Holiyachi, M.; Naik, N.S.; Shastri, L.A.; Dodamani, S.; Jalalpure, S.; Dixit, S.R.; Joshi, S.D.; Sunagar, V.A. Microwave synthesis of coumarinyl substituted pyridine derivatives as potent anticancer agents and molecular docking studies. ChemistrySelect, 2017, 2(18), 5234-5242.
[http://dx.doi.org/10.1002/slct.201700358]
[68]
Vinayak, A.; Sudha, M.; Lalita, K.S. Design, synthesis and characterization of novel amine derivatives of 5-[5-(Chloromethyl)-1, 3, 4-Oxadiazol-2-Yl]- 2-(4-Fluorophenyl)-Pyridine as a new class of anticancer agents. Dhaka Univ. J. Pharm. Sci., 2017, 16(1), 11-19.
[http://dx.doi.org/10.3329/dujps.v16i1.33377]
[69]
Ravula, S.; Bobbala, R.R.; Kolli, B. Synthesis of Novel Isoxazole Functionalized Pyrazolo[3,4-b]Pyridine derivatives; their anticancer activity. J. Heterocycl. Chem., 2020, 57(6), 2535-2538.
[http://dx.doi.org/10.1002/jhet.3968]
[70]
Marijan, S.; Markotić, A.; Mastelić, A.; Režić-Mužinić, N.; Pilkington, L. I.; Reynisson, J.; Čulić, V. Č. Glycosphingolipid expression at breast cancer stem cells after novel Thieno[2,3-b]pyridine anticancer compound treatment. Sci. Rep., 2020, 10(1), 1-12.
[http://dx.doi.org/10.1038/s41598-020-68516-y]
[71]
Santhosh Kumar, G.; Poornachandra, Y.; Kumar Gunda, S.; Ratnakar Reddy, K.; Mohmed, J.; Shaik, K.; Ganesh Kumar, C.; Narsaiah, B. Synthesis of novel hetero ring fused pyridine derivatives; their anticancer activity, CoMFA and CoMSIA studies. Bioorg. Med. Chem. Lett., 2018, 28(13), 2328-2337.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.031] [PMID: 29798826]
[72]
Li, X.; Li, S.; Lu, G.; Wang, D.; Liu, K.; Qian, X.; Xue, W.; Meng, F. Design, synthesis and biological evaluation of novel (E)-N-Phenyl-4-(Pyridine-Acylhydrazone) benzamide derivatives as potential antitumor agents for the treatment of Multiple Myeloma (MM). Bioorg. Chem., 2020, 103, 104189.
[http://dx.doi.org/10.1016/j.bioorg.2020.104189]
[73]
Wang, R.; Chen, Y.; Yang, B.; Yu, S.; Zhao, X.; Zhang, C.; Hao, C.; Zhao, D.; Cheng, M. Design, synthesis, biological evaluation and mo-lecular modeling of novel 1H-Pyrrolo[2,3-b] pyridine derivatives as potential anti-tumor agents. Bioorg. Chem., 2020, 94, 103474.
[http://dx.doi.org/10.1016/j.bioorg.2019.103474]
[74]
Kuthyala, S.; Nagaraja, G.K.; Sheik, S.; Hanumanthappa, M.; Kumar, S. Synthesis of imidazo [1, 2-a]Pyridine-Chalcones as potent inhibi-tors against A549 cell line and their crystal studies. J. Mol. Struct., 2019, 1177, 381-390.
[http://dx.doi.org/10.1016/j.molstruc.2018.09.087]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy