Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Nanostructured Lipid Carriers for the Delivery of Natural Bioactive Compounds

Author(s): Nur Amira Mohd. Shamsuddin and Mohd. Hanif Zulfakar*

Volume 20, Issue 2, 2023

Published on: 10 June, 2022

Page: [127 - 143] Pages: 17

DOI: 10.2174/1567201819666220324094234

Price: $65

Abstract

Natural products contain bioactive compounds that are produced naturally via synthetic or semisynthetic processes. These bioactive compounds play significant biological roles, especially for growth as well as in defense mechanisms against pathogens. Bioactive compounds in natural products have been extensively studied in recent decades for their pharmacological activities, such as anticancer, wound healing, anti-microbial, anti-inflammatory, and anti-oxidative properties. However, their pharmaceutical significance has always been hindered by their low bioavailability and instability with variations in pH, temperature, and exposure to light. Nanotechnology paves the way for the development of drug delivery systems by enhancing therapeutic efficacy. Nanostructured lipid carriers, a lipidbased drug delivery system, are recently being studied to improve the biocompatibility, biodegradability, bioavailability, solubility, permeability, and shelf life of bioactive compounds in the pharmaceutical industry. The ideal component and preparation method for bioactive compounds in nanostructured lipid carrier development is necessary for their physicochemical properties and therapeutic efficiency. Therefore, this review seeks to highlight recent developments, preparation, and application of nanostructured lipid carriers as carriers for natural bioactive compounds in improving their therapeutic potential in drug delivery systems.

Keywords: Bioactive compounds, nanostructured lipid carriers, development, preparation, physicochemical properties, therapeutic potential.

Graphical Abstract

[1]
Xie, T.; Song, S.; Li, S.; Ouyang, L.; Xia, L.; Huang, J. Review of natural product databases. Cell Prolif., 2015, 48(4), 398-404.
[http://dx.doi.org/10.1111/cpr.12190] [PMID: 26009974]
[2]
Gil, M.I.; Amodio, M.L.; Colelli, G. CA/MA on Bioactive Compounds. In: Controlled and Modified Atmospheres for Fresh and Fresh-Cut Produce; Gil, M.; Beaudry, R., Eds.; , 2020.
[3]
Galanakis, C.M. Nutraceutical and functional food components: Effects of innovative processing techniques; Academic Press, 2017.
[4]
Shukla, D.; Rawal, R.; Jain, N. A brief review on plant-derived natural compounds as an anti-cancer agents. Int. J. Herb. Med., 2018, 6(5), 28-36.
[5]
Georgescu, M.; Marinas, O.; Popa, M.; Stan, T.; Lazar, V.; Bertesteanu, S.V.; Chifiriuc, M.C. Natural compounds for wound healingWorldwide Wound Healing - Innovation in Natural and Conventional Methods; Fonseca, C., Ed.; , 2016.
[http://dx.doi.org/10.5772/65652]
[6]
Kumar, P.; Sharma, G.; Kumar, R.; Singh, B.; Malik, R.; Katare, O.P.; Raza, K. Promises of a biocompatible nanocarrier in improved brain delivery of quercetin: Biochemical, pharmacokinetic and biodistribution evidences. Int. J. Pharm., 2016, 515(1-2), 307-314.
[http://dx.doi.org/10.1016/j.ijpharm.2016.10.024] [PMID: 27756627]
[7]
Li, C.; Zhang, J.; Zu, Y-J.; Nie, S-F.; Cao, J.; Wang, Q.; Nie, S-P.; Deng, Z-Y.; Xie, M-Y.; Wang, S. Biocompatible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals. Chin. J. Nat. Med., 2015, 13(9), 641-652.
[http://dx.doi.org/10.1016/S1875-5364(15)30061-3] [PMID: 26412423]
[8]
Trapani, G.; Denora, N.; Trapani, A.; Laquintana, V. Recent advances in ligand targeted therapy. J. Drug Target., 2012, 20(1), 1-22.
[http://dx.doi.org/10.3109/1061186X.2011.611518] [PMID: 21942529]
[9]
Borges, A.; Freitas, V.; Mateus, N.; Fernandes, I.; Oliveira, J. Solid lipid nanoparticles as carriers of natural phenolic compounds. Antioxidants, 2020, 9(10), 998.
[http://dx.doi.org/10.3390/antiox9100998] [PMID: 33076501]
[10]
da Silva Santos, V.; Badan Ribeiro, A.P.; Andrade Santana, M.H. Solid lipid nanoparticles as carriers for lipophilic compounds for applications in foods. Int. Food Res. J., 2019, 122, 610-626.
[http://dx.doi.org/10.1016/j.foodres.2019.01.032] [PMID: 31229120]
[11]
Haider, M.; Abdin, S.M.; Kamal, L.; Orive, G. Nanostructured lipid carriers for delivery of chemotherapeutics: A review. Pharmaceutics, 2020, 12(3), 288.
[http://dx.doi.org/10.3390/pharmaceutics12030288] [PMID: 32210127]
[12]
Wissing, S.A.; Kayser, O.; Müller, R.H. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev., 2004, 56(9), 1257-1272.
[http://dx.doi.org/10.1016/j.addr.2003.12.002] [PMID: 15109768]
[13]
Müller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev., 2002, 54(Suppl. 1), S131-S155.
[14]
Esposito, E.; Ravani, L.; Mariani, P.; Huang, N.; Boldrini, P.; Drechsler, M.; Valacchi, G.; Cortesi, R.; Puglia, C. Effect of nanostructured lipid vehicles on percutaneous absorption of curcumin. Eur. J. Pharm. Biopharm., 2014, 86(2), 121-132.
[15]
Wang, S.; Su, R.; Nie, S.; Sun, M.; Zhang, J.; Wu, D.; Moustaid-Moussa, N. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J. Nutr. Biochem., 2014, 25(4), 363-376.
[http://dx.doi.org/10.1016/j.jnutbio.2013.10.002] [PMID: 24406273]
[16]
Kharat, M.; McClements, D.J. Fabrication and characterization of nanostructured lipid carriers (NLC) using a plant-based emulsifier: Quillaja saponin. Food Res. Int., 2019, 126, 108601.
[http://dx.doi.org/10.1016/j.foodres.2019.108601] [PMID: 31732055]
[17]
Cortesi, R.; Valacchi, G.; Muresan, X.M.; Drechsler, M.; Contado, C.; Esposito, E.; Grandini, A.; Guerrini, A.; Forlani, G.; Sacchetti, G. Nanostructured lipid carriers (NLC) for the delivery of natural molecules with antimicrobial activity: production, characterisation and in vitro studies. J. Microencapsul., 2017, 34(1), 63-72.
[http://dx.doi.org/10.1080/02652048.2017.1284276] [PMID: 28097914]
[18]
Subramaniam, B.; Siddik, Z.H.; Nagoor, N.H. Optimization of nanostructured lipid carriers: Understanding the types, designs, and parameters in the process of formulations. J. Nanopart. Res., 2020, 22(6), 1-29.
[http://dx.doi.org/10.1007/s11051-020-04848-0]
[19]
Beloqui, A.; Solinís, M.Á.; Rodríguez-Gascón, A.; Almeida, A.J.; Préat, V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine, 2016, 12(1), 143-161.
[http://dx.doi.org/10.1016/j.nano.2015.09.004] [PMID: 26410277]
[20]
Shrestha, H.; Bala, R.; Arora, S. Lipid-based drug delivery systems. J. Pharm., 2014, 2014, 801820.
[http://dx.doi.org/10.1155/2014/801820]
[21]
H., Muller R.; Shegokar, R.; M. Keck, C. 20 years of lipid nanoparticles (SLN & NLC): Present state of development & industrial applications. Curr. Drug Discov. Technol., 2011, 8(3), 207-227.
[http://dx.doi.org/10.2174/157016311796799062] [PMID: 21291409]
[22]
Elmowafy, M.; Samy, A.; Raslan, M.A.; Salama, A.; Said, R.A.; Abdelaziz, A.E.; El-Eraky, W.; El Awdan, S.; Viitala, T. Enhancement of bioavailability and pharmacodynamic effects of thymoquinone via nanostructured lipid carrier (NLC) formulation. AAPS PharmSciTech, 2016, 17(3), 663-672.
[http://dx.doi.org/10.1208/s12249-015-0391-0] [PMID: 26304932]
[23]
Yang, G.; Wu, F.; Chen, M.; Jin, J.; Wang, R.; Yuan, Y. Formulation design, characterization, and in vitro and in vivo evaluation of nanostructured lipid carriers containing a bile salt for oral delivery of gypenosides. Int. J. Nanomedicine, 2019, 14, 2267-2280.
[http://dx.doi.org/10.2147/IJN.S194934] [PMID: 31015758]
[24]
Kim, M-H.; Jeon, Y-E.; Kang, S.; Lee, J-Y.; Lee, K.W.; Kim, K-T.; Kim, D-D. Lipid nanoparticles for enhancing the physicochemical stability and topical skin delivery of orobol. Pharmaceutics, 2020, 12(9), 845.
[http://dx.doi.org/10.3390/pharmaceutics12090845] [PMID: 32899309]
[25]
Saporito, F.; Sandri, G.; Bonferoni, M.C.; Rossi, S.; Boselli, C.; Icaro Cornaglia, A.; Mannucci, B.; Grisoli, P.; Vigani, B.; Ferrari, F. Essential oil-loaded lipid nanoparticles for wound healing. Int. J. Nanomedicine, 2017, 13, 175-186.
[http://dx.doi.org/10.2147/IJN.S152529] [PMID: 29343956]
[26]
Alexander, H.R.; Syed Alwi, S.S.; Yazan, L.S.; Zakarial Ansar, F.H.; Ong, Y.S. Migration and proliferation effects of thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) and thymoquinone (TQ) on in vitro wound healing models. Evid. Based Complement. Alternat. Med., 2019, 2019, 9725738.
[http://dx.doi.org/10.1155/2019/9725738] [PMID: 31915456]
[27]
Müller, R.H.; Alexiev, U.; Sinambela, P.; Keck, C.M. Nanostructured lipid carriers (NLC): The second generation of solid lipid nanoparticles.Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement; Nanocarriers; Dragicevic, N; Maibach, H.I., Ed.; Springer: Berlin, Heidelberg, 2016, pp. 161-185.
[http://dx.doi.org/10.1007/978-3-662-47862-2_11]
[28]
Chaiyana, W.; Anuchapreeda, S.; Somwongin, S.; Marsup, P.; Lee, K-H.; Lin, W-C.; Lue, S-C. Dermal delivery enhancement of natural anti-ageing compounds from Ocimum Sanctum Linn. extract by nanostructured lipid carriers. Pharmaceutics, 2020, 12(4), 4.
[http://dx.doi.org/10.3390/pharmaceutics12040309] [PMID: 32235376]
[29]
Ahmed, O.A.A.; Fahmy, U.A.; Bakhaidar, R.; El-Moselhy, M.A.; Alfaleh, M.A.; Ahmed, A.F.; Hammad, A.S.A.; Aldawsari, H.; Alhakamy, N.A. Pumpkin oil-based nanostructured lipid carrier system for antiulcer effect in NSAID-induced gastric ulcer model in rats. Int. J. Nanomedicine, 2020, 15, 2529-2539.
[http://dx.doi.org/10.2147/IJN.S247252] [PMID: 32346290]
[30]
Vieira, R.; Severino, P.; Nalone, L.A.; Souto, S.B.; Silva, A.M.; Lucarini, M.; Durazzo, A.; Santini, A.; Souto, E.B. Sucupira oil-loaded nanostructured lipid carriers (NLC): Lipid screening, factorial design, release profile, and cytotoxicity. Molecules, 2020, 25(3), 3.
[http://dx.doi.org/10.3390/molecules25030685] [PMID: 32041134]
[31]
Salunkhe, S.S.; Bhatia, N.M.; Pokharkar, V.B.; Thorat, J.D.; Bhatia, M.S. Topical delivery of idebenone using nanostructured lipid carriers: Evaluations of sun-protection and anti-oxidant effects. J. Pharm. Investig., 2013, 43(4), 4.
[http://dx.doi.org/10.1007/s40005-013-0079-y]
[32]
Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm., 2009, 366(1-2), 170-184.
[http://dx.doi.org/10.1016/j.ijpharm.2008.10.003] [PMID: 18992314]
[33]
Bose, S.; Michniak-Kohn, B. Preparation and characterization of lipid based nanosystems for topical delivery of quercetin. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci., 2013, 48(3), 442-452.
[http://dx.doi.org/10.1016/j.ejps.2012.12.005] [PMID: 23246734]
[34]
Teeranachaideekul, V.; Boonme, P.; Souto, E.B.; Müller, R.H.; Junyaprasert, V.B. Influence of oil content on physicochemical properties and skin distribution of Nile red-loaded NLC. J. Control. Release, 2008, 128(2), 134-141.
[http://dx.doi.org/10.1016/j.jconrel.2008.02.011] [PMID: 18423768]
[35]
Montenegro, L.; Parenti, C.; Turnaturi, R.; Pasquinucci, L. Resveratrol-loaded lipid nanocarriers: Correlation between in vitro occlusion factor and in vivo skin hydrating effect. Pharmaceutics, 2017, 9(4), 4.
[http://dx.doi.org/10.3390/pharmaceutics9040058] [PMID: 29232856]
[36]
Joshi, M.; Patravale, V. Nanostructured lipid carrier (NLC) based gel of celecoxib. Int. J. Pharm., 2008, 346(1-2), 124-132.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.060] [PMID: 17651933]
[37]
Mehnert, W.; Mäder, K. Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Deliv. Rev., 2012, 64, 83-101.
[http://dx.doi.org/10.1016/j.addr.2012.09.021] [PMID: 11311991]
[38]
Yalavarthi, P.R.; Chowdary, H.; Raju, P.; Rao, B.; Cr, S. Insights of microemulsions-A thermodynamic comprehension. Jordan J. Pharm. Sci., 2017, 10(1), 23-40.
[39]
Kim, M-H.; Kim, K-T.; Sohn, S-Y.; Lee, J-Y.; Lee, C.H.; Yang, H.; Lee, B.K.; Lee, K.W.; Kim, D-D. Formulation and evaluation of nanostructured lipid carriers (NLCs) of 20(S)-protopanaxadiol (PPD) by box-behnken design. Int. J. Nanomedicine, 2019, 14, 8509-8520.
[http://dx.doi.org/10.2147/IJN.S215835] [PMID: 31749618]
[40]
Mitrea, E.; Lacatusu, I.; Badea, N.; Ott, C.; Oprea, O.; Meghea, A. New approach to prepare Willow Bark extract-lipid based nanosystems with enhanced antioxidant activity. J. Nanosci. Nanotechnol., 2015, 15(6), 4080-4089.
[http://dx.doi.org/10.1166/jnn.2015.9162] [PMID: 26369015]
[41]
Gordillo-Galeano, A.; Mora-Huertas, C.E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur. J. Pharm. Biopharm., 2018, 133, 285-308.
[http://dx.doi.org/10.1016/j.ejpb.2018.10.017] [PMID: 30463794]
[42]
Leong, T.S.H.; Wooster, T.J.; Kentish, S.E.; Ashokkumar, M. Minimising oil droplet size using ultrasonic emulsification. Ultrason. Sonochem., 2009, 16(6), 721-727.
[http://dx.doi.org/10.1016/j.ultsonch.2009.02.008] [PMID: 19321375]
[43]
Puglia, C.; Frasca, G.; Musumeci, T.; Rizza, L.; Puglisi, G.; Bonina, F.; Chiechio, S. Curcumin loaded NLC induces histone hypoacetylation in the CNS after intraperitoneal administration in mice. Eur. J. Pharm. Biopharm., 2012, 81(2), 288-293.
[PMID: 22504443]
[44]
Ahmad, A.; Abuzinadah, M.F.; Alkreathy, H.M.; Banaganapalli, B.; Mujeeb, M. Ursolic acid rich Ocimum sanctum L leaf extract loaded nanostructured lipid carriers ameliorate adjuvant induced arthritis in rats by inhibition of COX-1, COX-2, TNF-α and IL-1: Pharmacological and docking studies. PLoS One, 2018, 13(3), e0193451.
[http://dx.doi.org/10.1371/journal.pone.0193451] [PMID: 29558494]
[45]
Mittal, P.; Vrdhan, H.; Ajmal, G.; Bonde, G.; Kapoor, R.; Mishra, B. Formulation and characterization of genistein-loaded nanostructured lipid carriers: Pharmacokinetic, biodistribution and in vitro cytotoxicity studies. Curr. Drug Deliv., 2019, 16(3), 215-225.
[http://dx.doi.org/10.2174/1567201816666181120170137] [PMID: 30465502]
[46]
Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure preparation and application. Adv. Pharm. Bull., 2015, 5(3), 305-313.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[47]
Mokarizadeh, M.; Kafil, H.S.; Ghanbarzadeh, S.; Alizadeh, A.; Hamishehkar, H. Improvement of citral antimicrobial activity by incorporation into nanostructured lipid carriers: A potential application in food stuffs as a natural preservative. Res. Pharm. Sci., 2017, 12(5), 409-415.
[http://dx.doi.org/10.4103/1735-5362.213986] [PMID: 28974979]
[48]
Huguet-Casquero, A.; Moreno-Sastre, M.; López-Méndez, T.B.; Gainza, E.; Pedraz, J.L. Encapsulation of oleuropein in nanostructured lipid carriers: Biocompatibility and antioxidant efficacy in lung epithelial cells. Pharmaceutics, 2020, 12(5), E429.
[http://dx.doi.org/10.3390/pharmaceutics12050429] [PMID: 32384817]
[49]
Nordin, N.; Yeap, S.K.; Zamberi, N.R.; Abu, N.; Mohamad, N.E.; Rahman, H.S.; How, C.W.; Masarudin, M.J.; Abdullah, R.; Alitheen, N.B. Characterization and toxicity of citral incorporated with nanostructured lipid carrier. PeerJ, 2018, 6, e3916.
[http://dx.doi.org/10.7717/peerj.3916] [PMID: 29312812]
[50]
Rahman, H.S.; Rasedee, A.; How, C.W.; Abdul, A.B.; Zeenathul, N.A.; Othman, H.H.; Saeed, M.I.; Yeap, S.K. Zerumbone-loaded nanostructured lipid carriers: Preparation, characterization, and antileukemic effect. Int. J. Nanomedicine, 2013, 8, 2769-2781.
[http://dx.doi.org/10.2147/IJN.S45313] [PMID: 23946649]
[51]
Abdelwahab, S.I.; Sheikh, B.Y.; Taha, M.M.E.; How, C.W.; Abdullah, R.; Yagoub, U.; El-Sunousi, R.; Eid, E.E.M. Thymoquinone-loaded nanostructured lipid carriers: Preparation, gastroprotection, in vitro toxicity, and pharmacokinetic properties after extravascular administration. Int. J. Nanomedicine, 2013, 8, 2163-2172.
[http://dx.doi.org/10.2147/IJN.S44108] [PMID: 23818776]
[52]
Deng, J.; Wu, Z.; Zhao, Z.; Wu, C.; Yuan, M.; Su, Z.; Wang, Y.; Wang, Z. Berberine-loaded nanostructured lipid carriers enhance the treatment of ulcerative colitis. Int. J. Nanomedicine, 2020, 15, 3937-3951.
[http://dx.doi.org/10.2147/IJN.S247406] [PMID: 32581538]
[53]
Miranda, M.; Cruz, M.T.; Vitorino, C.; Cabral, C. Nanostructuring lipid carriers using Ridolfia segetum (L.) Moris essential oil. Mater. Sci. Eng. C, 2019, 103, 109804.
[http://dx.doi.org/10.1016/j.msec.2019.109804] [PMID: 31349527]
[54]
Okonogi, S.; Riangjanapatee, P. Physicochemical characterization of lycopene-loaded nanostructured lipid carrier formulations for topical administration. Int. J. Pharm., 2015, 478(2), 726-735.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.002] [PMID: 25479097]
[55]
Pornputtapitak, W.; Pantakitcharoenkul, J.; Panpakdee, R.; Teeranachaideekul, V.; Sinchaipanid, N. Development of γ-Oryzanol rich extract from Leum pua glutinous rice bran loaded nanostructured lipid carriers for topical delivery. J. Oleo Sci., 2018, 67(2), 125-133.
[http://dx.doi.org/10.5650/jos.ess17113] [PMID: 29367479]
[56]
Shi, F.; Zhao, Y.; Firempong, C.K.; Xu, X. Preparation, characterization and pharmacokinetic studies of linalool-loaded nanostructured lipid carriers. Pharm. Biol., 2016, 54(10), 2320-2328.
[http://dx.doi.org/10.3109/13880209.2016.1155630] [PMID: 26986932]
[57]
Anantaworasakul, P.; Anuchapreeda, S.; Yotsawimonwat, S.; Naksuriya, O.; Lekawanvijit, S.; Tovanabutra, N.; Anantaworasakul, P.; Wattanasri, W.; Buranapreecha, N.; Ampasavate, C. Nanomaterial lipid-based carrier for non-invasive capsaicin delivery; Manufacturing scale-up and human irritation assessment. Molecules, 2020, 25(23), 23.
[http://dx.doi.org/10.3390/molecules25235575] [PMID: 33261007]
[58]
Shimojo, A.A.M.; Fernandes, A.R.V.; Ferreira, N.R.E.; Sanchez-Lopez, E.; Santana, M.H.A.; Souto, E.B. Evaluation of the influence of process parameters on the properties of resveratrol-loaded NLC using 2(2) full factorial design. Antioxidants, 2019, 8(8), 8.
[http://dx.doi.org/10.3390/antiox8080272] [PMID: 31382599]
[59]
Zhou, X.; Zhang, X.; Ye, Y.; Zhang, T.; Wang, H.; Ma, Z.; Wu, B. Nanostructured lipid carriers used for oral delivery of oridonin: An effect of ligand modification on absorption. Int. J. Pharm., 2015, 479(2), 391-398.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.068] [PMID: 25556104]
[60]
Nahak, P.; Karmakar, G.; Chettri, P.; Roy, B.; Guha, P.; Besra, S.E.; Soren, A.; Bykov, A.G.; Akentiev, A.V.; Noskov, B.A.; Panda, A.K. Influence of lipid core material on physicochemical characteristics of an ursolic acid-loaded nanostructured lipid carrier: An attempt to enhance anticancer activity. Langmuir, 2016, 32(38), 9816-9825.
[http://dx.doi.org/10.1021/acs.langmuir.6b02402] [PMID: 27588340]
[61]
Singh Hallan, S.; Sguizzato, M.; Pavoni, G.; Baldisserotto, A.; Drechsler, M.; Mariani, P.; Esposito, E.; Cortesi, R. Ellagic acid containing nanostructured lipid carriers for topical application: A Preliminary study. Molecules, 2020, 25(6), 6.
[http://dx.doi.org/10.3390/molecules25061449] [PMID: 32210106]
[62]
Ganesan, P.; Narayanasamy, D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain. Chem. Pharm., 2017, 6, 37-56.
[http://dx.doi.org/10.1016/j.scp.2017.07.002]
[63]
Gu, Y.; Yang, M.; Tang, X.; Wang, T.; Yang, D.; Zhai, G.; Liu, J. Lipid nanoparticles loading triptolide for transdermal delivery: Mechanisms of penetration enhancement and transport properties. J. Nanobiotechnology, 2018, 16(1), 68.
[http://dx.doi.org/10.1186/s12951-018-0389-3] [PMID: 30217198]
[64]
Rahman, M.; Al-Ghamdi, S.A.; Alharbi, K.S.; Beg, S.; Sharma, K.; Anwar, F.; Al-Abbasi, F.A.; Kumar, V. Ganoderic acid loaded nano-lipidic carriers improvise treatment of hepatocellular carcinoma. Drug Deliv., 2019, 26(1), 782-793.
[http://dx.doi.org/10.1080/10717544.2019.1606865] [PMID: 31357897]
[65]
Yu, Y.; Feng, R.; Yu, S.; Li, J.; Wang, Y.; Song, Y.; Yang, X.; Pan, W.; Li, S. Nanostructured lipid carrier-based pH and temperature dual-responsive hydrogel composed of carboxymethyl chitosan and poloxamer for drug delivery. Int. J. Biol. Macromol., 2018, 114, 462-469.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.117] [PMID: 29578017]
[66]
Zhao, X-L.; Yang, C-R.; Yang, K-L.; Li, K-X.; Hu, H-Y.; Chen, D-W. Preparation and characterization of nanostructured lipid carriers loaded traditional Chinese medicine, zedoary turmeric oil. Drug Dev. Ind. Pharm., 2010, 36(7), 773-780.
[http://dx.doi.org/10.3109/03639040903485716] [PMID: 20136496]
[67]
Pivetta, T.P.; Simões, S.; Araújo, M.M.; Carvalho, T.; Arruda, C.; Marcato, P.D. Development of nanoparticles from natural lipids for topical delivery of thymol: Investigation of its anti-inflammatory properties. Colloids Surf. B Biointerfaces, 2018, 164, 281-290.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.053] [PMID: 29413607]
[68]
Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 2018, 10(2), 57.
[http://dx.doi.org/10.3390/pharmaceutics10020057] [PMID: 29783687]
[69]
Schwarz, J.C.; Weixelbaum, A.; Pagitsch, E.; Löw, M.; Resch, G.P.; Valenta, C. Nanocarriers for dermal drug delivery: Influence of preparation method, carrier type and rheological properties. Int. J. Pharm., 2012, 437(1-2), 83-88.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.003] [PMID: 22903049]
[70]
Fang, Y.P.; Lin, Y.K.; Su, Y.H.; Fang, J.Y. Tryptanthrin-loaded nanoparticles for delivery into cultured human breast cancer cells, MCF7: The effects of solid lipid/liquid lipid ratios in the inner core. Chem. Pharm. Bull. (Tokyo), 2011, 59(2), 266-271.
[http://dx.doi.org/10.1248/cpb.59.266] [PMID: 21297310]
[71]
De Jong, W.H.; Borm, P.J.A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[72]
Hu, F.Q.; Zhang, Y.; Du, Y.Z.; Yuan, H. Nimodipine loaded lipid nanospheres prepared by solvent diffusion method in a drug saturated aqueous system. Int. J. Pharm., 2008, 348(1-2), 146-152.
[http://dx.doi.org/10.1016/j.ijpharm.2007.07.025] [PMID: 17889464]
[73]
Soleimanifard, M.; Sadeghi Mahoonak, A.; Ghorbani, M.; Heidari, R.; Sepahvand, A. The formulation optimization and properties of novel oleuropein-loaded nanocarriers. J. Food Sci. Technol., 2020, 57(1), 327-337.
[http://dx.doi.org/10.1007/s13197-019-04065-1] [PMID: 31975736]
[74]
Das, S.; Ng, W.K.; Tan, R.B.H. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): Development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur. J. Pharm. Sci., 2012, 47(1), 139-151.
[http://dx.doi.org/10.1016/j.ejps.2012.05.010] [PMID: 22664358]
[75]
Fachinetti, N.; Rigon, R.B.; Eloy, J.O.; Sato, M.R.; Dos Santos, K.C.; Chorilli, M. Comparative study of glyceryl behenate or polyoxyethylene 40 stearate-based lipid carriers for trans-resveratrol delivery: Development, Characterization and evaluation of the in vitro tyrosinase inhibition. AAPS PharmSciTech, 2018, 19(3), 1401-1409.
[http://dx.doi.org/10.1208/s12249-018-0961-z] [PMID: 29404955]
[76]
Galvão, J.G.; Santos, R.L.; Silva, A.R.S.T.; Santos, J.S.; Costa, A.M.B.; Chandasana, H.; Andrade-Neto, V.V.; Torres-Santos, E.C.; Lira, A.A.M.; Dolabella, S.; Scher, R.; Kima, P.E.; Derendorf, H.; Nunes, R.S. Carvacrol loaded nanostructured lipid carriers as a promising parenteral formulation for leishmaniasis treatment. Eur. J. Pharm. Sci., 2020, 150, 105335.
[http://dx.doi.org/10.1016/j.ejps.2020.105335] [PMID: 32272211]
[77]
Khezri, K.; Farahpour, M.R.; Mounesi Rad, S. Accelerated infected wound healing by topical application of encapsulated rosemary essential oil into nanostructured lipid carriers. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 980-988.
[http://dx.doi.org/10.1080/21691401.2019.1582539] [PMID: 30857435]
[78]
Hassanzadeh, P.; Atyabi, F.; Dinarvand, R.; Dehpour, A-R.; Azhdarzadeh, M.; Dinarvand, M. Application of nanostructured lipid carriers: The prolonged protective effects for sesamol in in vitro and in vivo models of ischemic stroke via activation of PI3K signalling pathway. Daru, 2017, 25(1), 25.
[http://dx.doi.org/10.1186/s40199-017-0191-z] [PMID: 29262855]
[79]
Khezerlou, A.; Jafari, S.M. Nanoencapsulated bioactive components for active food packaging. In: Handbook of Food Nanotechnology; Jafari, S.M., Ed.; , 2020; pp. 493-532.
[http://dx.doi.org/10.1016/B978-0-12-815866-1.00013-3]
[80]
Yadav, N.; Yadav, R.; Goyal, A. Chemistry of terpenoids. Int. J. Pharm. Sci. Rev. Res., 2014, 27(2), 272-278.
[81]
Cox-Georgian, D.; Ramadoss, N.; Dona, C.; Basu, C. Therapeutic and medicinal uses of terpenes. Medicinal Plants; From Farm to Pharmacy, 2019, pp. 333-359.
[http://dx.doi.org/10.1007/978-3-030-31269-5_15]
[82]
Yang, W.; Chen, X.; Li, Y.; Guo, S.; Wang, Z.; Yu, X. Advances in pharmacological activities of terpenoids. Nat. Prod. Commun., 2020, 15(3), 1-13.
[http://dx.doi.org/10.1177/1934578X20903555]
[83]
Kurek, J. Introductory chapter: Alkaloids - Their importance in nature and for human life. In: Alkaloids - Their Importance in Nature and Human Life; , 2019.
[http://dx.doi.org/10.5772/intechopen.73336]
[84]
Heinrich, M.; Mah, J.; Amirkia, V. Alkaloids used as medicines: Structural phytochemistry meets biodiversity—an update and forward look. Molecules, 2021, 26(7), 1836.
[http://dx.doi.org/10.3390/molecules26071836] [PMID: 33805869]
[85]
McNair, J.B. Some properties of alkaloids in relation to climate of habitat. Am. J. Bot., 1931, 18(6), 416-423.
[http://dx.doi.org/10.1002/j.1537-2197.1931.tb09601.x]
[86]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[87]
Cano-Avendaño, B.A.; Carmona-Hernandez, J.C.; Rodriguez, R.E.; Taborda-Ocampo, G.; González-Correa, C.H. Chemical properties of polyphenols: A review focused on anti-inflammatory and anti-viral medical application. Biomed, 2021, 41(1), 3-8.
[http://dx.doi.org/10.51248/.v41i1.524]
[88]
Oliver, S.; Vittorio, O.; Cirillo, G.; Boyer, C. Enhancing the therapeutic effects of polyphenols with macromolecules. Polym. Chem., 2016, 7(8), 1529-1544.
[http://dx.doi.org/10.1039/C5PY01912E]
[89]
Güçlü-Ustündağ O.; Mazza, G. Saponins: Properties, applications and processing. Crit. Rev. Food Sci. Nutr., 2007, 47(3), 231-258.
[http://dx.doi.org/10.1080/10408390600698197] [PMID: 17453922]
[90]
Pandey, R.K.; Shukla, S.S.; Vyas, A.; Jain, V.; Jain, P.; Saraf, S. Fingerprinting analysis and quality control methods of herbal medicines; CRC Press, 2018.
[http://dx.doi.org/10.1201/b22160]
[91]
Kregiel, D.; Berlowska, J.; Witonska, I.; Antolak, H.; Proestos, C.; Babic, M.; Babic, L.; Zhang, B. Saponin-based, biological-active surfactants from plants. In: Application and Characterization of Surfactants;; , 2017; p. 183.
[http://dx.doi.org/10.5772/68062]
[92]
A., Hussein R.; A. El-Anssary, A. Plants secondary metabolites: The key drivers of the pharmacological actions of medicinal plants. J. Herb. Med., 2019, 1, 13.
[93]
Brahmkshatriya, P.P.; Brahmkshatriya, P.S. Terpenes: Chemistry, biological role, and therapeutic applications. J. Nat. Prod., 2013, 12(2), 2665-2691.
[94]
Downer, E.J. Anti-inflammatory potential of terpenes present in Cannabis Sativa L. ACS Chem. Neurosci., 2020, 11(5), 659-662.
[http://dx.doi.org/10.1021/acschemneuro.0c00075] [PMID: 32091871]
[95]
Suanarunsawat, T.; Anantasomboon, G.; Piewbang, C. Anti-diabetic and anti-oxidative activity of fixed oil extracted from Ocimum sanctum L. leaves in diabetic rats. Exp. Ther. Med., 2016, 11(3), 832-840.
[http://dx.doi.org/10.3892/etm.2016.2991] [PMID: 26998000]
[96]
Nordin, N.; Yeap, S.K.; Rahman, H.S.; Zamberi, N.R.; Mohamad, N.E.; Abu, N.; Masarudin, M.J.; Abdullah, R.; Alitheen, N.B. Antitumor and anti-metastatic effects of citral-loaded nanostructured lipid carrier in 4T1-induced breast cancer mouse Model. Molecules, 2020, 25(11), 11.
[http://dx.doi.org/10.3390/molecules25112670] [PMID: 32526880]
[97]
Debnath, B.; Singh, W.S.; Das, M.; Goswami, S.; Singh, M.K.; Maiti, D.; Manna, K. Role of plant alkaloids on human health: A review of biological activities. Mater. Today Chem., 2018, 9, 56-72.
[http://dx.doi.org/10.1016/j.mtchem.2018.05.001]
[98]
Peng, J.; Zheng, T.T.; Li, X.; Liang, Y.; Wang, L.J.; Huang, Y.C.; Xiao, H.T. Plant-derived alkaloids: The promising disease-modifying agents for inflammatory bowel disease. Front. Pharmacol., 2019, 10, 351.
[http://dx.doi.org/10.3389/fphar.2019.00351] [PMID: 31031622]
[99]
Silva Teles, M.M.R.; Vieira Pinheiro, A.A.; Da Silva Dias, C.; Fechine Tavares, J.; Barbosa Filho, J.M.; Leitão Da Cunha, E.V. Alkaloids of the lauraceae. Alkaloids Chem. Biol., 2019, 82, 147-304.
[http://dx.doi.org/10.1016/bs.alkal.2018.11.002] [PMID: 30850031]
[100]
Istatkova, R.; Philipov, S.; Yadamsurenghiin, G.O.; Samdan, J.; Dangaa, S. Alkaloids from Papaver nudicaule L. Nat. Prod. Res., 2008, 22(7), 607-611.
[http://dx.doi.org/10.1080/14786410701605315] [PMID: 18569698]
[101]
Reyes-Escogido, M.L.; Gonzalez-Mondragon, E.G.; Vazquez-Tzompantzi, E. Chemical and pharmacological aspects of capsaicin. Molecules, 2011, 16(2), 1253-1270.
[http://dx.doi.org/10.3390/molecules16021253] [PMID: 21278678]
[102]
Lacatusu, I.; Badea, N.; Udeanu, D.; Coc, L.; Pop, A.; Cioates Negut, C.; Tanase, C.; Stan, R.; Meghea, A. Improved anti-obesity effect of herbal active and endogenous lipids co-loaded lipid nanocarriers: Preparation, in vitro and in vivo evaluation. Mater. Sci. Eng. C, 2019, 99, 12-24.
[http://dx.doi.org/10.1016/j.msec.2019.01.071] [PMID: 30889655]
[103]
Xu, D.; Xu, Z. Indole Alkaloids with potential anticancer activity. Curr. Top. Med. Chem., 2020, 20(21), 1938-1949.
[http://dx.doi.org/10.2174/1568026620666200622150325] [PMID: 32568021]
[104]
Minatel, I.O.; Borges, C.V.; Ferreira, M.I.; Gomez, H.A.G.; Chen, C-Y.O.; Lima, G.P.P. Phenolic compounds: Functional properties, impact of processing and bioavailability. Phenolic Compd. Biol. Act., 2017, 8, 1-24.
[http://dx.doi.org/10.5772/66368]
[105]
Grasso, R.; Dell’Albani, P.; Carbone, C.; Spatuzza, M.; Bonfanti, R.; Sposito, G.; Puglisi, G.; Musumeci, F.; Scordino, A.; Campisi, A. Synergic pro-apoptotic effects of Ferulic Acid and nanostructured lipid carrier in glioblastoma cells assessed through molecular and Delayed Luminescence studies. Sci. Rep., 2020, 10(1), 4680.
[http://dx.doi.org/10.1038/s41598-020-61670-3] [PMID: 32170186]
[106]
Puglia, C.; Offerta, A.; Rizza, L.; Zingale, G.; Bonina, F.; Ronsisvalle, S. Optimization of curcumin loaded lipid nanoparticles formulated using high shear homogenization (HSH) and ultrasonication (US) methods. J. Nanosci. Nanotechnol., 2013, 13(10), 6888-6893.
[http://dx.doi.org/10.1166/jnn.2013.7766] [PMID: 24245159]
[107]
Barbosa, J.P.; Neves, A.R.; Silva, A.M.; Barbosa, M.A.; Reis, M.S.; Santos, S.G. Nanostructured lipid carriers loaded with resveratrol modulate human dendritic cells. Int. J. Nanomedicine, 2016, 11, 3501-3516.
[http://dx.doi.org/10.2147/IJN.S108694] [PMID: 27555771]
[108]
Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; Del Mar Contreras, M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tajbakhsh, M.; Sharifi-Rad, J. Carvacrol and human health: A comprehensive review. Phytother. Res., 2018, 32(9), 1675-1687.
[http://dx.doi.org/10.1002/ptr.6103] [PMID: 29744941]
[109]
Bondì, M.L.; Emma, M.R.; Botto, C.; Augello, G.; Azzolina, A.; Di Gaudio, F.; Craparo, E.F.; Cavallaro, G.; Bachvarov, D.; Cervello, M. Biocompatible lipid nanoparticles as carriers to improve curcumin efficacy in ovarian cancer treatment. J. Agric. Food Chem., 2017, 65(7), 1342-1352.
[http://dx.doi.org/10.1021/acs.jafc.6b04409] [PMID: 28111949]
[110]
Tamura, Y.; Miyakoshi, M.; Yamamoto, M. Application of saponin-containing plants in foods and cosmetics. In: Alternative Medicine; , 2012; pp. 85-101.
[http://dx.doi.org/10.5772/53333]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy