Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Review Article

Multifunctional Patented Nanotherapeutics for Cancer Intervention: 2010- Onwards

Author(s): Parijat Pandey, Hitesh Chopra, Deepak Kaushik*, Ravinder Verma,, Deepika Purohit, Jatin Parashar, Vineet Mittal, Md. Habibur Rahman, Saurabh Bhatia, Pradeep Kumar, Tanima Bhattacharya, Priti Tagde and Ahmed Al-Harrasi

Volume 18, Issue 1, 2023

Published on: 01 August, 2022

Page: [38 - 52] Pages: 15

DOI: 10.2174/1574892817666220322085942

Price: $65

Abstract

Even today, cancer is one of the prominent leading causes of death worldwide. However, there are a couple of treatment options available for management, but the adverse effects are more prominent as compared to therapeutic effects. Therefore, there is a need to design some midway that may help to bypass the negative effects or lower their severity. Nanotechnology has addressed many issues, still many miles are needed to cover before reaching the center stage. The developed nanoformulations can target distant organs owing to their multifunctionality and targeting potential. Stimuli-responsive nanomedicine is one of the most exploited formulations. They can encapsulate and release the drugs for a higher period. However, they release a burst mechanism. The other nanoformulations contain dendrimers, micelles, and lipid-based nano-formulations that have been developed and evaluated for their efficacy in cancer treatment. This review paper highlights some significant patents granted/applied in various patent offices around the globe to treat cancer using the nanotechnology. The Google Patent, United States Patent and Trademark Office (USPTO), Escapenet, and many others were used as the search engine for patent search, and data were collected and analyzed. They used these patented technologies for diagnostic and treatment options, enhancing the absorption, distribution, metabolism, and excretion (ADME) profile of therapeutic molecules.

Keywords: Nanotechnology, dendrimers, liposomes, anti-cancer, hydrogels, multifunctional.

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Taniguchi N. On the basic concept of “Nano-Technology.” In: The Basic Concept of “Nano-Technology”. Bright Hub Engineering 2022.
[3]
Nagamune T. Biomolecular engineering for nanobio/bionanotechnology. Nano Converg 2017; 4(1): 9.
[http://dx.doi.org/10.1186/s40580-017-0103-4] [PMID: 28491487]
[4]
Dos Santos Ramos MA, Da Silva PB, Spósito L, et al. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. Int J Nanomedicine 2018; 13: 1179-213.
[http://dx.doi.org/10.2147/IJN.S146195] [PMID: 29520143]
[5]
Mishra V, Bansal KK, Verma A, et al. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics 2018; 10(4): 1-21.
[http://dx.doi.org/10.3390/pharmaceutics10040191] [PMID: 30340327]
[6]
Tiwari PM, Vig K, Dennis VA, Singh SR. Functionalized gold nanoparticles and their biomedical applications. Nanomaterials (Basel) 2011; 1(1): 31-63.
[http://dx.doi.org/10.3390/nano1010031] [PMID: 28348279]
[7]
Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules 2020; 25(9): 1-31.
[http://dx.doi.org/10.3390/molecules25092193] [PMID: 32397080]
[8]
Mullen DG, Fang M, Desai A, Baker JR, Orr BG, Banaszak Holl MM. A quantitative assessment of nanoparticle-ligand distributions: implications for targeted drug and imaging delivery in dendrimer conjugates. ACS Nano 2010; 4(2): 657-70.
[http://dx.doi.org/10.1021/nn900999c] [PMID: 20131876]
[9]
Friedman AD, Claypool SE, Liu R. The smart targeting of nanoparticles. Curr Pharm Des 2013; 19(35): 6315-29.
[http://dx.doi.org/10.2174/13816128113199990375] [PMID: 23470005]
[10]
Werengowska-Ciećwierz K, Wisniewski M, Terzyk AP, Furmaniak S. The chemistry of bioconjugation in nanoparticle-based drug delivery system. Adv Condens Matter Phys 2015; 2015: 1-28.
[http://dx.doi.org/10.1155/2015/198175]
[11]
Kumari A, Singla R, Guliani A, Yadav SK. Nanoencapsulation for drug delivery. EXCLI J 2014; 13: 265-86.
[PMID: 26417260]
[12]
Ferreira CD, Nunes IL. Oil nanoencapsulation: Development, application, and incorporation into the food market. Nanoscale Res Lett 2019; 14(1): 9.
[http://dx.doi.org/10.1186/s11671-018-2829-2] [PMID: 30617711]
[13]
de Oliveira JL, Campos EVR, Bakshi M, Abhilash PC, Fraceto LF. Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 2014; 32(8): 1550-61.
[http://dx.doi.org/10.1016/j.biotechadv.2014.10.010] [PMID: 25447424]
[14]
Papadopoulos AN, Bikiaris DN, Mitropoulos AC, Kyzas GZ. Nanomaterials and chemical modifications for enhanced key wood properties: A review. Nanomaterials (Basel) 2019; 9(4): 1-18.
[http://dx.doi.org/10.3390/nano9040607] [PMID: 31013808]
[15]
Rahman M, Zahin F, Saadi MA, Sharif A, Hoque ME. Surface modification of advanced and polymer nanocomposites. In: Envir Nanotechnology. Springer 2018; pp. 187-209.
[http://dx.doi.org/10.1007/978-3-319-76090-2_6]
[16]
Biener J, Wittstock A, Baumann TF, Weissmüller J, Bäumer M, Hamza AV. Surface chemistry of nanoscale materials. Materials (Basel) 2009; 2(4): 2404-28.
[http://dx.doi.org/10.3390/ma2042404]
[17]
Suttiponparnit K, Jiang J, Sahu M, Suvachittanont S, Charinpanitkul T, Biswas P. Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res Lett 2011; 6(1): 27.
[http://dx.doi.org/10.1007/s11671-010-9772-1] [PMID: 27502650]
[18]
Salvioni L, Rizzuto MA, Bertolini JA, Pandolfi L, Colombo M, Prosperi D. Thirty years of cancer nanomedicine: Success, frustration, and hope. Cancers (Basel) 2019; 11(12): 1-21.
[http://dx.doi.org/10.3390/cancers11121855] [PMID: 31769416]
[19]
Hua S, de Matos MBC, Metselaar JM, Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Front Pharmacol 2018; 9: 790.
[http://dx.doi.org/10.3389/fphar.2018.00790] [PMID: 30065653]
[20]
Kad A, Pundir A, Arya SK, Bhardwaj N, Khatri M. An elucidative review to analytically sieve the viability of nanomedicine market. J Pharm Innov 2020; 1-17.
[http://dx.doi.org/10.1007/s12247-020-09495-5] [PMID: 32983280]
[21]
De Jong WH, Borm PJA. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomedicine 2008; 3(2): 133-49.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[22]
Liu JP, Wang TT, Wang DG, Dong AJ, Li YP, Yu HJ. Smart nanoparticles improve therapy for drug-resistant tumors by overcoming pathophysiological barriers. Acta Pharmacol Sin 2017; 38(1): 1-8.
[http://dx.doi.org/10.1038/aps.2016.84] [PMID: 27569390]
[23]
Gagliardi M, Borri C. Polymer nanoparticles as smart carriers for the enhanced release of therapeutic agents to the CNS. Curr Pharm Des 2017; 23(3): 393-410.
[http://dx.doi.org/10.2174/1381612822666161027111542] [PMID: 27799038]
[24]
Tulchinsky TH. Robert Koch and Paul Ehrlich: Criteria of causation of disease and chemotherapy as “magic bullets”. In: Case Studies in Public Health. 2018; 1: pp. 117-30.
[25]
Winau F, Westphal O, Winau R. Paul Ehrlich--in search of the magic bullet. Microbes Infect 2004; 6(8): 786-9.
[http://dx.doi.org/10.1016/j.micinf.2004.04.003] [PMID: 15207826]
[26]
Salapa J, Bushman A, Lowe K, Irudayaraj J. Nano drug delivery systems in upper gastrointestinal cancer therapy. Nano Converg 2020; 7(1): 38.
[http://dx.doi.org/10.1186/s40580-020-00247-2] [PMID: 33301056]
[27]
Ruozi B, Belletti D, Pederzoli F, Forni F, Vandelli MA, Tosi G. Potential use of nanomedicines for drug delivery across the BBB in health and diseased brain. CNS Neurol Disord Drug Targets 15(9): 1079-91.
[http://dx.doi.org/10.2174/1871527315666160915112210] [PMID: 27633786]
[28]
Li X, Xing L, Zheng K, et al. Formation of gold nanostar-coated hollow mesoporous silica for tumor multimodality imaging and photothermal therapy. ACS Appl Mater Interfaces 2017; 9(7): 5817-27.
[http://dx.doi.org/10.1021/acsami.6b15185] [PMID: 28118704]
[29]
Li X, Lu S, Xiong Z, et al. Light addressable nanoclusters of ultrasmall iron oxide nanoparticles for enhanced and dynamic magnetic resonance imaging of arthritis. Adv Sci (Weinh) 2019; 6(19): 1901800.
[http://dx.doi.org/10.1002/advs.201901800] [PMID: 31592427]
[30]
Li X, Kong L, Hu W, et al. Safe and efficient 2D molybdenum disulfide platform for cooperative imaging-guided photothermal-selective chemotherapy: A preclinical study. J Adv Res 2021.
[31]
Tong GF, Qin N, Sun LW. Development and evaluation of Desvenlafaxine loaded PLGA-chitosan nanoparticles for brain delivery. Saudi Pharm J 2017; 25(6): 844-51.
[http://dx.doi.org/10.1016/j.jsps.2016.12.003] [PMID: 28951668]
[32]
Elshama SS, Abdallah ME, Abdel-Karim RI. Zinc oxide nanoparticles: Therapeutic benefits and toxicological hazards. Open Nanomed J 2018; 5(1): 16-22.
[http://dx.doi.org/10.2174/1875933501805010016]
[33]
Mansoor S, Kondiah PPD, Choonara YE, Pillay V. Polymer-based nanoparticle strategies for insulin delivery. Polymers (Basel) 2019; 11(9): 1-27.
[http://dx.doi.org/10.3390/polym11091380] [PMID: 31443473]
[34]
Cheng CJ, Tietjen GT, Saucier-Sawyer JK, Saltzman WM. A holistic approach to targeting disease with polymeric nanoparticles. Nat Rev Drug Discov 2015; 14(4): 239-47.
[http://dx.doi.org/10.1038/nrd4503] [PMID: 25598505]
[35]
Bors LA, Erdö F. Overcoming the blood-brain barrier. Challenges and tricks for CNS drug delivery. Sci Pharm 2019; 87(1): 1-28.
[http://dx.doi.org/10.3390/scipharm87010006]
[36]
Wang L, Rao Y, Liu X, et al. Administration route governs the therapeutic efficacy, biodistribution and macrophage targeting of anti-inflammatory nanoparticles in the lung. J Nanobiotechnology 2021; 19(1): 56.
[http://dx.doi.org/10.1186/s12951-021-00803-w] [PMID: 33632244]
[37]
Chenthamara D, Subramaniam S, Ramakrishnan SG, et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res 2019; 23(1): 20.
[http://dx.doi.org/10.1186/s40824-019-0166-x] [PMID: 31832232]
[38]
Prasad M, Lambe UP, Brar B, et al. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother 2018; 97: 1521-37.
[http://dx.doi.org/10.1016/j.biopha.2017.11.026] [PMID: 29793315]
[39]
Li Y, Pu S, Liu Q, et al. An integrin-based nanoparticle that targets activated hepatic stellate cells and alleviates liver fibrosis. J Control Release 2019; 303: 77-90.
[http://dx.doi.org/10.1016/j.jconrel.2019.04.022] [PMID: 31004666]
[40]
Montalvo-Quiros S, Aragoneses-Cazorla G, Garcia-Alcalde L, Vallet-Regí M, González B, Luque-Garcia JL. Cancer cell targeting and therapeutic delivery of silver nanoparticles by mesoporous silica nanocarriers: insights into the action mechanisms using quantitative proteomics. Nanoscale 2019; 11(10): 4531-45.
[http://dx.doi.org/10.1039/C8NR07667G] [PMID: 30806414]
[41]
Lee SWL, Paoletti C, Campisi M, et al. MicroRNA delivery through nanoparticles. J Control Release 2019; 313: 80-95.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.007] [PMID: 31622695]
[42]
Qiu J, Kong L, Cao X, et al. Enhanced the delivery of therapeutic sirna into glioblastoma cells using dendrimer-entrapped gold nanoparticles conjugated with β-cyclodextrin. Nanomaterials (Basel) 2018; 8(3): 1-11.
[http://dx.doi.org/10.3390/nano8030131] [PMID: 29495429]
[43]
Jin L, Wang Q, Chen J, Wang Z, Xin H, Zhang D. Efficient delivery of therapeutic siRNA by Fe3O4 magnetic nanoparticles into oral cancer cells. Pharmaceutics 2019; 11(11): 1-12.
[http://dx.doi.org/10.3390/pharmaceutics11110615] [PMID: 31744202]
[44]
Silva S, Almeida AJ, Vale N. Combination of cell-penetrating peptides with nanoparticles for therapeutic application: A review. Biomolecules 2019; 9(1): 1-24.
[http://dx.doi.org/10.3390/biom9010022] [PMID: 30634689]
[45]
Farkhani SM, Valizadeh A, Karami H, Mohammadi S, Sohrabi N, Badrzadeh F. Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides 2014; 57: 78-94.
[http://dx.doi.org/10.1016/j.peptides.2014.04.015] [PMID: 24795041]
[46]
McMillan J, Batrakova E, Gendelman HE. Cell delivery of therapeutic nanoparticles. Prog Mol Biol Transl Sci 2011; 104: 563-601.
[http://dx.doi.org/10.1016/B978-0-12-416020-0.00014-0] [PMID: 22093229]
[47]
Blanchette ISF, Drummond DC, Us MA, Fitzgerald JB, Us MA, Moyo V. Combination therapy for cancer treatment United States Patent US10478428B2, 2019.
[48]
Monte WT, Barbosa CJ, Weber TP. Methods for the preparation of liposome-encapsulated vincristine for therapeutic use United States Patent US9801874B2, 2017.
[49]
Desai NP, Shiong PS. Formulation of pharmacological agents, methods for the preparation thereof, and methods for the use thereof United States Patent US9801874B2, 2014.
[50]
Marcel Rozencweig M, Goldfarb RH, Forenza S. Non-pegylated liposomal doxorubicin triple combination therapy United States Patent US8026267B2, 2011.
[51]
Ducrey B, Garrouste P, Curdy C, et al. Slow release pharmaceutical composition made of microparticles European Patent EP2164467B1, 2016.
[52]
Frankel BM. Cytarabine for the treatment of glioma World Patent. WO2008073317A2, 2009.
[53]
Bodmer D, Fong JW, Kissel T, Maulding HV, Nagele O, Pearson JE. Sustained release formulation of water-soluble peptides United States Patent US5639480A, 1997.
[54]
Gabizon AA. Method for administration of pegylated liposomal doxorubicin World Patent WO2008075330A1, 2008.
[55]
Kopeček J. Hydrogels: From soft contact lenses and implants to self-assembled nanomaterials. J Polym Sci A Polym Chem 2009; 47(22): 5929-46.
[http://dx.doi.org/10.1002/pola.23607] [PMID: 19918374]
[56]
Hosseini H, Tenhu H, Hietala S. Rheological properties of thermoresponsive nanocomposite hydrogels. J Appl Polym Sci 2016; 133(11)
[http://dx.doi.org/10.1002/app.43123]
[57]
Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 2015; 6(2): 105-21.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[58]
Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev 2012; 64 (Suppl.): 18-23.
[http://dx.doi.org/10.1016/j.addr.2012.09.010] [PMID: 11755703]
[59]
Wang K, Hao Y, Wang Y, et al. Functional hydrogels and their application in drug delivery, biosensors, and tissue engineering. Int J Polym Sci 2019; 2019: 1-15.
[http://dx.doi.org/10.1155/2019/8732520]
[60]
Singhal A, Sinha N, Kumari P, Purkayastha M. Synthesis and applications of hydrogels in cancer therapy. Anticancer Agents Med Chem 2020; 20(12): 1431-46.
[http://dx.doi.org/10.2174/1871521409666200120094048] [PMID: 31958041]
[61]
Majcher MJ, Hoare T. Applications of hydrogels. Cham: Springer 2019; pp. 453-90.
[62]
Chopra H, Kumar S, Singh I. Bioadhesive hydrogels and their applications. In:Bioadhesives in Drug Delivery. Wiley Online 2020; pp. 147-70.
[63]
Chopra H, Singh I, Kumar S, et al. Comprehensive review on hydrogels. Curr Drug Deliv 2021. [Epub ahead of print].
[http://dx.doi.org/10.2174/1567201818666210601155558]
[64]
Shi Q, Liu H, Tang D, Li Y, Li XJ, Xu F. Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applications. NPG Asia Mater 2019; 11(1): 1-21.
[http://dx.doi.org/10.1038/s41427-019-0165-3]
[65]
Sood N, Bhardwaj A, Mehta S, Mehta A. Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Deliv 2016; 23(3): 758-80.
[http://dx.doi.org/10.3109/10717544.2014.940091] [PMID: 25045782]
[66]
Artzi N, Zhang Y, Jorge NO, Conde J. Hydrogel Particles, Compositions, and Methods. United States Patent US20170333304A1, 2017.
[67]
Wei G, Qin W, Xiangliang Y, Wei Y, Fuying L. The nanogel and nanogel drug loading system of tumor microenvironment intelligent response Chinese Patent CN106810636A, 2017.
[68]
Lianhui W, Wenjing Y, Lijun L, Peng Z. Double medicine-carrying systems of a kind of nano-particle macromolecule injectable composite aquogel and preparation method thereof Chinese Patent CN107550921A, 2018.
[69]
Li X, Li H, Zhang C, Pich A, Xing L, Shi X. Intelligent nanogels with self-adaptive responsiveness for improved tumor drug delivery and augmented chemotherapy. Bioact Mater 2021; 6(10): 3473-84.
[http://dx.doi.org/10.1016/j.bioactmat.2021.03.021] [PMID: 33869898]
[70]
Li X, Sun H, Li H, et al. Multi responsive biodegradable cationic nanogels for highly efficient treatment of tumors. Adv Funct Mater 2021; 2021: 2100227.
[http://dx.doi.org/10.1002/adfm.202100227]
[71]
Li X, Ouyang Z, Li H, et al. Dendrimer-decorated nanogels: Efficient nanocarriers for biodistribution in vivo and chemotherapy of ovarian carcinoma. Bioact Mater 2021; 6(10): 3244-53.
[http://dx.doi.org/10.1016/j.bioactmat.2021.02.031] [PMID: 33778202]
[72]
Yanbing Z, Jiangshan W, Xiangliang Y, Xinan G. The temperature-sensitive gold nanometer cage hydrogel drug loading system for the accurate synergistic antitumor of light thermochemotherapy Chinese Patent CN106890332A, 2017.
[73]
Xuemei L, Dandan Y, Jiayu Z, Lairong D, Bingjie C, Shusheng Z. Gene nanoprobe for targeted lung cancer treatment and preparation method and applications thereof Chinese Patent CN108753770B, 2018.
[74]
Jun P, Kong F, Dawei T, et al. A kind of temperature sensitive water gel nano medication induction system Chinese Patent CN107375935A, 2017.
[75]
Zihao Z, Changchun W. A kind of platinum antineoplastic prodrug, nano-hydrogel drug and preparation methods thereof Chinese Patent CN105713046B, 2016.
[76]
Chunying C, Jiayang L, Shabet ZF, Kejian S. Short peptide small molecule self-assembly, nano material targeting hypoxic tumor, and preparation method and application thereof Chinese Patent CN110585441A, 2019.
[77]
Changchun W, Yuanjia P. Nano-hydrogel with oxidationreduction/ pH double-stimulation responsiveness and preparation method and application thereof. Chinese Patent CN102973488A, 2013.
[78]
Xiaofang S, Yuehong P, Lu S, Yun M. PH-sensitive doxorubicin hydrochloride loaded silver nanocluster hydrogel and application thereof. Chinese Patent CN105193706A, 2015.
[79]
Xiangyang S, Yiwei Z, Benqing Z, Wenjie S, Yong H. Preparation method of polyaniline-loaded gamma-PGA nano hydrogel Chinese Patent CN106853253B, 2017.
[80]
Shanwen H, Teng , Wanqing T, Shusheng Z. Tumor-targeted composite nanodrug carrier, drug preparation method and application. Chinese Patent CN111166728A, 2020.
[81]
Rasmus Irming Jølck RI, Albrechtsen M. BJERG LN, Andresen TL. Formulation of solid nanosized particles in a gel-forming system. United States Patent US10434193B2, 2019.
[82]
Tomalia DA, Baker H, Dewald J, et al. A new class of polymers: Starburst-dendritic macromolecules. Polym J 1985; 17(1): 117-32.
[http://dx.doi.org/10.1295/polymj.17.117]
[83]
Tomalia DA, Baker H, Dewald J. Dense star polymers having core, core branches, and terminal groups. United States Patent. US4507466A, 1985.
[84]
Denkewalter RG, Kolc JF, Lukasavage WJ. Macromolecular, highly branched homogeneous compound based on lysine units United States Patent US4289872A, 1981.
[85]
Denkewalter RG, Kolc JF, Lukasavage WJ. Macromolecular highly branched homogeneous compound United States Patent US4410688A, 1983.
[86]
Buhleier E, Wehner W, Vögtle F. “Cascade”- and “nonskid chain-like” syntheses of molecular cavity topologies. Synth 1978; 1978(2): 155-8.
[http://dx.doi.org/10.1055/s-1978-24702]
[87]
Newkome GR, Yao ZQ, Baker GR, Gupta VK. Cascade molecules: A new approach to micelles.1aa [27]-arborol. J Org Chem 1985; 50(11): 2003-4.
[http://dx.doi.org/10.1021/jo00211a052]
[88]
Hawker CJ, Fréchet JMJ. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc 1990; 112(21): 7638-47.
[http://dx.doi.org/10.1021/ja00177a027]
[89]
Abbasi E, Aval SF, Akbarzadeh A, et al. Dendrimers: Synthesis, applications, and properties. Nanoscale Res Lett 2014; 9(1): 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[90]
Somani S, Dufès C. Applications of dendrimers for brain delivery and cancer therapy. Nanomedicine (Lond) 2014; 9(15): 2403-14.
[http://dx.doi.org/10.2217/nnm.14.130] [PMID: 25413857]
[91]
Arruebo M, Vilaboa N, Sáez-Gutierrez B, et al. Assessment of the evolution of cancer treatment therapies. Cancers (Basel) 2011; 3(3): 3279-330.
[http://dx.doi.org/10.3390/cancers3033279] [PMID: 24212956]
[92]
Xi Y, Yongjian W, Kun Z, Dawei W, Qi L. Intelligent nano-medicament delivery system and preparation method and application thereof Chinese Patent CN102973513A, 2013.
[93]
Sayed MEH, Ensminger W, Shewach D. Targeted dendrimers drug conjugates United States Patent US20130004427A1, 2013.
[94]
Kui L, Zhongwei G, Ning L. Paclitaxel-loaded asymmetric dendrimers nanometer drug carrier system and preparation method thereof Chinese Patent CN106512021A, 2017.
[95]
Sohail I, Bhatti IA, Ashar A, et al. Polyamidoamine (PAMAM) dendrimers synthesis, characterization, and adsorptive removal of nickel ions from aqueous solution. J Mater Res Technol 2020; 9(1): 498-506.
[http://dx.doi.org/10.1016/j.jmrt.2019.10.079]
[96]
Noriega-Luna B, Godínez LA, Rodríguez FJ, et al. Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J Nanomater 2014; 2014: 1-19.
[http://dx.doi.org/10.1155/2014/507273]
[97]
Choudhary S, Gupta L, Rani S, Dave K, Gupta U. Impact of dendrimers on solubility of hydrophobic drug molecules. Front Pharmacol 2017; 261: 1-23.
[http://dx.doi.org/10.3389/fphar.2017.00261]
[98]
Kirkpatrick GJ, Plumb JA, Sutcliffe OB, Flint DJ, Wheate NJ. Evaluation of anionic half generation 3.5-6.5 poly(amidoamine) dendrimers as delivery vehicles for the active component of the anticancer drug cisplatin. J Inorg Biochem 2011; 105(9): 1115-22.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.05.017] [PMID: 21704583]
[99]
Salimi M, Sarkar S, Hashemi M, Saber R. Treatment of breast cancer-bearing BALB/c mice with magnetic hyperthermia using dendrimers functionalized iron oxide nanoparticles. Nanomaterials (Basel) 2020; 10(11): 1-18.
[http://dx.doi.org/10.3390/nano10112310] [PMID: 33266461]
[100]
Yiyun C, Tongwen X, Rongqiang F. Polyamidoamine dendrimers used as solubility enhancers of ketoprofen. Eur J Med Chem 2005; 40(12): 1390-3.
[http://dx.doi.org/10.1016/j.ejmech.2005.08.002] [PMID: 16226353]
[101]
Chauhan AS, Sridevi S, Chalasani KB, et al. Dendrimer-mediated transdermal delivery: Enhanced bioavailability of indomethacin. J Control Release 2003; 90(3): 335-43.
[http://dx.doi.org/10.1016/S0168-3659(03)00200-1] [PMID: 12880700]
[102]
Kolhe P, Misra E, Kannan RM, Kannan S, Lieh-Lai M. Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Int J Pharm 2003; 259(1-2): 143-60.
[http://dx.doi.org/10.1016/S0378-5173(03)00225-4] [PMID: 12787643]
[103]
Yiyun C, Tongwen X. Solubility of nicotinic acid in polyamidoamine dendrimer solutions. Eur J Med Chem 2005; 40(12): 1384-9.
[http://dx.doi.org/10.1016/j.ejmech.2005.08.001] [PMID: 16226352]
[104]
Milhem OM, Myles C, McKeown NB, Attwood D, D’Emanuele A. Polyamidoamine Starburst dendrimers as solubility enhancers. Int J Pharm 2000; 197(1-2): 239-41.
[http://dx.doi.org/10.1016/S0378-5173(99)00463-9] [PMID: 10704811]
[105]
Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM. Polymeric systems for controlled drug release. Chem Rev 1999; 99(11): 3181-98.
[http://dx.doi.org/10.1021/cr940351u] [PMID: 11749514]
[106]
Devarakonda B, Hill RA, de Villiers MM. The effect of PAMAM dendrimer generation size and surface functional group on the aqueous solubility of nifedipine. Int J Pharm 2004; 284(1-2): 133-40.
[http://dx.doi.org/10.1016/j.ijpharm.2004.07.006] [PMID: 15454304]
[107]
D’Emanuele A, Attwood D. Dendrimer-drug interactions. Adv Drug Deliv Rev 2005; 57(15): 2147-62.
[http://dx.doi.org/10.1016/j.addr.2005.09.012] [PMID: 16310283]
[108]
Gillies ER, Fréchet JMJ. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 2005; 10(1): 35-43.
[http://dx.doi.org/10.1016/S1359-6446(04)03276-3] [PMID: 15676297]
[109]
Janaszewska A, Lazniewska J, Trzepiński P, Marcinkowska M, Klajnert-Maculewicz B. Cytotoxicity of dendrimers. Biomolecules 2019; 9(8): 1-23.
[http://dx.doi.org/10.3390/biom9080330] [PMID: 31374911]
[110]
Dąbkowska M, Łuczkowska k, Rogińska D, et al. Novel design of (PEG-ylated)PAMAM-based nanoparticles for sustained delivery of BDNF to neurotoxin-injured differentiated neuroblastoma cells. J Nanobiotechnology 2020; 18(1): 120.
[http://dx.doi.org/10.1186/s12951-020-00673-8] [PMID: 32867843]
[111]
Somani S, Laskar P, Altwaijry N, et al. PEGylation of polypropylenimine dendrimers: effects on cytotoxicity, DNA condensation, gene delivery and expression in cancer cells. Sci Rep 2018; 8(1): 9410.
[http://dx.doi.org/10.1038/s41598-018-27400-6] [PMID: 29925967]
[112]
Ayatollahi S, Hashemi M, Oskuee RK, et al. Synthesis of efficient gene delivery systems by grafting pegylated alkylcarboxylate chains to PAMAM dendrimers: Evaluation of transfection efficiency and cytotoxicity in cancerous and mesenchymal stem cells. J Biomater Appl 2015; 30(5): 632-48.
[http://dx.doi.org/10.1177/0885328215599667] [PMID: 26265706]
[113]
Tomalia DA, Fréchet JMJ. Discovery of dendrimers and dendritic polymers: A brief historical perspective. J Polym Sci A Polym Chem 2002; 40(16): 2719-28.
[http://dx.doi.org/10.1002/pola.10301]
[114]
Chauhan AS, Jain NK, Diwan PV, Khopade AJ. Solubility enhancement of indomethacin with poly(amidoamine) dendrimers and targeting to inflammatory regions of arthritic rats. J Drug Target 2004; 12(9-10): 575-83.
[http://dx.doi.org/10.1080/10611860400010655] [PMID: 15621683]
[115]
Inoue K. Functional dendrimers, hyperbranched and star polymers. Prog Polym Sci 2000; 25(4): 453-571.
[http://dx.doi.org/10.1016/S0079-6700(00)00011-3]
[116]
Maiti PK, Çaǧin T, Lin ST, Goddard WA. Effect of solvent and pH on the structure of PAMAM dendrimers. Macromolecules 2005; 38(3): 979-91.
[http://dx.doi.org/10.1021/ma049168l]
[117]
Lu Y, An L, Wang ZG. Intrinsic viscosity of polymers: General theory is based on a partially permeable sphere model. Macromolecules 2013; 46(14): 5731-40.
[http://dx.doi.org/10.1021/ma400872s]
[118]
Yang H, Lopina ST. Penicillin V-conjugated PEG-PAMAM star polymers. J Biomater Sci Polym Ed 2003; 14(10): 1043-56.
[http://dx.doi.org/10.1163/156856203769231556] [PMID: 14661878]
[119]
Mulder A, Huskens J, Reinhoudt DN. Multivalency in supramolecular chemistry and nanofabrication. Org Biomol Chem 2004; 2(23): 3409-24.
[http://dx.doi.org/10.1039/b413971b] [PMID: 15565230]
[120]
Singh J, Jain K, Mehra NK, Jain NK. Dendrimers in anticancer drug delivery: mechanism of interaction of drug and dendrimers. Artif Cells Nanomed Biotechnol 2016; 44(7): 1626-34.
[http://dx.doi.org/10.3109/21691401.2015.1129625] [PMID: 26747336]
[121]
Singh P. Dendrimers and their applications in immunoassays and clinical diagnostics. Biotechnol Appl Biochem 2007; 48(Pt 1): 1-9.
[http://dx.doi.org/10.1042/BA20070019] [PMID: 17688425]
[122]
Rai DB, Gupta N, Pooja D, Kulhari H. Dendrimers for diagnostic applications. Pharm Applic Dendrimers 2019; 2019: pp .291-324.
[123]
Baker JR Jr, Bielinska AU, Kukowska-Latallo JF. Dendrimer-mediated cell transfection in vitro. Methods Mol Biol 2004; 245: 67-82.
[PMID: 14707370]
[124]
Chaplot SP, Rupenthal ID. Dendrimers for gene delivery--a potential approach for ocular therapy? J Pharm Pharmacol 2014; 66(4): 542-56.
[http://dx.doi.org/10.1111/jphp.12104] [PMID: 24635556]
[125]
Lu S, Li X, Zhang J, Peng C, Shen M, Shi X. Dendrimer stabilized gold nanoflowers embedded with ultrasmall iron oxide nanoparticles for multimode imaging-guided combination therapy of tumors. Adv Sci (Weinh) 2018; 5(12): 1801612.
[http://dx.doi.org/10.1002/advs.201801612] [PMID: 30581720]
[126]
Li X, Xiong Z, Xu X, et al. 99mTc-labeled multifunctional low-generation dendrimer-entrapped gold nanoparticles for targeted SPECT/CT dual-mode imaging of tumors. ACS Appl Mater Interfaces 2016; 8(31): 19883-91.
[127]
Venditti I. Morphology and functionality of polymeric nanocarriers as chemical tools for drug delivery: A review. J King Saud Univ Sci 2019; 31(3): 398-411.
[http://dx.doi.org/10.1016/j.jksus.2017.10.004]
[128]
Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg 2019; 6(1): 23.
[http://dx.doi.org/10.1186/s40580-019-0193-2] [PMID: 31304563]
[129]
Sandoval-Yañez C, Castro Rodriguez C. Dendrimers: Amazing platform for bioactive molecule delivery systems. Materials (Basel) 2020; 13(3): E570.
[http://dx.doi.org/10.3390/ma13030570] [PMID: 31991703]
[130]
Fahmy TM, Stern E, Flavell RA, Park J, Siefert A, Wrzesinski SH. Vehicles for controlled delivery of different pharmaceutical agents United States Patents US20180200336A1, 2020.
[131]
Rangaramanujam K, Kannan S, Romero R, Navath RS, Dai H, Menjoge AR. Dendrimersbased nanodevices for therapeutic and imaging purposes United States Patents US10561673B2, 2020.
[132]
Tarek MF. Modular particles for immunotherapy Japanese Patent JP2020073617A, 2020.
[133]
Babich JW, Joyal JL C. Psma-targeted dendrimers Canadian Patent CA2819850C, 2019.
[134]
Strieker M, Mier W, Haberkorn U. Conjugates of proteins and multivalent cell-penetrating peptides and their uses European Patent EP2928502B1, 2013.
[135]
Dendrimersdrug delivery system with high tumor recognition abilityand environmental response, drug release ability, and building methods thereof. Canadian Patent CN103655587A, 2016.
[136]
Baker JR, Cheng XM, Thomas TP, Huang BM. Dendrimersconjugates United States Patents US8252834B2, 2012.
[137]
Alhamdan OAH. Metalloproteinase-cleavable alpha-amanitin dendrimers conjugates and method of treating cancer 2016. Available from: https://patents.google.com/patent/US20160220687A1/en?oq=US20160220687A1
[138]
El-Sayed MEH, Ensminger W, Shewach D. Targeted dendrimers drug conjugates United States Patents US9345781B2, 2016.
[139]
Anderson DG, Canner DA, Chahal JS, et al. Compositions and methods for modified dendrimers nanoparticle vaccine delivery Australian Patent AU2016326695B2, 2019.
[140]
He Y, Li Z, Simone P, Lodge TP. Self-assembly of block copolymer micelles in an ionic liquid. J Am Chem Soc 2006; 128(8): 2745-50.
[http://dx.doi.org/10.1021/ja058091t] [PMID: 16492063]
[141]
Cholkar K, Patel A, Vadlapudi AD, Mitra AK K, Mitra A. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat Nanomed 2012; 2(2): 82-95.
[http://dx.doi.org/10.2174/1877912311202020082] [PMID: 25400717]
[142]
Lu Y, Zhang E, Yang J, Cao Z. Strategies to improve micelle stability for drug delivery. Nano Res 2018; 11(10): 4985-98.
[http://dx.doi.org/10.1007/s12274-018-2152-3] [PMID: 30370014]
[143]
Hanafy NAN, El-Kemary M, Leporatti S. Micelles structure development as a strategy to improve smart cancer therapy. Cancers (Basel) 2018; 10(7): 1-14.
[http://dx.doi.org/10.3390/cancers10070238] [PMID: 30037052]
[144]
Jhaveri AM, Torchilin VP. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol 2014; 5: 77.
[http://dx.doi.org/10.3389/fphar.2014.00077] [PMID: 24795633]
[145]
Talelli M, Barz M, Rijcken CJF, Kiessling F, Hennink WE, Lammers T. Core-crosslinked polymeric micelles: Principles, preparation, biomedical applications, and clinical translation. Nano Today 2015; 10(1): 93-117.
[http://dx.doi.org/10.1016/j.nantod.2015.01.005] [PMID: 25893004]
[146]
Tawfik SM, Azizov S, Elmasry MR, Sharipov M, Lee YI. Recent advances in nanomicelles delivery systems. Nanomaterials (Basel) 2020; 11(1): 1-36.
[http://dx.doi.org/10.3390/nano11010070] [PMID: 33396938]
[147]
Alsehli M. Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: Recent advances in drug delivery. Saudi Pharm J 2020; 28(3): 255-65.
[http://dx.doi.org/10.1016/j.jsps.2020.01.004] [PMID: 32194326]
[148]
Zhou Q, Zhang L, Yang T, Wu H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomedicine 2018; 13: 2921-42.
[http://dx.doi.org/10.2147/IJN.S158696] [PMID: 29849457]
[149]
He Q, Chen J, Yan J, et al. Tumor microenvironment responsive drug delivery systems. Asian J Pharm Sci 2020; 15(4): 416-48.
[http://dx.doi.org/10.1016/j.ajps.2019.08.003] [PMID: 32952667]
[150]
Shao K, Ding N, Huang S, et al. Smart nanodevice combined tumor-specific vector with cellular microenvironment-triggered property for highly effective antiglioma therapy. ACS Nano 2014; 8(2): 1191-203.
[http://dx.doi.org/10.1021/nn406285x] [PMID: 24397286]
[151]
Singla RK, Sai CS, Chopra H, et al. Natural products for the management of castration-resistant prostate cancer: Special focus on nanoparticles based studies. Front Cell Dev Biol 2021; 9: 745177.
[http://dx.doi.org/10.3389/fcell.2021.745177] [PMID: 34805155]
[152]
Sawant RR, Torchilin VP. Multifunctionality of lipid-core micelles for drug delivery and tumour targeting. Mol Membr Biol 2010; 27(7): 232-46.
[http://dx.doi.org/10.3109/09687688.2010.516276] [PMID: 20929339]
[153]
Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B. Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci USA 2003; 100(10): 6039-44.
[http://dx.doi.org/10.1073/pnas.0931428100] [PMID: 12716967]
[154]
Liu Y. Pharmaceutical composition containing lutein and antioxidants for treating and preventing human disease United States Patents US9622970B2, 2017.
[155]
Bagheri M, Fens MH, Kleijn TG, et al. in vitro and in vivo studies on HPMA-based polymeric micelles loaded with curcumin. Mol Pharm 2021; 18(3): 1247-63.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c01114] [PMID: 33464911]
[156]
Kanade R, Boche M, Pokharkar V. Self-assembling raloxifene loaded mixed micelles: formulation optimization, in vitro cytotoxicity, and in vivo pharmacokinetics. AAPS PharmSciTech 2018; 19(3): 1105-15.
[http://dx.doi.org/10.1208/s12249-017-0919-6] [PMID: 29181706]
[157]
Ahmad Z, Shah A, Siddiq M, Kraatz HB. Polymeric micelles as drug delivery vehicles. RSC Advances 2014; 4(33): 17028-38.
[http://dx.doi.org/10.1039/C3RA47370H]
[158]
Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm 2013; 453(1): 198-214.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.042] [PMID: 22944304]
[159]
Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv 2013; 2013: 340315.
[http://dx.doi.org/10.1155/2013/340315] [PMID: 23936656]
[160]
Chitwa N, Pillay V, Choonara YE, Kumar P, Toit LC. Pharmaceutical composition United States Patent US9220773B2, 2015.
[161]
Brogdon J, Ebersbach H, Gill S, et al. Treatment of cancer using a CD33 chimeric antigen receptor Australian Patent AU2021200929A1, 2021.
[162]
Peptide mimics macrocycles and their preparations Japanese Patent JP2021046436A, 2021.
[163]
Multiple stimulation response shell-crosslinked polymeric micelles and preparation method thereof Chinese Patent CN107141488A, 2020.
[164]
Lam KS, Luo J. Nanocarriers for drug delivery United States Patents US10556021B2, 2020.
[165]
Multistage target polymer micelles of pH trigger-type release and preparation method thereof in a kind of tumor cell Chinese Patent CN106265510A, 2019.
[166]
Lam KS, Li Y. Reversibly crosslinked micelle systems United States Patent US20150045419A1, 2018.
[167]
Ebersbach HE, Huber T, Jascur J, et al. Targeted nanodroplet emulsions for treating cancer United States Patents US20190192686A1, 2019.
[168]
Trieu V. Conditionally stable micelle composition for metastatic breast cancer treatment. Conditionally stable micelle composition for metastatic breast cancer treatment World Patent WO2016043690A1, 2016.
[169]
Xiaojun G, Xin T. Paclitaxel micelle preparation Chinese Patent CN105078886A, 2015.
[170]
Sill KN, Skaff H, Rios-Doria J, Cardoen G. Polymer micelles containing anthracylines for the treatment of cancer European Patent EP2424359A1, 2014.
[171]
Hsiue GH, Lo CL, Lin SJ, Tsai SJ. Stable micelles formed with diblock copolymers of critical micelle concentration copolymer and temperature-sensitive copolymer United States Patents US20100247654A1, 2012.
[172]
Sousa-Herves A, Fernandez-Megia E, Vega R. pH-sensitive dendritic polymeric micelles. European Patent EP2322227A1, 2011.
[173]
Jahan ST, Sadat SMA, Walliser M, Haddadi A. Targeted therapeutic nanoparticles: An immense promise to fight against cancer. J Drug Deliv 2017; 2017: 9090325.
[http://dx.doi.org/10.1155/2017/9090325] [PMID: 29464123]
[174]
Colombo M, Fiandra L, Alessio G, et al. Tumour homing and therapeutic effect of colloidal nanoparticles depend on the number of attached antibodies. Nat Commun 2016; 7(1): 13818.
[http://dx.doi.org/10.1038/ncomms13818] [PMID: 27991503]
[175]
Gregoriadis G. Liposomes in drug delivery: How it all happened. Pharmaceutics 2016; 8(2): E19.
[http://dx.doi.org/10.3390/pharmaceutics8020019] [PMID: 27231934]
[176]
Solomon M, Muro S. Lysosomal enzyme replacement therapies: Historical development, clinical outcomes, and future perspectives. Adv Drug Deliv Rev 2017; 118: 109-34.
[http://dx.doi.org/10.1016/j.addr.2017.05.004] [PMID: 28502768]
[177]
Muro S. New biotechnological and nanomedicine strategies for treatment of lysosomal storage disorders. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010; 2(2): 189-204.
[http://dx.doi.org/10.1002/wnan.73] [PMID: 20112244]
[178]
Alving CR, Steck EA, Chapman WL Jr, et al. Therapy of leishmaniasis: Superior efficacies of liposome-encapsulated drugs. Proc Natl Acad Sci USA 1978; 75(6): 2959-63.
[http://dx.doi.org/10.1073/pnas.75.6.2959] [PMID: 208079]
[179]
Scherphof G, Roerdink F, Waite M, Parks J. Disintegration of phosphatidylcholine liposomes in plasma as a result of interaction with high-density lipoproteins. BBA - Gen Subj 1978; 542(2): 296-307.
[180]
Rowland RN, Woodley JF. The stability of liposomes in vitro to pH, bile salts and pancreatic lipase. Biochim Biophys Acta 1980; 620(3): 400-9.
[http://dx.doi.org/10.1016/0005-2760(80)90131-9] [PMID: 7016185]
[181]
Morgan JR, Williams KE. Preparation and properties of liposome-associated gentamicin. Antimicrob Agents Chemother 1980; 17(4): 544-8.
[http://dx.doi.org/10.1128/AAC.17.4.544] [PMID: 7396450]
[182]
Juliano RL, Stamp D. The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem Biophys Res Commun 1975; 63(3): 651-8.
[http://dx.doi.org/10.1016/S0006-291X(75)80433-5] [PMID: 1131256]
[183]
Gregoriadis G, Neerunjun DE. Control of the rate of hepatic uptake and catabolism of liposome-entrapped proteins injected into rats. Possible therapeutic applications. Eur J Biochem 1974; 47(1): 179-85.
[http://dx.doi.org/10.1111/j.1432-1033.1974.tb03681.x] [PMID: 4434987]
[184]
Arnon R, Sela M. In vitro and in vivo efficacy of conjugates of daunomycin with anti-tumor antibodies. Immunol Rev 1982; 62(1): 5-27.
[http://dx.doi.org/10.1111/j.1600-065X.1982.tb00387.x] [PMID: 7042540]
[185]
Jain S, Jain V, Mahajan SC. Lipid based vesicular drug delivery system. Adv Pharm 2014; 2014: 1-12.
[186]
Lin C, Zhang X, Chen H, et al. Dual-ligand modified liposomes provide effective local targeted delivery of lung-cancer drug by antibody and tumor lineage-homing cell-penetrating peptide. Drug Deliv 2018; 25(1): 256-66.
[http://dx.doi.org/10.1080/10717544.2018.1425777] [PMID: 29334814]
[187]
Yang W, Hu Q, Xu Y, Liu H, Zhong L. Antibody fragment-conjugated gemcitabine and paclitaxel-based liposome for effective therapeutic efficacy in pancreatic cancer. Mater Sci Eng C 2018; 89: 328-35.
[http://dx.doi.org/10.1016/j.msec.2018.04.011] [PMID: 29752104]
[188]
Lin C, Wong BCK, Chen H, et al. Pulmonary delivery of triptolide-loaded liposomes decorated with anti-carbonic anhydrase IX antibody for lung cancer therapy. Sci Rep 2017; 7(1): 1097.
[http://dx.doi.org/10.1038/s41598-017-00957-4] [PMID: 28428618]
[189]
Ding X, Yin C, Zhang W, et al. designed aptamer-gold nanoparticle-loaded pH-Sensitive liposomes encapsulating morin for treating cancer. Nanoscale Res Lett 2020; 15(1): 68.
[http://dx.doi.org/10.1186/s11671-020-03297-x] [PMID: 32232589]
[190]
Mashreghi M, Zamani P, Moosavian SA, Jaafari MR. Anti-epcam aptamer (Syl3c)-functionalized liposomes for targeted delivery of doxorubicin: in vitro and in vivo antitumor studies in mice bearing C26 colon carcinoma. Nanoscale Res Lett 2020; 15(1): 101.
[http://dx.doi.org/10.1186/s11671-020-03334-9] [PMID: 32383027]
[191]
Mashreghi M, Zamani P, Karimi M, et al. Anti-epithelial cell adhesion molecule RNA aptamer-conjugated liposomal doxorubicin as an efficient targeted therapy in mice bearing colon carcinoma tumor model. Biotechnol Prog 2021; 37(3): e3116.
[http://dx.doi.org/10.1002/btpr.3116] [PMID: 33369269]
[192]
Wu HC, Chang DK. Peptide-mediated liposomal drug delivery system targeting tumor blood vessels in anticancer therapy. J Oncol 2010; 2010: 723798.
[http://dx.doi.org/10.1155/2010/723798] [PMID: 20454584]
[193]
Lakkadwala S, Dos Santos Rodrigues B, Sun C, Singh J. Biodistribution of TAT or QLPVM coupled to receptor targeted liposomes for delivery of anticancer therapeutics to brain in vitro and in vivo. Nanomedicine 2020; 23: 102112.
[http://dx.doi.org/10.1016/j.nano.2019.102112] [PMID: 31669083]
[194]
Fukuta T, Asai T, Kiyokawa Y, et al. Targeted delivery of anticancer drugs to tumor vessels by use of liposomes modified with a peptide identified by phage biopanning with human endothelial progenitor cells. Int J Pharm 2017; 524(1-2): 364-72.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.059] [PMID: 28359814]
[195]
Sun J, Jiang L, Lin Y, et al. Enhanced anticancer efficacy of paclitaxel through multistage tumor-targeting liposomes modified with RGD and KLA peptides. Int J Nanomedicine 2017; 12: 1517-37.
[http://dx.doi.org/10.2147/IJN.S122859] [PMID: 28280323]
[196]
Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation is a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 2016; 99(Pt A): 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012]
[197]
Immordino ML, Dosio F, Cattel L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006; 1(3): 297-315.
[PMID: 17717971]
[198]
Rahim MA, Jan N, Khan S, et al. Recent advancements in stimuli-responsive drug delivery platforms for active and passive cancer targeting. Cancers (Basel) 2021; 13(4): 1-52.
[http://dx.doi.org/10.3390/cancers13040670] [PMID: 33562376]
[199]
Yu J, Chu X, Hou Y. Stimuli-responsive cancer therapy based on nanoparticles. Chem Commun (Camb) 2014; 50(79): 11614-30.
[http://dx.doi.org/10.1039/C4CC03984J] [PMID: 25058003]
[200]
Awad NS, Paul V, AlSawaftah NM, et al. Ultrasound-responsive nanocarriers in cancer treatment: A review. ACS Pharmacol Transl Sci 2021; 4(2): 589-612.
[http://dx.doi.org/10.1021/acsptsci.0c00212] [PMID: 33860189]
[201]
Desai SA, Manjappa A, Khulbe P. Drug delivery nanocarriers and recent advances ventured to improve therapeutic efficacy against osteosarcoma: An overview. J Egypt Natl Canc Inst 2021; 33(1): 4.
[http://dx.doi.org/10.1186/s43046-021-00059-3] [PMID: 33555490]
[202]
Fologea D, Henry R, Salamo G, Mazur Y, Borrelli YJ. Methods and composition for X-ray induced release from pH-sensitive liposomes. United States Patents US9849087B2, 2017.
[203]
Robillard MS, Johannes SM, Pouderoijen MJ, Versteegen RM. Activatable liposome World Patent. WO2014081299A1, 2014.
[204]
Cui Z, Valdes S. Lipid nanoparticles containing pharmaceutical and/or nutraceutical agents and methods thereof. World Patent WO2020247912A1, 2020.
[205]
Kaufman RC. Lipid nanoparticle compositions and methods as carriers of cannabinoids in standardized precision-metered dosage forms Australian Patent AU2019201792B2, 2020.
[206]
Hayes ME, Noble CO, Szoka FC. Remote loading of sparingly water-soluble drugs into liposomes United States Patents US10722467B2, 2020.
[207]
Hong K, Drummond DC, Kirpotin D. Liposomes were useful for drug delivery United States Patents US10722508B2, 2020.
[208]
Barenholz Y, Cohen R. Composition of matter comprising liposomes embedded in a polymeric matrix and methods of using same United States Patents US10842745B2, 2020.
[209]
Yedgar S. Liposomes comprise polymer-conjugated lipids and related uses United States Patents US10624851B2, 2020.
[210]
Geall A, Verma A. Small liposomes for delivery of immunogen-encoding RNA Australian Patent AU2018204178B2, 2020.
[211]
Schutt E, Mcguire R, Walters P, Los K. Method for formulating multivesicular liposomes Spainish Patent ES2745113T3, 2020.
[212]
Geall A, Verma A. Pegylated liposomes for delivery of immunogen-encoding RNA United States Patents US20200230058A1, 2020.
[213]
Andreasen LB, Wood G, Christensen D. Methods for producing liposomes United States Patents US20190201340A1, 2019.
[214]
Mansour M, Sammatur L, MacDonald LD, Karkada M, Weir GM, Fuentes-Ortega A. Composition comprising liposomes, antigen, polynucleotide and a carrier comprising a continuous phase of a hydrophobic substance United States Patents US20190290743A1, 2019.
[215]
Daftarian PM, Mansour M, Pohajdak B, Brown RG, Kast WM. Use of liposomes in a carrier comprising a continuous hydrophobic phase as a vehicle for cancer treatment United States Patents US10272042B2, 2019.
[216]
Fologea D, Henry R, Salamo G, Mazur Y, Borrelli MJ. Methods and composition for X-ray induced release from pH-sensitive liposomes. United States Patents US10220000B2, 2019.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy