Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

The Angiogenesis Effects of Electro-acupuncture Treatment via Exosomal miR-210 in Cerebral Ischemia-Reperfusion Rats

Author(s): Shu-Ying Xu, Chun-Li Zeng, Si-Ming Ni and Yong-Jun Peng*

Volume 19, Issue 1, 2022

Published on: 17 May, 2022

Page: [61 - 72] Pages: 12

DOI: 10.2174/1567202619666220321115412

Price: $65

Abstract

Background: Acupuncture has been recommended as an alternative and complementary therapy for preventing and treating cerebral ischemia by the World Health Organization (WHO) for years. However, the mechanisms remain unclear. Accumulating evidence has shown that acupuncture can promote angiogenesis to attenuate brain damage after ischemic stroke. In recent years, exosome- carried microRNAs (miRNAs) activated by acupuncture have proven effective in regulating pathological changes. We, therefore, investigated whether electro-acupuncture (EA) enhanced angiogenesis in cerebral stroke via exosome-carried miR-210.

Methods: We extracted and identified the exosomes from the serum of MCAO with EA treatment and injected them into MCAO rats for further observation. Simultaneously, miR-120 siRNA and HIF-1α inhibitor were transfected. Then, we evaluated the volume of infarction, pathological changes, and expression levels of angiogenic related factors of each group of rats by TTC and HE staining, transmission electron microscope (TEM), western blot, and quantitative PCR (qPCR).

Results: Compared with the MCAO group, EA-Exosome (EA-EXO) treatment significantly decreased the infarct volume and the pathological damage, but miR-210 siRNA or HIF-1α inhibitor reversed the protective outcomes induced by EA-EXO. Moreover, EA-EXO treatment upregulated miR-210 and increased CD34, HIF-1α, VEGF, Notch1 protein, and mRNA expressions compared to the MCAO group. MiR-210 siRNA or HIF-1α inhibitor treatments both down-regulated those angiogenic related proteins and mRNAs.

Conclusion: EA treatment could activate the HIF-1α/VEGF/Notch 1 signal pathway to facilitate angiogenesis after ischemic stroke via exosomal miR-210.

Keywords: Ischemic stroke, EA, exosomes, miR-210, angiogenesis, MCAO.

[1]
Putaala J. Ischemic stroke in young adults. Continuum (Minneap Minn) 2020; 26(2): 386-414.
[http://dx.doi.org/10.1212/CON.0000000000000833] [PMID: 32224758]
[2]
Qian Y, Chopp M, Chen J. Emerging role of microRNAs in ischemic stroke with comorbidities. Exp Neurol 2020; 331: 113382.
[http://dx.doi.org/10.1016/j.expneurol.2020.113382] [PMID: 32561412]
[3]
Rabinstein AA. Update on treatment of acute ischemic stroke. Continuum (Minneap Minn) 2020; 26(2): 268-86.
[http://dx.doi.org/10.1212/CON.0000000000000840] [PMID: 32224752]
[4]
Aronov MS, Popugaev KA, Udalov YD, Samoylov AS. Endovascular treatment of acute ischemic stroke. Vopr Neirokhir 2018; 82(4): 103-8.
[http://dx.doi.org/10.17116/neiro2018824103] [PMID: 30137044]
[5]
Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke 1994; 25(9): 1794-8.
[http://dx.doi.org/10.1161/01.STR.25.9.1794] [PMID: 7521076]
[6]
Bulygin KV, Beeraka NM, Saitgareeva AR, et al. Can miRNAs be considered as diagnostic and therapeutic molecules in ischemic stroke pathogenesis?-Current Status. Int J Mol Sci 2020; 21(18): E6728.
[http://dx.doi.org/10.3390/ijms21186728] [PMID: 32937836]
[7]
Sørensen SS, Nygaard AB, Carlsen AL, Heegaard NHH, Bak M, Christensen T. Elevation of brain-enriched miRNAs in cerebrospinal fluid of patients with acute ischemic stroke. Biomark Res 2017; 5(1): 24.
[http://dx.doi.org/10.1186/s40364-017-0104-9] [PMID: 28702194]
[8]
Camps C, Buffa FM, Colella S, et al. hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res 2008; 14(5): 1340-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1755] [PMID: 18316553]
[9]
Kulshreshtha R, Ferracin M, Wojcik SE, et al. A microRNA signature of hypoxia. Mol Cell Biol 2007; 27(5): 1859-67.
[http://dx.doi.org/10.1128/MCB.01395-06] [PMID: 17194750]
[10]
Bavelloni A, Ramazzotti G, Poli A, et al. MiRNA-210: A Current Overview. Anticancer Res 2017; 37(12): 6511-21.
[PMID: 29187425]
[11]
Lou YL, Guo F, Liu F, et al. miR-210 activates notch signaling pathway in angiogenesis induced by cerebral ischemia. Mol Cell Biochem 2012; 370(1-2): 45-51.
[http://dx.doi.org/10.1007/s11010-012-1396-6] [PMID: 22833359]
[12]
Zhang H, Wu J, Wu J, et al. Exosome-mediated targeted delivery of miR-210 for angiogenic therapy after cerebral ischemia in mice. J Nanobiotechnol 2019; 17(1): 29.
[http://dx.doi.org/10.1186/s12951-019-0461-7] [PMID: 30782171]
[13]
Zeng LL, He XS, Liu JR, Zheng CB, Wang YT, Yang GY. Lentivirus-mediated overexpression of microrna-210 improves long-term out-comes after focal cerebral ischemia in mice. CNS Neurosci Ther 2016; 22(12): 961-9.
[http://dx.doi.org/10.1111/cns.12589] [PMID: 27390218]
[14]
Narayanamurthy R, Yang JJ, Yager JY, Unsworth LD. Drug delivery platforms for neonatal brain injury. J Control Release 2021; 330: 765-87.
[http://dx.doi.org/10.1016/j.jconrel.2020.12.056] [PMID: 33417984]
[15]
Sun Z, Shi K, Yang S, et al. Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer 2018; 17(1): 147.
[http://dx.doi.org/10.1186/s12943-018-0897-7] [PMID: 30309355]
[16]
Zhang J, Li S, Li L, et al. Exosome and exosomal microRNA: Trafficking, sorting, and function. Genom Proteom Bioinformat 2015; 13(1): 17-24.
[http://dx.doi.org/10.1016/j.gpb.2015.02.001] [PMID: 25724326]
[17]
Noonin C, Thongboonkerd V. Exosome-inflammasome crosstalk and their roles in inflammatory responses. Theranostics 2021; 11(9): 4436-51.
[http://dx.doi.org/10.7150/thno.54004] [PMID: 33754070]
[18]
Alyautdin R, Khalin I, Nafeeza MI, Haron MH, Kuznetsov D. Nanoscale drug delivery systems and the blood-brain barrier. Int J Nanomed 2014; 9: 795-811.
[PMID: 24550672]
[19]
Chavez LM, Huang SS, MacDonald I, Lin JG, Lee YC, Chen YH. Mechanisms of acupuncture therapy in ischemic stroke rehabilitation: A literature review of basic studies. Int J Mol Sci 2017; 18(11): E2270.
[http://dx.doi.org/10.3390/ijms18112270] [PMID: 29143805]
[20]
Zhang S, Jin T, Wang L, et al. Electro-acupuncture promotes the differentiation of endogenous neural stem cells via exosomal microrna 146b after ischemic stroke. Front Cell Neurosci 2020; 14: 223.
[http://dx.doi.org/10.3389/fncel.2020.00223] [PMID: 32792909]
[21]
Li Z, Yang M, Lin Y, et al. Electroacupuncture promotes motor function and functional connectivity in rats with ischemic stroke: An ani-mal resting-state functional magnetic resonance imaging study. Acupunct Med 2021; 39(2): 146-55.
[http://dx.doi.org/10.1177/0964528420920297] [PMID: 32576025]
[22]
Xing Y, Yang SD, Wang MM, Dong F, Feng YS, Zhang F. Electroacupuncture alleviated neuronal apoptosis following ischemic stroke in rats via midkine and erk/jnk/p38 signaling pathway. J Mol Neurosci 2018; 66(1): 26-36.
[http://dx.doi.org/10.1007/s12031-018-1142-y] [PMID: 30062439]
[23]
Wu Y, Hu R, Zhong X, et al. Electric acupuncture treatment promotes angiogenesis in rats with middle cerebral artery occlusion through EphB4/EphrinB2 mediated Src/PI3K signal pathway. J Stroke Cerebrovasc Dis 2021; 30(3): 105165.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.105165] [PMID: 33360522]
[24]
Jia LY, Du YH, Li J, Pang B, Xu MY. Effects of electroacupuncture on morphology of neovascularization and expression of angiogenesis-related factors in ischemic brain tissue of cerebral ischemia rats. Zhen Ci Yan Jiu 2019; 44(10): 715-21.
[PMID: 31657160]
[25]
He QS, Zhang L, Fan ZY, et al. Protective effects of total flavonoids in Caragana against hypoxia/reoxygenation-induced injury in human brain microvascular endothelial cells. Biomed Pharmacother 2017; 89: 316-22.
[http://dx.doi.org/10.1016/j.biopha.2017.01.106] [PMID: 28236705]
[26]
Wang Y, Shen Y, Liu Z, et al. Dl-NBP (Dl-3-N-Butylphthalide) treatment promotes neurological functional recovery accompanied by the upregulation of white matter integrity and HIF-1α/VEGF/Notch/Dll4 expression. Front Pharmacol 2020; 10: 1595.
[http://dx.doi.org/10.3389/fphar.2019.01595] [PMID: 32038259]
[27]
Liang C, Ni GX, Shi XL, Jia L, Wang YL. Astragaloside IV regulates the HIF/VEGF/Notch signaling pathway through miRNA-210 to pro-mote angiogenesis after ischemic stroke. Restor Neurol Neurosci 2020; 38(3): 271-82.
[http://dx.doi.org/10.3233/RNN-201001] [PMID: 32417803]
[28]
Xu SY, Lv HQ, Li WQ, Hong H, Peng YJ, Zhu BM. Electroacupuncture alleviates cerebral ischemia/reperfusion injury in rats by histone h4 lysine 16 acetylation-mediated autophagy. Front Psychiatry 2020; 11: 576539.
[http://dx.doi.org/10.3389/fpsyt.2020.576539] [PMID: 33391046]
[29]
Zhou F, Guo J, Cheng J, Wu G, Xia Y. Electroacupuncture increased cerebral blood flow and reduced ischemic brain injury: Dependence on stimulation intensity and frequency. J Appl Physiol (1985) 2011; 111(6): 1877-87..
[30]
Bederson JB, Pitts LH, Germano SM, Nishimura MC, Davis RL, Bartkowski HM. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke 1986; 17(6): 1304-8.
[http://dx.doi.org/10.1161/01.STR.17.6.1304] [PMID: 2433817]
[31]
Angel CZ, Lynch SM, Nesbitt H, McKenna MM, Walsh CP, McKenna DJ. miR-210 is induced by hypoxia and regulates neural cell adhe-sion molecule in prostate cells. J Cell Physiol 2020; 235(9): 6194-203.
[http://dx.doi.org/10.1002/jcp.29548] [PMID: 31975433]
[32]
Guan Y, Song X, Sun W, Wang Y, Liu B. Effect of hypoxia-induced MicroRNA-210 expression on cardiovascular disease and the under-lying mechanism. Oxid Med Cell Longev 2019; 2019: 4727283.
[http://dx.doi.org/10.1155/2019/4727283] [PMID: 31249644]
[33]
Cheng H, Chang S, Xu R, et al. Hypoxia-challenged MSC-derived exosomes deliver miR-210 to attenuate post-infarction cardiac apopto-sis. Stem Cell Res Ther 2020; 11(1): 224.
[http://dx.doi.org/10.1186/s13287-020-01737-0] [PMID: 32513270]
[34]
Zhao M, Gao Y, Wang F, et al. Neural progenitor cells-secreted exosomal miR-210 induced by hypoxia influences cell viability. Neuroreport 2020; 31(11): 798-805.
[http://dx.doi.org/10.1097/WNR.0000000000001490] [PMID: 32590394]
[35]
Asgari Taei A, Nasoohi S, Hassanzadeh G, Kadivar M, Dargahi L, Farahmandfar M. Enhancement of angiogenesis and neurogenesis by intracerebroventricular injection of secretome from human embryonic stem cell-derived mesenchymal stem cells in ischemic stroke mod-el. Biomed Pharmacother 2021; 140: 111709.
[http://dx.doi.org/10.1016/j.biopha.2021.111709] [PMID: 34020250]
[36]
Yu K, Wu Y, Zhang Q, et al. Enriched environment induces angiogenesis and improves neural function outcomes in rat stroke model. J Neurol Sci 2014; 347(1-2): 275-80.
[http://dx.doi.org/10.1016/j.jns.2014.10.022] [PMID: 25455300]
[37]
Du Y, Shi L, Li J, Xiong J, Li B, Fan X. Angiogenesis and improved cerebral blood flow in the ischemic boundary area were detected after electroacupuncture treatment to rats with ischemic stroke. Neurol Res 2011; 33(1): 101-7.
[http://dx.doi.org/10.1179/016164110X12714125204317] [PMID: 20546685]
[38]
Liu L, Zhang Q, Xie HY, et al. Differences in post-ischemic motor recovery and angiogenesis of MCAO rats following electroacupuncture at different acupoints. Curr Neurovasc Res 2020; 17(1): 71-8.
[http://dx.doi.org/10.2174/1567202617666191223151553] [PMID: 31870267]
[39]
Chen JDZ, Ni M, Yin J. Electroacupuncture treatments for gut motility disorders. Neurogastroenterol Motil 2018; 30(7): e13393.
[http://dx.doi.org/10.1111/nmo.13393] [PMID: 29906324]
[40]
Zou Y, Bhat OM, Yuan X, et al. Release and actions of inflammatory exosomes in pulmonary emphysema: Potential therapeutic target of acupuncture. J Inflamm Res 2021; 14: 3501-21.
[http://dx.doi.org/10.2147/JIR.S312385] [PMID: 34335040]
[41]
Forró T, Bajkó Z. Bălașa A, Bălașa R. Dysfunction of the neurovascular unit in ischemic stroke: Highlights on microRNAs and exosomes as potential biomarkers and therapy. Int J Mol Sci 2021; 22(11): 5621.
[http://dx.doi.org/10.3390/ijms22115621] [PMID: 34070696]
[42]
Khan I, Preeti K, Fernandes V, Khatri DK, Singh SB. Role of MicroRNAs, aptamers in neuroinflammation and neurodegenerative disor-ders. Cell Mol Neurobiol 2021.
[43]
Lakhal S, Wood MJ. Exosome nanotechnology: An emerging paradigm shift in drug delivery: Exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. BioEssays 2011; 33(10): 737-41.
[http://dx.doi.org/10.1002/bies.201100076] [PMID: 21932222]
[44]
Lässer C. Exosomal RNA as biomarkers and the therapeutic potential of exosome vectors Expert Opin Biol Ther 2012; 12(sup1)(Suppl. 1): S189-97..
[http://dx.doi.org/10.1517/14712598.2012.680018] [PMID: 22506888]
[45]
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020; 367(6478): eaau6977.
[http://dx.doi.org/10.1126/science.aau6977] [PMID: 32029601]
[46]
Kelly TJ, Souza AL, Clish CB, Puigserver P. A hypoxia-induced positive feedback loop promotes hypoxia-inducible factor 1alpha stability through miR-210 suppression of glycerol-3-phosphate dehydrogenase 1-like. Mol Cell Biol 2011; 31(13): 2696-706.
[http://dx.doi.org/10.1128/MCB.01242-10] [PMID: 21555452]
[47]
Chan SY, Loscalzo J. MicroRNA-210: A unique and pleiotropic hypoxamir. Cell Cycle 2010; 9(6): 1072-83.
[http://dx.doi.org/10.4161/cc.9.6.11006] [PMID: 20237418]
[48]
Liu F, Lou YL, Wu J, et al. Upregulation of microRNA-210 regulates renal angiogenesis mediated by activation of VEGF signaling path-way under ischemia/perfusion injury in vivo and in vitro. Kidney Blood Press Res 2012; 35(3): 182-91.
[http://dx.doi.org/10.1159/000331054] [PMID: 22123256]
[49]
Devlin C, Greco S, Martelli F, Ivan M. miR-210: More than a silent player in hypoxia. IUBMB Life 2011; 63(2): 94-100.
[http://dx.doi.org/10.1002/iub.427] [PMID: 21360638]
[50]
Semenza GL. HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol 2001; 13(2): 167-71.
[http://dx.doi.org/10.1016/S0955-0674(00)00194-0] [PMID: 11248550]
[51]
Liu LX, Lu H, Luo Y, et al. Stabilization of vascular endothelial growth factor mRNA by hypoxia-inducible factor 1. Biochem Biophys Res Commun 2002; 291(4): 908-14.
[http://dx.doi.org/10.1006/bbrc.2002.6551] [PMID: 11866451]
[52]
Zheng X, Linke S, Dias JM, et al. Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways. Proc Natl Acad Sci USA 2008; 105(9): 3368-73.
[http://dx.doi.org/10.1073/pnas.0711591105] [PMID: 18299578]
[53]
Chen Y, Zhao B, Zhu Y, Zhao H, Ma C. HIF-1-VEGF-Notch mediates angiogenesis in temporomandibular joint osteoarthritis. Am J Transl Res 2019; 11(5): 2969-82.
[PMID: 31217867]
[54]
Shi L, Cao HM, Li Y, et al. Electroacupuncture improves neurovascular unit reconstruction by promoting collateral circulation and angio-genesis. Neural Regen Res 2017; 12(12): 2000-6.
[http://dx.doi.org/10.4103/1673-5374.221156] [PMID: 29323038]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy