Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Design, Synthesis, and Anti-Bacterial Evaluation of Tetrahydrobenzothiophene Derivatives as Lipopolysaccharide Biogenesis Inhibitors

Author(s): Shuchen Pei, Jinhua Yang, Shihao Xia, Shuting Tang, Kangyao Yuan and Jun Chen*

Volume 20, Issue 3, 2023

Published on: 05 July, 2022

Page: [335 - 342] Pages: 8

DOI: 10.2174/1570180819666220317151208

Price: $65

Abstract

Background: Bacterial infections caused by multidrug-resistant bacteria have emerged as major threats to human communities worldwide. There is a great need to develop new mechanisms by which anti-bacterial agents can combat bacterial antibiotic resistance.

Objective: This study aims to synthesize and characterize a series of novel tetrahydrobenzothiophene derivatives and evaluate their anti-bacterial activities.

Methods: In this study, we have synthesized 2-benzamido-4,5,6,7-tetrahydrobenzo[b]thiophene-3- carboxylic acid derivatives (3a-3r) and investigated their anti-bacterial activities against E. coli, P. aeruginosa, Salmonella, and S. aureus.

Results: The MIC values demonstrated that all synthesized derivatives possessed potent anti-bacterial activity properties. Compounds 3b, 3e, 3f, 3g, 3h, 3n, and 3q exhibited in vitro excellent anti-bacterial efficiency. Compounds 3b, 3e, 3f, and 3p were evaluated by in vitro time-kill assay; they displayed concentration- dependent bacteriostatic effects. Compounds 3b, 3e, 3f, and 3p showed moderate water solubility, high stability in plasma, and moderate acute oral toxicity.

Conclusion: Most of the 2-benzamido-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylic acid derivatives exhibited potent anti-bacterial activities. The data reported in this paper may guide the design of tetrahydrobenzothiophene derivatives.

Keywords: Tetrahydrobenzothiophene, lipopolysaccharide biogenesis inhibitors, synthesis, design, anti-bacterial activity, ADME.

Graphical Abstract

[1]
Otten, E.G.; Werner, E.; Crespillo-Casado, A.; Boyle, K.B.; Dharamdasani, V.; Pathe, C.; Santhanam, B.; Randow, F. Ubiquitylation of lipopolysaccharide by RNF213 during bacterial infection. Nature, 2021, 594(7861), 111-116.
[http://dx.doi.org/10.1038/s41586-021-03566-4] [PMID: 34012115]
[2]
Coskun, G.P.; Djikic, T.; Kalayci, S.; Yelekci, K.; Sahin, F.; Kucukguzel, G. Synthesis, molecular modelling and antibacterial activity against helicobacter pylori of novel diflunisal derivatives as urease enzyme inhibitors. Lett. Drug Des. Discov., 2019, 16(4), 392-400.
[http://dx.doi.org/10.2174/1570180815666180627130208]
[3]
Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: No ESKAPE! An update from the infectious diseases society of America. Clin. Infect. Dis., 2009, 48(1), 1-12.
[http://dx.doi.org/10.1086/595011] [PMID: 19035777]
[4]
Hersh, A.L.; Newland, J.G.; Beekmann, S.E.; Polgreen, P.M.; Gilbert, D.N. Unmet medical need in infectious diseases. Clin. Infect. Dis., 2012, 54(11), 1677-1678.
[http://dx.doi.org/10.1093/cid/cis275] [PMID: 22474176]
[5]
Verma, P.; Tiwari, M.; Tiwari, V. Strategies to combat bacterial antimicrobial resistance: A focus on mechanism of the efflux pumps inhibitors. SN Compr. Clin. Med., 2021, 3(2), 510-527.
[http://dx.doi.org/10.1007/s42399-021-00780-z]
[6]
Michalska, K.; Karpiuk, I.; Król, M.; Tyski, S. Recent development of potent analogues of oxazolidinone antibacterial agents. Bioorg. Med. Chem., 2013, 21(3), 577-591.
[http://dx.doi.org/10.1016/j.bmc.2012.11.036] [PMID: 23273607]
[7]
Bladen, H.A.; Mergenhagen, S.E. Ultrastructure of Veillonella and morphological correlation of an outer membrane with particles associated with endotoxic activity. J. Bacteriol., 1964, 88(5), 1482-1492.
[http://dx.doi.org/10.1128/jb.88.5.1482-1492.1964] [PMID: 14234809]
[8]
El-Gohary, N.S.; Shaaban, M.I. Design, synthesis, antimicrobial, antiquorum-sensing and antitumor evaluation of new series of pyrazolopyridine derivatives. Eur. J. Med. Chem., 2018, 157, 729-742.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.008] [PMID: 30138804]
[9]
Rakesh, K.P.; Vivek, H.K.; Manukumar, H.M.; Bukhari, S.N.A.; Qin, H-L.; Sridhara, M.B. Promising bactericidal approach of dihydrazone analogues against bio-film forming Gram-negative bacteria and molecular mechanistic studies. RSC Advances, 2018, 8(10), 5473-5483.
[http://dx.doi.org/10.1039/C7RA13661G]
[10]
Rakesh, K.P.; Marichannegowda, M.H.; Srivastava, S.; Chen, X.; Long, S.; Karthik, C.S.; Mallu, P.; Qin, H.L. Combating a master manipulator: Staphylococcus aureus immunomodulatory molecules as targets for combinatorial drug discovery. ACS Comb. Sci., 2018, 20(12), 681-693.
[http://dx.doi.org/10.1021/acscombsci.8b00088] [PMID: 30372025]
[11]
Minton, K. Highs and lows of the LPS response. Nat. Rev. Immunol., 2020, 20(10), 590-591.
[http://dx.doi.org/10.1038/s41577-020-00427-5] [PMID: 32782356]
[12]
Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev., 2003, 67(4), 593-656.
[http://dx.doi.org/10.1128/MMBR.67.4.593-656.2003] [PMID: 14665678]
[13]
Guest, R.L.; Rutherford, S.T.; Silhavy, T.J. Border control: Regulating LPS biogenesis. Trends Microbiol., 2021, 29(4), 334-345.
[http://dx.doi.org/10.1016/j.tim.2020.09.008] [PMID: 33036869]
[14]
Nourbakhsh, S.; Yu, L.; Ha, B-Y. Modeling the protective role of bacterial lipopolysaccharides against membrane-rupturing peptides. J. Phys. Chem. B, 2021, 125(31), 8839-8854.
[http://dx.doi.org/10.1021/acs.jpcb.1c02330] [PMID: 34319722]
[15]
Raetz, C.R.; Whitfield, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem., 2002, 71(1), 635-700.
[http://dx.doi.org/10.1146/annurev.biochem.71.110601.135414] [PMID: 12045108]
[16]
Doerrler, W.T. Lipid trafficking to the outer membrane of Gram-negative bacteria. Mol. Microbiol., 2006, 60(3), 542-552.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05130.x] [PMID: 16629659]
[17]
Wu, T.; McCandlish, A.C.; Gronenberg, L.S.; Chng, S.S.; Silhavy, T.J.; Kahne, D. Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of Escherichia coli. Proc. Natl. Acad. Sci. USA, 2006, 103(31), 11754-11759.
[http://dx.doi.org/10.1073/pnas.0604744103] [PMID: 16861298]
[18]
Vaara, M. Antibiotic-supersusceptible mutants of Escherichia coli and Salmonella typhimurium. Antimicrob. Agents Chemother., 1993, 37(11), 2255-2260.
[http://dx.doi.org/10.1128/AAC.37.11.2255] [PMID: 8285603]
[19]
Sampson, B.A.; Misra, R.; Benson, S.A. Identification and characterization of a new gene of Escherichia coli K-12 involved in outer membrane permeability. Genetics, 1989, 122(3), 491-501.
[http://dx.doi.org/10.1093/genetics/122.3.491] [PMID: 2547691]
[20]
Sherman, D.J.; Xie, R.; Taylor, R.J.; George, A.H.; Okuda, S.; Foster, P.J.; Needleman, D.J.; Kahne, D. Lipopolysaccharide is transported to the cell surface by a membrane-to-membrane protein bridge. Science, 2018, 359(6377), 798-801.
[http://dx.doi.org/10.1126/science.aar1886] [PMID: 29449493]
[21]
Zhang, G.; Baidin, V.; Pahil, K.S.; Moison, E.; Tomasek, D.; Ramadoss, N.S.; Chatterjee, A.K.; McNamara, C.W.; Young, T.S.; Schultz, P.G.; Meredith, T.C.; Kahne, D. Cell-based screen for discovering lipopolysaccharide biogenesis inhibitors. Proc. Natl. Acad. Sci. USA, 2018, 115(26), 6834-6839.
[http://dx.doi.org/10.1073/pnas.1804670115] [PMID: 29735709]
[22]
Mojtahedi, Mohammad M. Abaee, M. Saeed; Mahmoodi, P.; Adib, M. Convenient synthesis of 2-aminothiophene derivatives by acceleration of gewald reaction under ultrasonic aqueous conditions. Synth. Commun., 2010, 40(14), 2067-2074.
[http://dx.doi.org/10.1080/00397910903219435]
[23]
Isaksson, J.; Brandsdal, B.O.; Engqvist, M.; Flaten, G.E.; Svendsen, J.S.M.; Stensen, W. A synthetic antimicrobial peptidomimetic (LTX 109): Stereochemical impact on membrane disruption. J. Med. Chem., 2011, 54(16), 5786-5795.
[http://dx.doi.org/10.1021/jm200450h] [PMID: 21732630]

© 2025 Bentham Science Publishers | Privacy Policy