Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Mini-Review Article

Could Polyphenolic Food Intake Help in the Control of Type 2 Diabetes? A Narrative Review of the Last Evidence

Author(s): Luigi Ferrara, Marko Joksimovic and Stefania D'Angelo*

Volume 18, Issue 9, 2022

Published on: 31 May, 2022

Page: [785 - 798] Pages: 14

DOI: 10.2174/1573401318666220317140717

Price: $65

Abstract

Background: Diabetes is one of the most serious global public health concerns, imposing a significant burden on public health and socio-economic development, with type 2 diabetes accounting for 90 percent of individuals with the disease (T2D).

Introduction: Beyond the hereditary factor, there are several risk factors associated with the development of this syndrome; the lifestyle plays an increasingly predominant role in the development of the metabolic complications related to T2D and a significant role in the onset of this syndrome is played by an unbalanced diet. Polyphenolic food is a plant-based food, including vegetables, fruits, whole grains, tea, coffee, and nuts. In recent years, there has been growing evidence that polyphenols, due to their biological properties, may be used as nutraceuticals and supplementary treatments for various aspects of T2D. Polyphenols may influence glycemia and T2D through hypoglycemic properties, such as reduced insulin resistance, reduced fasting blood glucose, and glycosylated hemoglobin value. Based on several in vitro, animal models, and some human studies, it has been detected that polyphenol-rich products modulate carbohydrate and lipid metabolism, attenuate hyperglycemia, dyslipidemia, and insulin resistance, improve adipose tissue metabolism, and alleviate oxidative stress and stress-sensitive signaling pathways and inflammatory processes.

Methods: This manuscript summarizes human clinical trials conducted within the last 5 years linking dietary polyphenols to T2D, with a focus on polyphenolic foods found in the Mediterranean diet.

Results: Intaking polyphenols and their food sources have demonstrated beneficial effects on insulin resistance and other cardiometabolic risk factors. Prospective studies have shown inverse associations between polyphenol intake and T2D. The Mediterranean diet and its key components, olive oil, nuts, and red wine, have been inversely associated with insulin resistance and T2D.

Conclusion: In conclusion, the intake of polyphenols may be beneficial for both insulin resistance and T2D risk. However, other human clinical studies are needed to evaluate the suitable dose and duration of supplementation with polyphenolic food in T2D patients.

Keywords: Type 2 diabetes, diet, polyphenols, polyphenolic food, nutrition, human, prevention.

Graphical Abstract

[1]
WHO. World Health Organization (WHO) Global Report on Diabetes. 2016. Available from: http://www.who.int/diabetes/global-report/en/(Accessed on 12 September 2017)
[2]
Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 2010; 87(1): 4-14.
[http://dx.doi.org/10.1016/j.diabres.2009.10.007] [PMID: 19896746]
[3]
Zimmet PZ. Diabetes and its drivers: The largest epidemic in human history? Clin Diabetes Endocrinol 2017; 3(1): 1.
[http://dx.doi.org/10.1186/s40842-016-0039-3] [PMID: 28702255]
[4]
Panagiotopoulos C, Hadjiyannakis S, Henderson M, Panagiotopoulos C, Hadjiyannakis S, Henderson M. Type 2 diabetes in children and adolescents. Can J Diabetes 2018; 42: S247-54.
[http://dx.doi.org/10.1016/j.jcjd.2017.10.037]
[5]
Singh AK, Gupta R, Ghosh A, Misra A. Diabetes in COVID-19: Prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab Syndr 2020; 14(4): 303-10.
[http://dx.doi.org/10.1016/j.dsx.2020.04.004] [PMID: 32298981]
[6]
West SD, Nicoll DJ, Wallace TM, Matthews DR, Stradling JR. Effect of CPAP on insulin resistance and HbA1c in men with obstructive sleep apnoea and type 2 diabetes. Thorax 2007; 62(11): 969-74.
[http://dx.doi.org/10.1136/thx.2006.074351] [PMID: 17557769]
[7]
Wang J, Ma Q, Li Y, et al. Research progress on Traditional Chinese Medicine syndromes of diabetes mellitus. Biomed Pharmacother 2020; 121109565
[http://dx.doi.org/10.1016/j.biopha.2019.109565] [PMID: 31704615]
[8]
Ge Q, Chen L, Chen K. Treatment of diabetes mellitus using iPS cells and spice polyphenols. J Diabetes Res 2017; 20175837804
[http://dx.doi.org/10.1155/2017/5837804] [PMID: 28758131]
[9]
Chehade JM, Mooradian AD. A rational approach to drug therapy of type 2 diabetes mellitus. Drugs 2000; 60(1): 95-113.
[http://dx.doi.org/10.2165/00003495-200060010-00006] [PMID: 10929931]
[10]
Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A. Insulin resistance: Review of the underlying molecular mechanisms. J Cell Physiol 2019; 234(6): 8152-61.
[http://dx.doi.org/10.1002/jcp.27603] [PMID: 30317615]
[11]
Færch K, Vistisen D, Pacini G, et al. Insulin resistance is accompanied by increased fasting glucagon and delayed glucagon suppression in individuals with normal and impaired glucose regulation. Diabetes 2016; 65(11): 3473-81.
[http://dx.doi.org/10.2337/db16-0240] [PMID: 27504013]
[12]
Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev 2018; 98(4): 2133-223.
[http://dx.doi.org/10.1152/physrev.00063.2017] [PMID: 30067154]
[13]
White MG, Shaw JA, Taylor R. Type 2 diabetes: The pathologic basis of reversible β-cell dysfunction. Diabetes Care 2016; 39(11): 2080-8.
[http://dx.doi.org/10.2337/dc16-0619] [PMID: 27926891]
[14]
Elimam H, Abdulla AM, Taha IM. Inflammatory markers and control of type 2 diabetes mellitus. Diabetes Metab Syndr 2019; 13(1): 800-4.
[http://dx.doi.org/10.1016/j.dsx.2018.11.061] [PMID: 30641811]
[15]
Gerber PA, Rutter GA. The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxid Redox Signal 2017; 26(10): 501-18.
[http://dx.doi.org/10.1089/ars.2016.6755] [PMID: 27225690]
[16]
Samuel VT, Shulman GI. The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux. J Clin Invest 2016; 126(1): 12-22.
[http://dx.doi.org/10.1172/JCI77812] [PMID: 26727229]
[17]
Liemburg-Apers DC, Willems PH, Koopman WJ, Grefte S. Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Arch Toxicol 2015; 89(8): 1209-26.
[http://dx.doi.org/10.1007/s00204-015-1520-y] [PMID: 26047665]
[18]
Luo X, Wu J, Jing S, Yan LJ. Hyperglycemic stress and carbon stress in diabetic glucotoxicity. Aging Dis 2016; 7(1): 90-110.
[http://dx.doi.org/10.14336/AD.2015.0702] [PMID: 26816666]
[19]
Wu J, Luo X, Yan LJ. Two dimensional blue native/SDS-PAGE to identify mitochondrial complex I subunits modified by 4-hydroxynonenal (HNE). Front Physiol 2015; 6: 98.
[http://dx.doi.org/10.3389/fphys.2015.00098] [PMID: 25859224]
[20]
Yaribeygi H, Sathyapalan T, Atkin SL, Sahebkar A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid Med Cell Longev 2020; 20208609213
[http://dx.doi.org/10.1155/2020/8609213] [PMID: 32215179]
[21]
Kolb H, Martin S. Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Med 2017; 15(1): 131.
[http://dx.doi.org/10.1186/s12916-017-0901-x] [PMID: 28720102]
[22]
American Diabetes Association. 5. Lifestyle Management: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019; 42(Suppl. 1): S46-60.
[http://dx.doi.org/10.2337/dc19-S005] [PMID: 30559231]
[23]
Davies MJ, D’Alessio DA, Fradkin J, et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2018; 41(12): 2669-701.
[http://dx.doi.org/10.2337/dci18-0033] [PMID: 30291106]
[24]
Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346(6): 393-403.
[http://dx.doi.org/10.1056/NEJMoa012512] [PMID: 11832527]
[25]
Tuomilehto J, Lindström J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001; 344(18): 1343-50.
[http://dx.doi.org/10.1056/NEJM200105033441801] [PMID: 11333990]
[26]
Estruch R, Ros E, Salas-Salvadó J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 2013; 368(14): 1279-90.
[http://dx.doi.org/10.1056/NEJMoa1200303] [PMID: 23432189]
[27]
Salas-Salvadó J, Bulló M, Estruch R, et al. Prevention of diabetes with Mediterranean diets: A subgroup analysis of a randomized trial. Ann Intern Med 2014; 160(1): 1-10.
[http://dx.doi.org/10.7326/M13-1725] [PMID: 24573661]
[28]
Tay J, Luscombe-Marsh ND, Thompson CH, et al. Comparison of low- and high-carbohydrate diets for type 2 diabetes management: A randomized trial. Am J Clin Nutr 2015; 102(4): 780-90.
[http://dx.doi.org/10.3945/ajcn.115.112581] [PMID: 26224300]
[29]
Francois ME, Myette-Cote E, Bammert TD, et al. Carbohydrate restriction with postmeal walking effectively mitigates postprandial hyperglycemia and improves endothelial function in type 2 diabetes. Am J Physiol Heart Circ Physiol 2018; 314(1): H105-13.
[http://dx.doi.org/10.1152/ajpheart.00524.2017] [PMID: 29030343]
[30]
Brinkworth GD, Luscombe-Marsh ND, Thompson CH, et al. Long-term effects of very low-carbohydrate and high-carbohydrate weight-loss diets on psychological health in obese adults with type 2 diabetes: Randomized controlled trial. J Intern Med 2016; 280(4): 388-97.
[http://dx.doi.org/10.1111/joim.12501] [PMID: 27010424]
[31]
Li X, Cai X, Ma X, et al. Short- and long-term effects of wholegrain oat intake on weight management and glucolipid metabolism in overweight type-2 diabetics: A randomized control trial. Nutrients 2016; 8(9): 549.
[http://dx.doi.org/10.3390/nu8090549] [PMID: 27618090]
[32]
Tessari P, Lante A. A multifunctional bread rich in beta glucans and low in starch improves metabolic control in type 2 diabetes: A controlled trial. Nutrients 2017; 9(3): 297.
[http://dx.doi.org/10.3390/nu9030297] [PMID: 28304350]
[33]
Zhao L, Zhang F, Ding X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 2018; 359(6380): 1151-6.
[http://dx.doi.org/10.1126/science.aao5774] [PMID: 29590046]
[34]
Luukkonen PK, Sädevirta S, Zhou Y, et al. Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars. Diabetes Care 2018; 41(8): 1732-9.
[http://dx.doi.org/10.2337/dc18-0071] [PMID: 29844096]
[35]
Rosqvist F, Kullberg J, Ståhlman M, et al. Overeating saturated fat promotes fatty liver and ceramides compared with polyunsaturated fat: A randomized trial. J Clin Endocrinol Metab 2019; 104(12): 6207-19.
[http://dx.doi.org/10.1210/jc.2019-00160] [PMID: 31369090]
[36]
Chiu S, Williams PT, Krauss RM. Effects of a very high saturated fat diet on LDL particles in adults with atherogenic dyslipidemia: A randomized controlled trial. PLoS One 2017; 12(2)e0170664
[http://dx.doi.org/10.1371/journal.pone.0170664] [PMID: 28166253]
[37]
D’Angelo S, Motti ML, Meccariello R. ω-3 and ω-6 polyunsaturated fatty acids, obesity and cancer Nutrients 2020; 12(9): 2751.
[http://dx.doi.org/10.3390/nu12092751] [PMID: 32927614]
[38]
D’Angelo S, Madonna G, Di Palma D. Effects of fish oil supplementation in the sport performance. J Phys Educ Sport 2020; 20(4): 2322-9.
[http://dx.doi.org/10.7752/jpes.2020.s4313]
[39]
Wang JF, Zhang HM, Li YY, et al. A combination of omega-3 and plant sterols regulate glucose and lipid metabolism in individuals with impaired glucose regulation: A randomized and controlled clinical trial [published correction appears in Lipids Health Dis. 2020;16:19(1):41. Lipids Health Dis 2019; 18: 106.
[http://dx.doi.org/10.1186/s12944-019-1048-x] [PMID: 31043161]
[40]
Wang F, Wang Y, Zhu Y, et al. Treatment for 6 months with fish oil-derived n-3 polyunsaturated fatty acids has neutral effects on glycemic control but improves dyslipidemia in type 2 diabetic patients with abdominal obesity: A randomized, double-blind, placebo-controlled trial. Eur J Nutr 2017; 56(7): 2415-22.
[http://dx.doi.org/10.1007/s00394-016-1352-4] [PMID: 27913872]
[41]
Bowman L, Mafham M, Wallendszus K, et al. Effects of n-3 fatty acid supplements in diabetes mellitus. N Engl J Med 2018; 379(16): 1540-50.
[http://dx.doi.org/10.1056/NEJMoa1804989] [PMID: 30146932]
[42]
Skytte MJ, Samkani A, Petersen AD, et al. A carbohydrate-reduced high-protein diet improves HbA1c and liver fat content in weight stable participants with type 2 diabetes: A randomised controlled trial. Diabetologia 2019; 62(11): 2066-78.
[http://dx.doi.org/10.1007/s00125-019-4956-4] [PMID: 31338545]
[43]
King DG, Walker M, Campbell MD, Breen L, Stevenson EJ, West DJ. A small dose of whey protein co-ingested with mixed-macronutrient breakfast and lunch meals improves postprandial glycemia and suppresses appetite in men with type 2 diabetes: A randomized controlled trial. Am J Clin Nutr 2018; 107(4): 550-7.
[http://dx.doi.org/10.1093/ajcn/nqy019] [PMID: 29635505]
[44]
Diallo A, Deschasaux M, Latino-Martel P, et al. Red and processed meat intake and cancer risk: Results from the prospective NutriNet-Santé cohort study. Int J Cancer 2018; 142(2): 230-7.
[http://dx.doi.org/10.1002/ijc.31046] [PMID: 28913916]
[45]
Simpson EJ, Clark M, Razak AA, Salter A. The impact of reduced red and processed meat consumption on cardiovascular risk factors; an intervention trial in healthy volunteers. Food Funct 2019; 10(10): 6690-8.
[http://dx.doi.org/10.1039/C9FO00758J] [PMID: 31559410]
[46]
Kim Y, Keogh JB, Clifton PM. Consumption of red and processed meat and refined grains for 4weeks decreases insulin sensitivity in insulin-resistant adults: A randomized crossover study. Metabolism 2017; 68: 173-83.
[http://dx.doi.org/10.1016/j.metabol.2016.12.011] [PMID: 28183449]
[47]
O’Connor LE, Kim JE, Campbell WW. Total red meat intake of ≥0.5 servings/d does not negatively influence cardiovascular disease risk factors: A systemically searched meta-analysis of randomized controlled trials. Am J Clin Nutr 2017; 105(1): 57-69.
[http://dx.doi.org/10.3945/ajcn.116.142521] [PMID: 27881394]
[48]
Sucher S, Markova M, Hornemann S, et al. Comparison of the effects of diets high in animal or plant protein on metabolic and cardiovascular markers in type 2 diabetes: A randomized clinical trial. Diabetes Obes Metab 2017; 19(7): 944-52.
[http://dx.doi.org/10.1111/dom.12901] [PMID: 28181738]
[49]
Pivovarova-Ramich O, Markova M, Weber D, et al. Effects of diets high in animal or plant protein on oxidative stress in individuals with type 2 diabetes: A randomized clinical trial. Redox Biol 2020; 29101397
[http://dx.doi.org/10.1016/j.redox.2019.101397] [PMID: 31926623]
[50]
Brandão-Lima PN, Carvalho GB, Santos RKF, et al. Intakes of zinc, potassium, calcium, and magnesium of individuals with type 2 diabetes mellitus and the relationship with glycemic control. Nutrients 2018; 10(12): 1948.
[http://dx.doi.org/10.3390/nu10121948] [PMID: 30544774]
[51]
Esfandiari A, Pourghassem Gargari B, Noshad H, et al. The effects of vitamin D3 supplementation on some metabolic and inflammatory markers in diabetic nephropathy patients with marginal status of vitamin D: A randomized double blind placebo controlled clinical trial. Diabetes Metab Syndr 2019; 13(1): 278-83.
[http://dx.doi.org/10.1016/j.dsx.2018.09.013] [PMID: 30641712]
[52]
Wenclewska S, Szymczak-Pajor I, Drzewoski J, Bunk M, Śliwińska A. Vitamin D. Vitamin D supplementation reduces both oxidative DNA damage and insulin resistance in the elderly with metabolic disorders Int J Mol Sci 2019; 20(12): 2891.
[http://dx.doi.org/10.3390/ijms20122891] [PMID: 31200560]
[53]
Lemieux P, Weisnagel SJ, Caron AZ, et al. Effects of 6-month vitamin D supplementation on insulin sensitivity and secretion: A randomised, placebo-controlled trial. Eur J Endocrinol 2019; 181(3): 287-99.
[http://dx.doi.org/10.1530/EJE-19-0156] [PMID: 31344685]
[54]
Asemi Z, Raygan F, Bahmani F, et al. The effects of vitamin D, K and calcium co-supplementation on carotid intima-media thickness and metabolic status in overweight type 2 diabetic patients with CHD. Br J Nutr 2016; 116(2): 286-93.
[http://dx.doi.org/10.1017/S0007114516001847] [PMID: 27198036]
[55]
Satija A, Bhupathiraju SN, Rimm EB, et al. Plant-based dietary patterns and incidence of type 2 diabetes in US men and women: Results from three prospective cohort studies. PLoS Med 2016; 13(6)e1002039
[http://dx.doi.org/10.1371/journal.pmed.1002039] [PMID: 27299701]
[56]
Martínez-González MA, Salas-Salvadó J, Estruch R, Corella D, Fitó M, Ros E. Benefits of the Mediterranean diet: Insights from the PREDIMED study. Prog Cardiovasc Dis 2015; 58(1): 50-60.
[http://dx.doi.org/10.1016/j.pcad.2015.04.003] [PMID: 25940230]
[57]
Rangel-Huerta OD, Pastor-Villaescusa B, Aguilera CM, Gil A. A systematic review of the efficacy of bioactive compounds in cardiovascular disease: Phenolic compounds. Nutrients 2015; 7(7): 5177-216.
[http://dx.doi.org/10.3390/nu7075177] [PMID: 26132993]
[58]
Gothai S, Ganesan P, Park SY, Fakurazi S, Choi DK, Arulselvan P. Natural phyto-bioactive compounds for the treatment of type 2 diabetes: Inflammation as a target. Nutrients 2016; 8(8): 461.
[http://dx.doi.org/10.3390/nu8080461] [PMID: 27527213]
[59]
Guasch-Ferré M, Merino J, Sun Q, Fitó M, Salas-Salvadó J. Dietary polyphenols, Mediterranean diet, prediabetes, and type 2 diabetes: A narrative review of the evidence. Oxid Med Cell Longev 2017; 20176723931
[http://dx.doi.org/10.1155/2017/6723931] [PMID: 28883903]
[60]
Meccariello R, D’Angelo S. Impact of polyphenolic-food on longevity: An elixir of life. an overview. Antioxidants 2021; 10(4): 507.
[http://dx.doi.org/10.3390/antiox10040507] [PMID: 33805092]
[61]
Gao Q, Zhong C, Zhou X, et al. Inverse association of total polyphenols and flavonoids intake and the intake from fruits with the risk of gestational diabetes mellitus: A prospective cohort study. Clin Nutr 2020; S0261-5614(20): 30290-9.
[http://dx.doi.org/10.1016/j.clnu.2020.05.053]
[62]
D’Angelo S, Scafuro M, Meccariello R. BPA and nutraceuticals, simultaneous effects on endocrine functions. Endocr Metab Immune Disord Drug Targets 2019; 19(5): 594-604.
[http://dx.doi.org/10.2174/1871530319666190101120119] [PMID: 30621569]
[63]
Boccellino M, D’Angelo S. Anti-obesity effects of polyphenol intake: Current status and future possibilities. Int J Mol Sci 2020; 21(16): 5642.
[http://dx.doi.org/10.3390/ijms21165642] [PMID: 32781724]
[64]
D’Angelo S, Sammartino D. Protective effect of Annurca apple extract against oxidative damage in human erythrocytes. Curr Nutr Food Sci 2015; 11(4): 248-56.
[http://dx.doi.org/10.2174/1573401311666150610210529]
[65]
Vuoso DC, Porcelli M, Cacciapuoti G, D’Angelo S. Biological activity of MelAnnurca flesh apple biophenols. Curr Nutr Food Sci 2020; 16(8): 1149-62.
[http://dx.doi.org/10.2174/1573401316666200217113808]
[66]
D’Angelo S, Martino E, Cacciapuoti G. Effects of Annurca apple (malus pumila cv annurca) polyphenols on breast cancer cells. Curr Nutr Food Sci 2019; 15(7): 745-51.
[http://dx.doi.org/10.2174/1573401315666190206142025]
[67]
D’Angelo S, Martino E, Ilisso CP, Bagarolo ML, Porcelli M, Cacciapuoti G. Pro-oxidant and pro-apoptotic activity of polyphenol extract from Annurca apple and its underlying mechanisms in human breast cancer cells. Int J Oncol 2017; 51(3): 939-48.
[http://dx.doi.org/10.3892/ijo.2017.4088] [PMID: 28766690]
[68]
D’Angelo S, Rosa R. The impact of supplementation with pomegranate fruit (Punica Granatum L.) on sport performance. Sport Sci (Travnik) 2020; 13(Suppl. 1): 29-37.
[69]
Boccellino M, Quagliuolo L, D’Angelo S. Annurca apple biophenols’ effects in combination with cisplatin on A549 cells. Curr Nutr Food Sci 2021; 17(1): 111-20.
[http://dx.doi.org/10.2174/1573401316999200504093028]
[70]
Ferrara L, Joksimovic M, D’Angelo S. Modulation of mitochondrial biogenesis: Action of physical activity and phytochemicals. J Phys Educ Sport 2021; 21(1): 425-33.
[http://dx.doi.org/10.7752/jpes.2021.01042]
[71]
Nasso R, Pagliara V, D’Angelo S, Rullo R, Masullo M, Arcone R. Annurca Apple polyphenol extract affects acetyl- cholinesterase and mono-amine oxidase in vitro enzyme activity. Pharmaceuticals (Basel) 2021; 14(1): 62.
[http://dx.doi.org/10.3390/ph14010062] [PMID: 33466604]
[72]
D’Angelo S. Current evidence on the effect of dietary polyphenols intake on brain health. Curr Nutr Food Sci 2020; 16(8): 1170-82.
[http://dx.doi.org/10.2174/1573401316999200714160126]
[73]
D’Angelo S. Polyphenols: Potential beneficial effects of these phytochemicals in athletes. Curr Sports Med Rep 2020; 19(7): 260-5.
[http://dx.doi.org/10.1249/JSR.0000000000000729] [PMID: 32692061]
[74]
Kim Y, Keogh JB, Clifton PM. Polyphenols and glycemic control. Nutrients 2016; 8(1): 17.
[http://dx.doi.org/10.3390/nu8010017] [PMID: 26742071]
[75]
de Brito Alves JL, de Sousa VP, Cavalcanti Neto MP, et al. New insights on the use of dietary polyphenols or probiotics for the management of arterial hypertension. Front Physiol 2016; 7: 448.
[http://dx.doi.org/10.3389/fphys.2016.00448] [PMID: 27766081]
[76]
Yang CS, Zhang J, Zhang L, Huang J, Wang Y. Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. Mol Nutr Food Res 2016; 60(1): 160-74.
[http://dx.doi.org/10.1002/mnfr.201500428] [PMID: 26577614]
[77]
Murillo AG, Fernandez ML. The relevance of dietary polyphenols in cardiovascular protection. Curr Pharm Des 2017; 23(17): 2444-52.
[http://dx.doi.org/10.2174/1381612823666170329144307] [PMID: 28356040]
[78]
Chiva-Blanch G, Badimon L. Effects of polyphenol intake on metabolic syndrome: Current evidences from human trials. Oxid Med Cell Longev 2017; 20175812401
[http://dx.doi.org/10.1155/2017/5812401] [PMID: 28894509]
[79]
Cory H, Passarelli S, Szeto J, Tamez M, Mattei J. The role of polyphenols in human health and food systems: A mini-review. Front Nutr 2018; 5: 87.
[http://dx.doi.org/10.3389/fnut.2018.00087] [PMID: 30298133]
[80]
Dunaway S, Odin R, Zhou L, Ji L, Zhang Y, Kadekaro AL. Natural antioxidants: Multiple mechanisms to protect skin from solar radiation. Front Pharmacol 2018; 9: 392.
[http://dx.doi.org/10.3389/fphar.2018.00392] [PMID: 29740318]
[81]
Scalbert A, Manach C, Morand C, Rémésy C, Jiménez L. Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 2005; 45(4): 287-306.
[http://dx.doi.org/10.1080/1040869059096] [PMID: 16047496]
[82]
Ingrosso D, D’Angelo S, Perna AF, et al. Increased membrane-protein methylation in hereditary spherocytosis. A marker of cytoskeletal disarray. Eur J Biochem 1995; 228(3): 894-8.
[http://dx.doi.org/10.1111/j.1432-1033.1995.tb20337.x] [PMID: 7737191]
[83]
Ingrosso D, D’Angelo S, Perrotta S, et al. Cytoskeletal behaviour in spectrin and in band 3 deficient spherocytic red cells: evidence for differentiated splenic conditioning role. Br J Haematol 1996; 93(1): 38-41.
[http://dx.doi.org/10.1046/j.1365-2141.1996.451990.x] [PMID: 8611472]
[84]
D’Angelo S, Trojsi F, Salvatore A, et al. Accumulation of altered aspartyl residues in erythrocyte membrane proteins from patients with sporadic amyotrophic lateral sclerosis. Neurochem Int 2013; 63(6): 626-34.
[http://dx.doi.org/10.1016/j.neuint.2013.09.006] [PMID: 24044898]
[85]
D’Angelo S, Lembo S, Flora F, et al. Abnormal isoaspartyl residues in erythrocyte membranes from psoriatic patients. Arch Dermatol Res 2012; 304(6): 475-9.
[http://dx.doi.org/10.1007/s00403-012-1247-z] [PMID: 22648381]
[86]
Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging 2018; 13: 757-72.
[http://dx.doi.org/10.2147/CIA.S158513] [PMID: 29731617]
[87]
Alkhatib A, Tsang C, Tiss A, et al. Functional foods and lifestyle approaches for diabetes prevention and management. Nutrients 2017; 9(12): 1310.
[http://dx.doi.org/10.3390/nu9121310] [PMID: 29194424]
[88]
Solayman M, Ali Y, Alam F, et al. Polyphenols: Potential future arsenals in the treatment of diabetes. Curr Pharm Des 2016; 22(5): 549-65.
[http://dx.doi.org/10.2174/1381612822666151125001111] [PMID: 26601968]
[89]
Quero J, Mármol I, Cerrada E, Rodríguez-Yoldi MJ. Insight into the potential application of polyphenol-rich dietary intervention in degenerative disease management. Food Funct 2020; 11(4): 2805-25.
[http://dx.doi.org/10.1039/D0FO00216J] [PMID: 32134090]
[90]
Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2009; 2(5): 270-8.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[91]
Neveu V, Perez-Jiménez J, Vos F, et al. Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database (Oxford) 2010; 2010(0)bap024
[http://dx.doi.org/10.1093/database/bap024] [PMID: 20428313]
[92]
Paquette M, Medina Larqué AS, Weisnagel SJ, et al. Strawberry and cranberry polyphenols improve insulin sensitivity in insulin-resistant, non-diabetic adults: a parallel, double-blind, controlled and randomised clinical trial. Br J Nutr 2017; 117(4): 519-31.
[http://dx.doi.org/10.1017/S0007114517000393] [PMID: 28290272]
[93]
Schell J, Betts NM, Lyons TJ, Basu A. Raspberries Improve Postprandial Glucose and Acute and Chronic Inflammation in Adults with Type 2 Diabetes. Ann Nutr Metab 2019; 74(2): 165-74.
[http://dx.doi.org/10.1159/000497226] [PMID: 30763939]
[94]
Castro-Acosta ML, Smith L, Miller RJ, McCarthy DI, Farrimond JA, Hall WL. Drinks containing anthocyanin-rich blackcurrant extract decrease postprandial blood glucose, insulin and incretin concentrations. J Nutr Biochem 2016; 38: 154-61.
[http://dx.doi.org/10.1016/j.jnutbio.2016.09.002] [PMID: 27764725]
[95]
Hou C, Zhang W, Li J, et al. Beneficial effects of pomegranate on lipid metabolism in metabolic disorders. Mol Nutr Food Res 2019; 63(16)e1800773
[http://dx.doi.org/10.1002/mnfr.201800773] [PMID: 30677224]
[96]
Sohrab G, Nasrollahzadeh J, Zand H, Amiri Z, Tohidi M, Kimiagar M. Effects of pomegranate juice consumption on inflammatory markers in patients with type 2 diabetes: A randomized, placebo-controlled trial. J Res Med Sci 2014; 19(3): 215-20.
[PMID: 24949028]
[97]
Sohrab G, Roshan H, Ebrahimof S, Nikpayam O, Sotoudeh G, Siasi F. Effects of pomegranate juice consumption on blood pressure and lipid profile in patients with type 2 diabetes: A single-blind randomized clinical trial. Clin Nutr ESPEN 2019; 29: 30-5.
[http://dx.doi.org/10.1016/j.clnesp.2018.11.013] [PMID: 30661697]
[98]
Shi Y, Williamson G. Quercetin lowers plasma uric acid in pre-hyperuricaemic males: A randomised, double-blinded, placebo-controlled, cross-over trial. Br J Nutr 2016; 115(5): 800-6.
[http://dx.doi.org/10.1017/S0007114515005310] [PMID: 26785820]
[99]
Eid HM, Nachar A, Thong F, Sweeney G, Haddad PS. The molecular basis of the antidiabetic action of quercetin in cultured skeletal muscle cells and hepatocytes. Pharmacogn Mag 2015; 11(41): 74-81.
[http://dx.doi.org/10.4103/0973-1296.149708] [PMID: 25709214]
[100]
Gheflati A, Bashiri R, Ghadiri-Anari A, Reza JZ, Kord MT, Nadjarzadeh A. The effect of apple vinegar consumption on glycemic indices, blood pressure, oxidative stress, and homocysteine in patients with type 2 diabetes and dyslipidemia: A randomized controlled clinical trial. Clin Nutr ESPEN 2019; 33: 132-8.
[http://dx.doi.org/10.1016/j.clnesp.2019.06.006] [PMID: 31451249]
[101]
Thazhath SS, Wu T, Bound MJ, et al. Administration of resveratrol for 5 wk has no effect on glucagon-like peptide 1 secretion, gastric emptying, or glycemic control in type 2 diabetes: A randomized controlled trial. Am J Clin Nutr 2016; 103(1): 66-70.
[http://dx.doi.org/10.3945/ajcn.115.117440] [PMID: 26607942]
[102]
Hoseini A, Namazi G, Farrokhian A, et al. The effects of resveratrol on metabolic status in patients with type 2 diabetes mellitus and coronary heart disease. Food Funct 2019; 10(9): 6042-51.
[http://dx.doi.org/10.1039/C9FO01075K] [PMID: 31486447]
[103]
Seyyedebrahimi S, Khodabandehloo H, Nasli Esfahani E, Meshkani R. The effects of resveratrol on markers of oxidative stress in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled clinical trial [published correction appears in Acta Diabetol. 2018;55(10):1087. Acta Diabetol 2018; 55(4): 341-53.
[http://dx.doi.org/10.1007/s00592-017-1098-3] [PMID: 29357033]
[104]
Schwingshackl L, Lampousi AM, Portillo MP, Romaguera D, Hoffmann G, Boeing H. Olive oil in the prevention and management of type 2 diabetes mellitus: A systematic review and meta-analysis of cohort studies and intervention trials. Nutr Diabetes 2017; 7(4)e262
[http://dx.doi.org/10.1038/nutd.2017.12] [PMID: 28394365]
[105]
Alkhatib A, Tsang C, Tuomilehto J. Olive oil nutraceuticals in the prevention and management of diabetes: From molecules to lifestyle. Int J Mol Sci 2018; 19(7): 2024.
[http://dx.doi.org/10.3390/ijms19072024] [PMID: 30002281]
[106]
Cicerale S, Lucas L, Keast R. Biological activities of phenolic compounds present in virgin olive oil. Int J Mol Sci 2010; 11(2): 458-79.
[http://dx.doi.org/10.3390/ijms11020458] [PMID: 20386648]
[107]
Santangelo C, Filesi C, Varì R, et al. Consumption of extra-virgin olive oil rich in phenolic compounds improves metabolic control in patients with type 2 diabetes mellitus: A possible involvement of reduced levels of circulating visfatin. J Endocrinol Invest 2016; 39(11): 1295-301.
[http://dx.doi.org/10.1007/s40618-016-0506-9] [PMID: 27344308]
[108]
Njike VY, Ayettey R, Treu JA, Doughty KN, Katz DL. Post-prandial effects of high-polyphenolic extra virgin olive oil on endothelial function in adults at risk for type 2 diabetes: A randomized controlled crossover trial. Int J Cardiol 2021; 330: 171-6.
[http://dx.doi.org/10.1016/j.ijcard.2021.01.062] [PMID: 33548380]
[109]
Musial C, Kuban-Jankowska A, Gorska-Ponikowska M. Beneficial properties of green tea catechins. Int J Mol Sci 2020; 21(5): 1744.
[http://dx.doi.org/10.3390/ijms21051744] [PMID: 32143309]
[110]
Cardoso RR, Neto RO, Dos Santos D’Almeida CT, et al. Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Res Int 2020; 128108782
[http://dx.doi.org/10.1016/j.foodres.2019.108782] [PMID: 31955755]
[111]
Borges CM, Papadimitriou A, Duarte DA, Lopes de Faria JM, Lopes de Faria JB. The use of green tea polyphenols for treating residual albuminuria in diabetic nephropathy: A double-blind randomised clinical trial. Sci Rep 2016; 6(1): 28282.
[http://dx.doi.org/10.1038/srep28282] [PMID: 27320846]
[112]
Jiang TA. Health benefits of culinary herbs and spices. J AOAC Int 2019; 102(2): 395-411.
[http://dx.doi.org/10.5740/jaoacint.18-0418] [PMID: 30651162]
[113]
Adibian M, Hodaei H, Nikpayam O, Sohrab G, Hekmatdoost A, Hedayati M. The effects of curcumin supplementation on high-sensitivity C-reactive protein, serum adiponectin, and lipid profile in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Phytother Res 2019; 33(5): 1374-83.
[http://dx.doi.org/10.1002/ptr.6328] [PMID: 30864188]
[114]
Maithili Karpaga Selvi N, Sridhar MG, Swaminathan RP, Sripradha R. Efficacy of turmeric as adjuvant therapy in type 2 diabetic patients. Indian J Clin Biochem 2015; 30(2): 180-6.
[http://dx.doi.org/10.1007/s12291-014-0436-2] [PMID: 25883426]
[115]
Vitale M, Vaccaro O, Masulli M, et al. Polyphenol intake and cardiovascular risk factors in a population with type 2 diabetes: The TOSCA.IT study. Clin Nutr 2017; 36(6): 1686-92.
[http://dx.doi.org/10.1016/j.clnu.2016.11.002] [PMID: 27890487]
[116]
D’Angelo S, Cusano P. Adherence to the Mediterranean diet in athletes. Sport Sci (Travnik) 2020; 13(Suppl. 1): 58-63.
[117]
Trichopoulou A, Critselis E. Mediterranean diet and longevity. Eur J Cancer Prev 2004; 13(5): 453-6.
[http://dx.doi.org/10.1097/00008469-200410000-00014] [PMID: 15452459]
[118]
Tuttolomondo A, Simonetta I, Daidone M, Mogavero A, Ortello A, Pinto A. Metabolic and vascular effect of the Mediterranean diet. Int J Mol Sci 2019; 20(19): 4716.
[http://dx.doi.org/10.3390/ijms20194716] [PMID: 31547615]
[119]
Vitale M, Masulli M, Calabrese I, et al. Impact of a mediterranean dietary pattern and its components on cardiovascular risk factors, glucose control, and body weight in people with type 2 diabetes: A real-life study. Nutrients 2018; 10(8): 1067.
[http://dx.doi.org/10.3390/nu10081067] [PMID: 30103444]
[120]
Kargin D, Tomaino L, Serra-Majem L. Experimental outcomes of the Mediterranean diet: Lessons learned from the predimed randomized controlled trial. Nutrients 2019; 11(12): 2991.
[http://dx.doi.org/10.3390/nu11122991] [PMID: 31817731]
[121]
Kössler T, Weber KS, Wölwer W, et al. Associations between cognitive performance and Mediterranean dietary pattern in patients with type 1 or type 2 diabetes mellitus. Nutr Diabetes 2020; 10(1): 10.
[http://dx.doi.org/10.1038/s41387-020-0111-z] [PMID: 32238800]
[122]
Bonaccio M, Di Castelnuovo A, Costanzo S, et al. Adherence to the traditional Mediterranean diet and mortality in subjects with diabetes. Prospective results from the MOLI-SANI study. Eur J Prev Cardiol 2016; 23(4): 400-7.
[http://dx.doi.org/10.1177/2047487315569409] [PMID: 25648935]
[123]
Gurung M, Li Z, You H, et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020; 51102590
[http://dx.doi.org/10.1016/j.ebiom.2019.11.051] [PMID: 31901868]
[124]
Medina-Vera I, Sanchez-Tapia M, Noriega-López L, et al. A dietary intervention with functional foods reduces metabolic endotoxaemia and attenuates biochemical abnormalities by modifying faecal microbiota in people with type 2 diabetes. Diabetes Metab 2019; 45(2): 122-31.
[http://dx.doi.org/10.1016/j.diabet.2018.09.004] [PMID: 30266575]
[125]
Zubrzycki A, Cierpka-Kmiec K, Kmiec Z, Wronska A. The role of low-calorie diets and intermittent fasting in the treatment of obesity and type-2 diabetes. J Physiol Pharmacol 2018; 69(5)
[http://dx.doi.org/10.26402/jpp.2018.5.02] [PMID: 30683819]
[126]
Alkhatib A, Tuomilehto J. Lifestyle Diabetes Prevention Encyclopaedia of Endocrine Diseases. 2nd ed. Amsterdam, The Netherlands: Elsevier 2018.
[127]
Klonizakis M, Alkhatib A, Middleton G, Smith MF. Mediterranean diet- and exercise-induced improvement in age-dependent vascular activity. Clin Sci (Lond) 2013; 124(9): 579-87.
[http://dx.doi.org/10.1042/CS20120412] [PMID: 23163793]
[128]
Nemati S, Tadibi V, Hoseini R. How combined aerobic training and pomegranate juice intake affect lipid profile? A clinical trial in men with type 2 diabetes. Biomed Hum Kinetics 2021; 13(1): 147-54.
[http://dx.doi.org/10.2478/bhk-2021-0018]
[129]
Clinical Trials gov. US National library of Medicine Available from: https://clinicaltrials.gov/ct2/home

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy