Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Mucin 1在肝细胞癌中的生物学、意义和免疫信号传导

卷 22, 期 9, 2022

发表于: 08 June, 2022

页: [725 - 740] 页: 16

弟呕挨: 10.2174/1568009622666220317090552

价格: $65

摘要

粘蛋白 1 (MUC 1) 是一种高度糖基化的肿瘤相关抗原 (TAA),在肝细胞癌 (HCC) 中过度表达。 这种蛋白质在其转录和转录后水平的各种免疫介导的信号通路中起关键作用,导致 HCC 的免疫逃避和转移。 HCC细胞在免疫抑制肿瘤相关抗原的帮助下维持免疫抑制环境,从而导致疾病的转移扩散。 开发针对肿瘤相关抗原的强免疫治疗策略对于克服 HCC 的进展至关重要。 自 30 多年前被发现以来,MUC 1 仍然是最受认可的肿瘤相关抗原。 一些有希望的针对 MUC 1 的免疫疗法目前正在进行临床试验,包括 CAR-T 和 CAR-pNK 介导的疗法。 这篇综述强调了 MUC 1 作为 HCC 免疫靶点的生物合成、意义和临床意义。

关键词: MUC 1、异常糖基化、肝细胞癌、免疫信号、免疫治疗、高度糖基化肿瘤相关抗原 (TAA)。

图形摘要

[1]
Zhao, Y.J.; Ju, Q.; Li, G.C. Tumor markers for hepatocellular carcinoma. Mol. Clin. Oncol., 2013, 1(4), 593-598.
[http://dx.doi.org/10.3892/mco.2013.119] [PMID: 24649215]
[2]
Lancaster, C.A.; Peat, N.; Duhig, T.; Wilson, D.; Taylor-Papadimitriou, J.; Gendler, S.J. Structure and expression of the human polymorphic epithelial mucin gene: An expressed VNTR unit. Biochem. Biophys. Res. Commun., 1990, 173(3), 1019-1029.
[http://dx.doi.org/10.1016/S0006-291X(05)80888-5] [PMID: 2268309]
[3]
Li, Y.; Liu, D.; Chen, D.; Kharbanda, S.; Kufe, D. Human DF3/MUC 1 carcinoma-associated protein functions as an oncogene. Oncogene, 2003, 22(38), 6107-6110.
[http://dx.doi.org/10.1038/sj.onc.1206732] [PMID: 12955090]
[4]
Levitin, F.; Baruch, A.; Weiss, M.; Stiegman, K.; Hartmann, M.L.; Yoeli-Lerner, M.; Ziv, R.; Zrihan-Licht, S.; Shina, S.; Gat, A.; Lifschitz, B.; Simha, M.; Stadler, Y.; Cholostoy, A.; Gil, B.; Greaves, D.; Keydar, I.; Zaretsky, J.; Smorodinsky, N.; Wreschner, D.H. A novel protein derived from the MUC 1 gene by alternative splicing and frameshifting. J. Biol. Chem., 2005, 280(11), 10655-10663.
[http://dx.doi.org/10.1074/jbc.M406943200] [PMID: 15623537]
[5]
Reddish, M.; MacLean, G.D.; Koganty, R.R.; Kan-Mitchell, J.; Jones, V.; Mitchell, M.S.; Longenecker, B.M. Anti-MUC 1 class I restricted CTLs in metastatic breast cancer patients immunized with a synthetic MUC 1 peptide. Int. J. Cancer, 1998, 76(6), 817-823.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19980610)76:6<817::AID-IJC9>3.0.CO;2-0] [PMID: 9626347]
[6]
Baginska, J. Study of the involvement of autophagy in the acquisition of tumor resistance to natural killer-mediated lysis.. Thesis, Université Paris Sud - Paris XI, 2013.
[7]
von Mensdorff-Pouilly, S.; Verstraeten, A.A.; Kenemans, P.; Snijdewint, F.G.; Kok, A.; Van Kamp, G.J.; Paul, M.A.; Van Diest, P.J.; Meijer, S.; Hilgers, J. Survival in early breast cancer patients is favorably influenced by a natural humoral immune response to polymorphic epithelial mucin. J. Clin. Oncol., 2000, 18(3), 574-583.
[http://dx.doi.org/10.1200/JCO.2000.18.3.574] [PMID: 10653872]
[8]
Lakshminarayanan, V.; Supekar, N.T.; Wei, J.; McCurry, D.B.; Dueck, A.C.; Kosiorek, H.E.; Trivedi, P.P.; Bradley, J.M.; Madsen, C.S.; Pathangey, L.B.; Hoelzinger, D.B.; Wolfert, M.A.; Boons, G.J.; Cohen, P.A.; Gendler, S.J. MUC 1 vaccines comprised of glycosylated or non-glycosylated peptides or tumour-derived MUC 1 can circumvent immunoediting to control tumour growth in MUC 1 transgenic mice. PLoS One, 2016, 11(1), e0145920.
[http://dx.doi.org/10.1371/journal.pone.0145920] [PMID: 26788922]
[9]
Gendler, S.J.; Burchell, J.M.; Duhig, T.; Lamport, D.; White, R.; Parker, M.; Taylor-Papadimitriou, J. Cloning of partial cDNA encoding differentiation and tumor-associated mucin glycoproteins expressed by human mammary epithelium. Proc. Natl. Acad. Sci. USA, 1987, 84(17), 6060-6064.
[http://dx.doi.org/10.1073/pnas.84.17.6060] [PMID: 2888110]
[10]
Cascio, S.; Farkas, A.M.; Hughey, R.P.; Finn, O.J. Altered glycosylation of MUC 1 influences its association with CIN85: The role of this novel complex in cancer cell invasion and migration. Oncotarget, 2013, 4(10), 1686-1697.
[http://dx.doi.org/10.18632/oncotarget.1265] [PMID: 24072600]
[11]
Irimura, T.; Denda, K.; Iida, S.; Takeuchi, H.; Kato, K. Diverse glycosylation of MUC 1 and MUC2: Potential significance in tumor immunity. J. Biochem., 1999, 126(6), 975-985.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022565] [PMID: 10578046]
[12]
Tarp, M.A.; Clausen, H. Mucin-type O-glycosylation and its potential use in drug and vaccine development. Biochim. Biophys. Acta, 2008, 1780(3), 546-563.
[http://dx.doi.org/10.1016/j.bbagen.2007.09.010] [PMID: 17988798]
[13]
Johnston, M.P.; Khakoo, S.I. Immunotherapy for hepatocellular carcinoma: Current and future. World J. Gastroenterol., 2019, 25(24), 2977-2989.
[http://dx.doi.org/10.3748/wjg.v25.i24.2977] [PMID: 31293335]
[14]
Vimal, D.B.; Khullar, M.; Gupta, S.; Ganguly, N.K. Intestinal mucins: The binding sites for Salmonella typhimurium. Mol. Cell. Biochem., 2000, 204(1-2), 107-117.
[http://dx.doi.org/10.1023/A:1007015312036] [PMID: 10718631]
[15]
Wesseling, J.; van der Valk, S.W.; Vos, H.L.; Sonnenberg, A.; Hilkens, J. Episialin (MUC 1) overexpression inhibits integrin-mediated cell adhesion to extracellular matrix components. J. Cell Biol., 1995, 129(1), 255-265.
[http://dx.doi.org/10.1083/jcb.129.1.255] [PMID: 7698991]
[16]
Hanisch, F.G.; Müller, S. MUC 1: The polymorphic appearance of a human mucin. Glycobiology, 2000, 10(5), 439-449.
[http://dx.doi.org/10.1093/glycob/10.5.439] [PMID: 10764832]
[17]
Ratan, C.; Cicily, K.D.; Nair, B.; Nath, L.R. MUC glycoproteins: Potential biomarkers and molecular targets for cancer therapy. Curr. Cancer Drug Targets, 2020.
[PMID: 33200711]
[18]
Hattrup, C.L.; Gendler, S.J. Structure and function of the cell surface (tethered) mucins. Annu. Rev. Physiol., 2008, 70(1), 431-457.
[http://dx.doi.org/10.1146/annurev.physiol.70.113006.100659] [PMID: 17850209]
[19]
Brayman, M.; Thathiah, A.; Carson, D.D. MUC 1: A multifunctional cell surface component of reproductive tissue epithelia. Reprod. Biol. Endocrinol., 2004, 2(1), 4.
[http://dx.doi.org/10.1186/1477-7827-2-4] [PMID: 14711375]
[20]
Levitin, F.; Stern, O.; Weiss, M.; Gil-Henn, C.; Ziv, R.; Prokocimer, Z.; Smorodinsky, N.I.; Rubinstein, D.B.; Wreschner, D.H. The MUC 1 SEA module is a self-cleaving domain. J. Biol. Chem., 2005, 280(39), 33374-33386.
[http://dx.doi.org/10.1074/jbc.M506047200] [PMID: 15987679]
[21]
Gendler, S.J.; Lancaster, C.A.; Taylor-Papadimitriou, J.; Duhig, T.; Peat, N.; Burchell, J.; Pemberton, L.; Lalani, E.N.; Wilson, D. Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J. Biol. Chem., 1990, 265(25), 15286-15293.
[http://dx.doi.org/10.1016/S0021-9258(18)77254-2] [PMID: 1697589]
[22]
Ligtenberg, M.J.; Kruijshaar, L.; Buijs, F.; van Meijer, M.; Litvinov, S.V.; Hilkens, J. Cell-associated episialin is a complex containing two proteins derived from a common precursor. J. Biol. Chem., 1992, 267(9), 6171-6177.
[http://dx.doi.org/10.1016/S0021-9258(18)42677-4] [PMID: 1556125]
[23]
Parry, S.; Hanisch, F.G.; Leir, S.H.; Sutton-Smith, M.; Morris, H.R.; Dell, A.; Harris, A. N-Glycosylation of the MUC 1 mucin in epithelial cells and secretions. Glycobiology, 2006, 16(7), 623-634.
[http://dx.doi.org/10.1093/glycob/cwj110] [PMID: 16585136]
[24]
Thomsen, A.R.B.; Plouffe, B.; Cahill, T.J., III; Shukla, A.K.; Tarrasch, J.T.; Dosey, A.M.; Kahsai, A.W.; Strachan, R.T.; Pani, B.; Mahoney, J.P.; Huang, L.; Breton, B.; Heydenreich, F.M.; Sunahara, R.K.; Skiniotis, G.; Bouvier, M.; Lefkowitz, R.J. GPCR-G protein-β-arrestin super-complex mediates sustained G protein signalling. Cell, 2016, 166(4), 907-919.
[http://dx.doi.org/10.1016/j.cell.2016.07.004] [PMID: 27499021]
[25]
Carlstedt, I.; Sheehan, J.K.; Corfield, A.P.; Gallagher, J.T. Mucous glycoproteins: A gel of a problem. Essays Biochem., 1985, 20, 40-76.
[PMID: 3896779]
[26]
Baldus, S.E.; Mönig, S.P.; Huxel, S.; Landsberg, S.; Hanisch, F.G.; Engelmann, K.; Schneider, P.M.; Thiele, J.; Hölscher, A.H.; Dienes, H.P. MUC 1 and nuclear β-catenin are coexpressed at the invasion front of colorectal carcinomas and are both correlated with tumor prognosis. Clin. Cancer Res., 2004, 10(8), 2790-2796.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0163] [PMID: 15102686]
[27]
Li, Q.; Ren, J.; Kufe, D. Interaction of human MUC 1 and β-catenin is regulated by Lck and ZAP-70 in activated Jurkat T cells. Biochem. Biophys. Res. Commun., 2004, 315(2), 471-476.
[http://dx.doi.org/10.1016/j.bbrc.2004.01.075] [PMID: 14766232]
[28]
Pandey, P.; Kharbanda, S.; Kufe, D. Association of the DF3/MUC 1 breast cancer antigen with Grb2 and the Sos/Ras exchange protein. Cancer Res., 1995, 55(18), 4000-4003.
[PMID: 7664271]
[29]
Ren, J.; Li, Y.; Kufe, D. Protein kinase C δ regulates function of the DF3/MUC 1 carcinoma antigen in β-catenin signaling. J. Biol. Chem., 2002, 277(20), 17616-17622.
[http://dx.doi.org/10.1074/jbc.M200436200] [PMID: 11877440]
[30]
Julian, J.; Carson, D.D. Formation of MUC 1 metabolic complex is conserved in tumor-derived and normal epithelial cells. Biochem. Biophys. Res. Commun., 2002, 293(4), 1183-1190.
[http://dx.doi.org/10.1016/S0006-291X(02)00352-2] [PMID: 12054500]
[31]
Engelmann, K.; Kinlough, C.L.; Müller, S.; Razawi, H.; Baldus, S.E.; Hughey, R.P.; Hanisch, F.G. Transmembrane and secreted MUC 1 probes show trafficking-dependent changes in O-glycan core profiles. Glycobiology, 2005, 15(11), 1111-1124.
[http://dx.doi.org/10.1093/glycob/cwi099] [PMID: 15972891]
[32]
Wreschner, D.H.; McGuckin, M.A.; Williams, S.J.; Baruch, A.; Yoeli, M.; Ziv, R.; Okun, L.; Zaretsky, J.; Smorodinsky, N.; Keydar, I.; Neophytou, P.; Stacey, M.; Lin, H.H.; Gordon, S. Generation of ligand-receptor alliances by “SEA” module-mediated cleavage of membrane-associated mucin proteins. Protein Sci., 2002, 11(3), 698-706.
[http://dx.doi.org/10.1110/ps.16502] [PMID: 11847293]
[33]
Strous, G.J.; Dekker, J. Crit. Re’. Suppresion of premature termination codon as a therapeutic approach. Biochem. Mol. Biol., 1992, 27, 57.
[34]
Pimental, R.A.; Julian, J.; Gendler, S.J.; Carson, D.D. Synthesis and intracellular trafficking of Muc-1 and mucins by polarized mouse uterine epithelial cells. J. Biol. Chem., 1996, 271(45), 28128-28137.
[http://dx.doi.org/10.1074/jbc.271.45.28128] [PMID: 8910427]
[35]
Li, Y.; Martin, L.D.; Spizz, G.; Adler, K.B. MARCKS protein is a key molecule regulating mucin secretion by human airway epithelial cells in vitro. J. Biol. Chem., 2001, 276(44), 40982-40990.
[http://dx.doi.org/10.1074/jbc.M105614200] [PMID: 11533058]
[36]
Vlahopoulos, S.A. Aberrant control of NF-κB in cancer permits transcriptional and phenotypic plasticity, to curtail dependence on host tissue: Molecular mode. Cancer Biol. Med., 2017, 14(3), 254-270.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2017.0029] [PMID: 28884042]
[37]
Singh, P.K.; Hollingsworth, M.A. Cell surface-associated mucins in signal transduction. Trends Cell Biol., 2006, 16(9), 467-476.
[http://dx.doi.org/10.1016/j.tcb.2006.07.006] [PMID: 16904320]
[38]
Kufe, D.W. Mucins in cancer: Function, prognosis and therapy. Nat. Rev. Cancer, 2009, 9(12), 874-885.
[http://dx.doi.org/10.1038/nrc2761] [PMID: 19935676]
[39]
Horm, T.M.; Schroeder, J.A. MUC 1 and metastatic cancer: Expression, function and therapeutic targeting. Cell Adhes. Migr., 2013, 7(2), 187-198.
[http://dx.doi.org/10.4161/cam.23131] [PMID: 23303343]
[40]
Bafna, S.; Kaur, S.; Batra, S.K. Membrane-bound mucins: The mechanistic basis for alterations in the growth and survival of cancer cells. Oncogene, 2010, 29(20), 2893-2904.
[http://dx.doi.org/10.1038/onc.2010.87] [PMID: 20348949]
[41]
Brockhausen, I.; Yang, J.M.; Burchell, J.; Whitehouse, C.; Taylor-Papadimitriou, J. Mechanisms underlying aberrant glycosylation of MUC 1 mucin in breast cancer cells. Eur. J. Biochem., 1995, 233(2), 607-617.
[http://dx.doi.org/10.1111/j.1432-1033.1995.607_2.x] [PMID: 7588808]
[42]
Cullen, P.J. Post-translational regulation of signaling mucins. Curr. Opin. Struct. Biol., 2011, 21(5), 590-596.
[http://dx.doi.org/10.1016/j.sbi.2011.08.007] [PMID: 21889329]
[43]
Silverman, H.S.; Sutton-Smith, M.; McDermott, K.; Heal, P.; Leir, S.H.; Morris, H.R.; Hollingsworth, M.A.; Dell, A.; Harris, A. The contribution of tandem repeat number to the O-glycosylation of mucins. Glycobiology, 2003, 13(4), 265-277.
[http://dx.doi.org/10.1093/glycob/cwg028] [PMID: 12626424]
[44]
Martínez-Sáez, N.; Peregrina, J.M.; Corzana, F. Principles of mucin structure: Implications for the rational design of cancer vaccines derived from MUC 1-glycopeptides. Chem. Soc. Rev., 2017, 46(23), 7154-7175.
[http://dx.doi.org/10.1039/C6CS00858E] [PMID: 29022615]
[45]
Altschuler, Y.; Kinlough, C.L.; Poland, P.A.; Bruns, J.B.; Apodaca, G.; Weisz, O.A.; Hughey, R.P. Clathrin-mediated endocytosis of MUC 1 is modulated by its glycosylation state. Mol. Biol. Cell, 2000, 11(3), 819-831.
[http://dx.doi.org/10.1091/mbc.11.3.819] [PMID: 10712502]
[46]
Loomes, K.M.; Senior, H.E.; West, P.M.; Roberton, A.M. Functional protective role for mucin glycosylated repetitive domains. Eur. J. Biochem., 1999, 266(1), 105-111.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00824.x] [PMID: 10542055]
[47]
Tian, E.; Ten Hagen, K.G. Recent insights into the biological roles of mucin-type O-glycosylation. Glycoconj. J., 2009, 26(3), 325-334.
[http://dx.doi.org/10.1007/s10719-008-9162-4] [PMID: 18695988]
[48]
Liu, Y.; Liu, H.; Yang, L.; Wu, Q.; Liu, W.; Fu, Q.; Zhang, W.; Zhang, H.; Xu, J.; Gu, J. Loss of n-acetylgalactosaminyltransferase-4 orchestrates oncogenic microRNA-9 in hepatocellular carcinoma. J. Biol. Chem., 2017, 292(8), 3186-3200.
[http://dx.doi.org/10.1074/jbc.M116.751685] [PMID: 28062574]
[49]
Yang, H.Y.; Tatebayashi, K.; Yamamoto, K.; Saito, H. Glycosylation defects activate filamentous growth Kss1 MAPK and inhibit osmoregulatory Hog1 MAPK. EMBO J., 2009, 28(10), 1380-1391.
[http://dx.doi.org/10.1038/emboj.2009.104] [PMID: 19369942]
[50]
Zhang, L.; Ten Hagen, K.G. Dissecting the biological role of mucin-type O-glycosylation using RNA interference in Drosophila cell culture. J. Biol. Chem., 2010, 285(45), 34477-34484.
[http://dx.doi.org/10.1074/jbc.M110.133561] [PMID: 20807760]
[51]
Haltiwanger, R.S. Regulation of signal transduction pathways in development by glycosylation. Curr. Opin. Struct. Biol., 2002, 12(5), 593-598.
[http://dx.doi.org/10.1016/S0959-440X(02)00371-8] [PMID: 12464310]
[52]
Moloney, D.J.; Panin, V.M.; Johnston, S.H.; Chen, J.; Shao, L.; Wilson, R.; Wang, Y.; Stanley, P.; Irvine, K.D.; Haltiwanger, R.S.; Vogt, T.F. Fringe is a glycosyltransferase that modifies Notch. Nature, 2000, 406(6794), 369-375.
[http://dx.doi.org/10.1038/35019000] [PMID: 10935626]
[53]
Hohmann, S.; Krantz, M.; Nordlander, B. Yeast osmoregulation. Methods Enzymol., 2007, 428, 29-45.
[http://dx.doi.org/10.1016/S0076-6879(07)28002-4] [PMID: 17875410]
[54]
Pitoniak, A.; Birkaya, B.; Dionne, H.M.; Vadaie, N.; Cullen, P.J. The signaling mucins Msb2 and Hkr1 differentially regulate the filamentation mitogen-activated protein kinase pathway and contribute to a multimodal response. Mol. Biol. Cell, 2009, 20(13), 3101-3114.
[http://dx.doi.org/10.1091/mbc.e08-07-0760] [PMID: 19439450]
[55]
Lee, S.; Rauch, J.; Kolch, W. Targeting MAPK signaling in cancer: Mechanisms of drug resistance and sensitivity. Int. J. Mol. Sci., 2020, 21(3), 1102.
[http://dx.doi.org/10.3390/ijms21031102] [PMID: 32046099]
[56]
Parry, S.; Silverman, H.S.; McDermott, K.; Willis, A.; Hollingsworth, M.A.; Harris, A. Identification of MUC 1 proteolytic cleavage sites in vivo. Biochem. Biophys. Res. Commun., 2001, 283(3), 715-720.
[http://dx.doi.org/10.1006/bbrc.2001.4775] [PMID: 11341784]
[57]
Lillehoj, E.P.; Han, F.; Kim, K.C. Mutagenesis of a Gly-Ser cleavage site in MUC 1 inhibits ectodomain shedding. Biochem. Biophys. Res. Commun., 2003, 307(3), 743-749.
[http://dx.doi.org/10.1016/S0006-291X(03)01260-9] [PMID: 12893286]
[58]
Bork, P.; Patthy, L. The SEA module: A new extracellular domain associated with O-glycosylation. Protein Sci., 1995, 4(7), 1421-1425.
[http://dx.doi.org/10.1002/pro.5560040716] [PMID: 7670383]
[59]
Sadowski, T.; Saftig, P.; Hartmann, D.; Kallen, K.J.; Rose-John, S. Regulated endothelial protein C receptor shedding is mediated by tumor necrosis factor-alpha converting enzyme/ADAM17. J. Thromb. Haemost., 2007, 5(2), 395-402.
[60]
Thathiah, A.; Carson, D.D. MT1-MMP mediates MUC 1 shedding independent of TACE/ADAM17. Biochem. J., 2004, 382(Pt 1), 363-373.
[http://dx.doi.org/10.1042/BJ20040513] [PMID: 15130087]
[61]
Wen, Y.; Caffrey, T.C.; Wheelock, M.J.; Johnson, K.R.; Hollingsworth, M.A. Nuclear association of the cytoplasmic tail of MUC 1 and β-catenin. J. Biol. Chem., 2003, 278(39), 38029-38039.
[http://dx.doi.org/10.1074/jbc.M304333200] [PMID: 12832415]
[62]
Ren, J.; Bharti, A.; Raina, D.; Chen, W.; Ahmad, R.; Kufe, D. MUC 1 oncoprotein is targeted to mitochondria by heregulin-induced activation of c-Src and the molecular chaperone HSP90. Oncogene, 2006, 25(1), 20-31.
[http://dx.doi.org/10.1038/sj.onc.1209012] [PMID: 16158055]
[63]
Singh, P.K.; Behrens, M.E.; Eggers, J.P.; Cerny, R.L.; Bailey, J.M.; Shanmugam, K.; Gendler, S.J.; Bennett, E.P.; Hollingsworth, M.A. Phosphorylation of MUC 1 by Met modulates interaction with p53 and MMP1 expression. J. Biol. Chem., 2008, 283(40), 26985-26995.
[http://dx.doi.org/10.1074/jbc.M805036200] [PMID: 18625714]
[64]
Li, Y.; Kuwahara, H.; Ren, J.; Wen, G.; Kufe, D. The c-Src tyrosine kinase regulates signaling of the human DF3/MUC 1 carcinoma-associated antigen with GSK3 β and β-catenin. J. Biol. Chem., 2001, 276(9), 6061-6064.
[http://dx.doi.org/10.1074/jbc.C000754200] [PMID: 11152665]
[65]
Hinoda, Y.; Takahashi, T.; Hayashi, T.; Suwa, T.; Makiguchi, Y.; Itoh, F.; Adachi, M.; Imai, K. Enhancement of reactivity of anti-MUC 1 core protein antibody and killing activity of anti-MUC 1 cytotoxic T cells by deglycosylation of target tissues or cells. J. Gastroenterol., 1998, 33(2), 164-171.
[http://dx.doi.org/10.1007/s005350050065] [PMID: 9605944]
[66]
Vlad, A.M.; Muller, S.; Cudic, M.; Paulsen, H.; Otvos, L., Jr; Hanisch, F.G.; Finn, O.J. Complex carbohydrates are not removed during processing of glycoproteins by dendritic cells: Processing of tumor antigen MUC 1 glycopeptides for presentation to major histocompatibility complex class II-restricted T cells. J. Exp. Med., 2002, 196(11), 1435-1446.
[http://dx.doi.org/10.1084/jem.20020493] [PMID: 12461079]
[67]
Zaretsky, J.Z.; Sarid, R.; Aylon, Y.; Mittelman, L.A.; Wreschner, D.H.; Keydar, I. Analysis of the promoter of the MUC 1 gene overexpressed in breast cancer. FEBS Lett., 1999, 461(3), 189-195.
[http://dx.doi.org/10.1016/S0014-5793(99)01452-0] [PMID: 10567695]
[68]
Patel, R.; Baker, S.S.; Liu, W.; Desai, S.; Alkhouri, R.; Kozielski, R.; Mastrandrea, L.; Sarfraz, A.; Cai, W.; Vlassara, H.; Patel, M.S.; Baker, R.D.; Zhu, L. Effect of dietary advanced glycation end products on mouse liver. PLoS One, 2012, 7(4), e35143.
[http://dx.doi.org/10.1371/journal.pone.0035143] [PMID: 22496902]
[69]
Lakshminarayanan, V.; Thompson, P.; Wolfert, M.A.; Buskas, T.; Bradley, J.M.; Pathangey, L.B.; Madsen, C.S.; Cohen, P.A.; Gendler, S.J.; Boons, G.J. Immune recognition of tumor-associated mucin MUC 1 is achieved by a fully synthetic aberrantly glycosylated MUC 1 tripartite vaccine. Proc. Natl. Acad. Sci. USA, 2012, 109(1), 261-266.
[http://dx.doi.org/10.1073/pnas.1115166109] [PMID: 22171012]
[70]
Sideras, K.; Bots, S.J.; Biermann, K.; Sprengers, D.; Polak, W.G.; IJzermans, J.N.; de Man, R.A.; Pan, Q.; Sleijfer, S.; Bruno, M.J.; Kwekkeboom, J. Tumour antigen expression in hepatocellular carcinoma in a low-endemic western area. Br. J. Cancer, 2015, 112(12), 1911-1920.
[http://dx.doi.org/10.1038/bjc.2015.92] [PMID: 26057582]
[71]
Caputo, S.; Grioni, M.; Brambillasca, C.S.; Monno, A.; Brevi, A.; Freschi, M.; Piras, I.S.; Elia, A.R.; Pieri, V.; Baccega, T.; Lombardo, A.; Galli, R.; Briganti, A.; Doglioni, C.; Jachetti, E.; Bellone, M. Galectin-3 in prostate cancer stem-like cells is immunosuppressive and drives early metastasis. Front. Immunol., 2020, 11, 1820.
[http://dx.doi.org/10.3389/fimmu.2020.01820] [PMID: 33013832]
[72]
Jonckheere, N.; Van Seuningen, I. The membrane-bound mucins: From cell signalling to transcriptional regulation and expression in epithelial cancers. Biochimie, 2010, 92(1), 1-11.
[http://dx.doi.org/10.1016/j.biochi.2009.09.018] [PMID: 19818375]
[73]
Yuan, S.F.; Li, K.Z.; Wang, L.; Dou, K.F.; Yan, Z.; Han, W.; Zhang, Y.Q. Expression of MUC 1 and its significance in hepatocellular and cholangiocarcinoma tissue. World J. Gastroenterol., 2005, 11(30), 4661-4666.
[http://dx.doi.org/10.3748/wjg.v11.i30.4661] [PMID: 16094706]
[74]
Sasaki, M.; Nakanuma, Y. Abnormal expression of MUC 1 apomucin and mature MUC 1 mucin in biliary epithelial cells in various cystic liver diseases. Hepatology, 1996, 24(3), 539-543.
[http://dx.doi.org/10.1002/hep.510240312] [PMID: 8781320]
[75]
Sasaki, M.; Nakanuma, Y. Expression of mucin core protein of mammary type in primary liver cancer. Hepatology, 1994, 20(5), 1192-1197.
[http://dx.doi.org/10.1002/hep.1840200514]
[76]
Cao, Y.; Karsten, U.; Otto, G.; Bannasch, P. Expression of MUC 1, Thomsen-Friedenreich antigen, Tn, sialosyl-Tn, and α2,6-linked sialic acid in hepatocellular carcinomas and preneoplastic hepatocellular lesions. Virchows Arch., 1999, 434(6), 503-509.
[http://dx.doi.org/10.1007/s004280050375] [PMID: 10394884]
[77]
Lin, Y.S.; Jung, S.M.; Yeh, C.N.; Chen, Y.C.; Tsai, F.C.; Shiu, T.F.; Wu, H.H.; Lin, P.J.; Chu, P.H. MUC 1, MUC2 and MUC5AC expression in hepatocellular carcinoma with cardiac metastasis. Mol. Med. Rep., 2009, 2(2), 291-294.
[PMID: 21475827]
[78]
Yi, F.T.; Lu, Q.P. Mucin 1 promotes radioresistance in hepatocellular carcinoma cells through activation of JAK2/STAT3 signaling. Oncol. Lett., 2017, 14(6), 7571-7576.
[http://dx.doi.org/10.3892/ol.2017.7119] [PMID: 29344203]
[79]
Chen, Q.; Li, D.; Ren, J.; Li, C.; Xiao, Z.X. MUC 1 activates JNK1 and inhibits apoptosis under genotoxic stress. Biochem. Biophys. Res. Commun., 2013, 440(1), 179-183.
[http://dx.doi.org/10.1016/j.bbrc.2013.09.055] [PMID: 24055030]
[80]
von Mensdorff-Pouilly, S.; Snijdewint, F.G.; Verstraeten, A.A.; Verheijen, R.H.; Kenemans, P. Human MUC 1 mucin: A multifaceted glycoprotein. Int. J. Biol. Markers, 2000, 15(4), 343-356.
[http://dx.doi.org/10.1177/172460080001500413] [PMID: 11192832]
[81]
Musselli, C.; Ragupathi, G.; Gilewski, T.; Panageas, K.S.; Spinat, Y.; Livingston, P.O. Reevaluation of the cellular immune response in breast cancer patients vaccinated with MUC 1. Int. J. Cancer, 2002, 97(5), 660-667.
[http://dx.doi.org/10.1002/ijc.10081] [PMID: 11807794]
[82]
Roy, L.D.; Sahraei, M.; Subramani, D.B.; Besmer, D.; Nath, S.; Tinder, T.L.; Bajaj, E.; Shanmugam, K.; Lee, Y.Y.; Hwang, S.I.; Gendler, S.J.; Mukherjee, P. MUC 1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene, 2011, 30(12), 1449-1459.
[http://dx.doi.org/10.1038/onc.2010.526] [PMID: 21102519]
[83]
Yamamoto, M.; Bharti, A.; Li, Y.; Kufe, D. Interaction of the DF3/MUC 1 breast carcinoma-associated antigen and β-catenin in cell adhesion. J. Biol. Chem., 1997, 272(19), 12492-12494.
[http://dx.doi.org/10.1074/jbc.272.19.12492] [PMID: 9139698]
[84]
Huang, L.; Chen, D.; Liu, D.; Yin, L.; Kharbanda, S.; Kufe, D. MUC 1 oncoprotein blocks glycogen synthase kinase 3β-mediated phosphorylation and degradation of β-catenin. Cancer Res., 2005, 65(22), 10413-10422.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2474] [PMID: 16288032]
[85]
Wei, X.; Xu, H.; Kufe, D. Human MUC 1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell, 2005, 7(2), 167-178.
[http://dx.doi.org/10.1016/j.ccr.2005.01.008] [PMID: 15710329]
[86]
Raina, D.; Kharbanda, S.; Kufe, D. The MUC 1 oncoprotein activates the anti-apoptotic phosphoinositide 3-kinase/Akt and Bcl-xL pathways in rat 3Y1 fibroblasts. J. Biol. Chem., 2004, 279(20), 20607-20612.
[http://dx.doi.org/10.1074/jbc.M310538200] [PMID: 14999001]
[87]
Kufe, D.W. Functional targeting of the MUC 1 oncogene in human cancers. Cancer Biol. Ther., 2009, 8(13), 1197-1203.
[http://dx.doi.org/10.4161/cbt.8.13.8844] [PMID: 19556858]
[88]
Carraway, K.L.; Hull, S.R. O-glycosylation pathway for mucin-type glycoproteins. BioEssays, 1989, 10(4), 117-121.
[http://dx.doi.org/10.1002/bies.950100406] [PMID: 2658987]
[89]
Rowse, G.J.; Tempero, R.M.; VanLith, M.L.; Hollingsworth, M.A.; Gendler, S.J. Tolerance and immunity to MUC 1 in a human MUC 1 transgenic murine model. Cancer Res., 1998, 58(2), 315-321.
[PMID: 9443411]
[90]
Uemura, N.; Okamoto, S.; Yamamoto, S.; Matsumura, N.; Yamaguchi, S.; Yamakido, M.; Taniyama, K.; Sasaki, N.; Schlemper, R.J. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med., 2001, 345(11), 784-789.
[http://dx.doi.org/10.1056/NEJMoa001999] [PMID: 11556297]
[91]
Kimura, T.; Finn, O.J. MUC 1 immunotherapy is here to stay. Expert Opin. Biol. Ther., 2013, 13(1), 35-49.
[http://dx.doi.org/10.1517/14712598.2012.725719] [PMID: 22998452]
[92]
Mahla, R.S.; Reddy, M.C.; Prasad, D.V.; Kumar, H. Sweeten PAMPs: Role of sugar complexed PAMPs in innate immunity and vaccine biology. Front. Immunol., 2013, 4, 248.
[http://dx.doi.org/10.3389/fimmu.2013.00248] [PMID: 24032031]
[93]
Ueno, K.; Koga, T.; Kato, K.; Golenbock, D.T.; Gendler, S.J.; Kai, H.; Kim, K.C. MUC 1 mucin is a negative regulator of toll-like receptor signaling. Am. J. Respir. Cell Mol. Biol., 2008, 38(3), 263-268.
[http://dx.doi.org/10.1165/rcmb.2007-0336RC] [PMID: 18079492]
[94]
Delneste, Y.; Beauvillain, C.; Jeannin, P. Immuniténaturelle-Structure et fonction des Toll-like receptors. Médecine, 2007, 23(1), 67-74.
[95]
Kim, K.C.; Lillehoj, E.P. MUC 1 mucin: A peacemaker in the lung. Am. J. Respir. Cell Mol. Biol., 2008, 39(6), 644-647.
[http://dx.doi.org/10.1165/rcmb.2008-0169TR] [PMID: 18617677]
[96]
Lu, W.; Hisatsune, A.; Koga, T.; Kato, K.; Kuwahara, I.; Lillehoj, E.P.; Chen, W.; Cross, A.S.; Gendler, S.J.; Gewirtz, A.T.; Kim, K.C. Cutting edge: Enhanced pulmonary clearance of Pseudomonas aeruginosa by MUC 1 knockout mice. J. Immunol., 2006, 176(7), 3890-3894.
[http://dx.doi.org/10.4049/jimmunol.176.7.3890] [PMID: 16547220]
[97]
Kato, K.; Lu, W.; Kai, H.; Kim, K.C. Phosphoinositide 3-kinase is activated by MUC 1 but not responsible for MUC 1-induced suppression of Toll-like receptor 5 signaling. Am. J. Physiol. Lung Cell. Mol. Physiol., 2007, 293(3), L686-L692.
[http://dx.doi.org/10.1152/ajplung.00423.2006] [PMID: 17586693]
[98]
Hollingsworth, M.A.; Swanson, B.J. Mucins in cancer: Protection and control of the cell surface. Nat. Rev. Cancer, 2004, 4(1), 45-60.
[http://dx.doi.org/10.1038/nrc1251] [PMID: 14681689]
[99]
Kumar, A.R.; Devan, A.R.; Nair, B.; Nath, L.R. Anti-VEGF mediated immunomodulatory role of phytochemicals: Scientific exposition for plausible HCC treatment. Curr. Drug Targets, 2021, 22(11), 1288-1316.
[http://dx.doi.org/10.2174/1389450122666210203194036] [PMID: 33538672]
[100]
Nair, B.; Nath, L.R. Inevitable role of TGF-β1 in progression of nonalcoholic fatty liver disease. J. Recept. Signal Transduct., 2020, 40(3), 195-200.
[http://dx.doi.org/10.1080/10799893.2020.1726952] [PMID: 32054379]
[101]
Al Masri, A.; Gendler, S.J. MUC 1 affects c-Src signaling in PyV MT-induced mammary tumorigenesis. Oncogene, 2005, 24(38), 5799-5808.
[http://dx.doi.org/10.1038/sj.onc.1208738] [PMID: 15897873]
[102]
van Kooyk, Y. C-type lectins on dendritic cells: Key modulators for the induction of immune responses. Biochem. Soc. Trans., 2008, 36(Pt 6), 1478-1481.
[http://dx.doi.org/10.1042/BST0361478] [PMID: 19021579]
[103]
Chen, D.; Koido, S.; Li, Y.; Gendler, S.; Gong, J. T cell suppression as a mechanism for tolerance to MUC 1 antigen in MUC 1 transgenic mice. Breast Cancer Res. Treat., 2000, 60(2), 107-115.
[http://dx.doi.org/10.1023/A:1006332009414] [PMID: 10845273]
[104]
Ingale, S.; Wolfert, M.A.; Buskas, T.; Boons, G.J. Increasing the antigenicity of synthetic tumor-associated carbohydrate antigens by targeting Toll-like receptors. ChemBioChem, 2009, 10(3), 455-463.
[http://dx.doi.org/10.1002/cbic.200800596] [PMID: 19145607]
[105]
Kotera, Y.; Fontenot, J.D.; Pecher, G.; Metzgar, R.S.; Finn, O.J. Humoral immunity against a tandem repeat epitope of human mucin MUC-1 in sera from breast, pancreatic, and colon cancer patients. Cancer Res., 1994, 54(11), 2856-2860.
[PMID: 7514493]
[106]
Shental-Bechor, D.; Levy, Y. Effect of glycosylation on protein folding: A close look at thermodynamic stabilization. Proc. Natl. Acad. Sci. USA, 2008, 105(24), 8256-8261.
[http://dx.doi.org/10.1073/pnas.0801340105] [PMID: 18550810]
[107]
Kasprzak, A.; Adamek, A. Mucins: The old, the new and the promising factors in hepatobiliary carcinogenesis. Int. J. Mol. Sci., 2019, 20(6), 1288.
[http://dx.doi.org/10.3390/ijms20061288] [PMID: 30875782]
[108]
Cascio, S.; Zhang, L.; Finn, O.J. MUC 1 protein expression in tumor cells regulates transcription of proinflammatory cytokines by forming a complex with nuclear factor-κB p65 and binding to cytokine promoters: Importance of extracellular domain. J. Biol. Chem., 2011, 286(49), 42248-42256.
[http://dx.doi.org/10.1074/jbc.M111.297630] [PMID: 22021035]
[109]
Park, J.H.; Nishidate, T.; Kijima, K.; Ohashi, T.; Takegawa, K.; Fujikane, T.; Hirata, K.; Nakamura, Y.; Katagiri, T. Critical roles of mucin 1 glycosylation by transactivated polypeptide N-acetylgalactosaminyltransferase 6 in mammary carcinogenesis. Cancer Res., 2010, 70(7), 2759-2769.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3911] [PMID: 20215525]
[110]
Sewell, R.; Bäckström, M.; Dalziel, M.; Gschmeissner, S.; Karlsson, H.; Noll, T.; Gätgens, J.; Clausen, H.; Hansson, G.C.; Burchell, J.; Taylor-Papadimitriou, J. The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumor-associated sialyl-Tn O-glycan in human breast cancer. J. Biol. Chem., 2006, 281(6), 3586-3594.
[http://dx.doi.org/10.1074/jbc.M511826200] [PMID: 16319059]
[111]
Beatson, R.; Maurstad, G.; Picco, G.; Arulappu, A.; Coleman, J.; Wandell, H.H.; Clausen, H.; Mandel, U.; Taylor-Papadimitriou, J.; Sletmoen, M.; Burchell, J.M. The breast cancer-associated glycoforms of MUC 1, MUC 1-Tn and sialyl-Tn, are expressed in COSMC wild-type cells and bind the C-type lectin MGL. PLoS One, 2015, 10(5), e0125994.
[http://dx.doi.org/10.1371/journal.pone.0125994] [PMID: 25951175]
[112]
Zhang, P.; Lu, X.; Tao, K.; Shi, L.; Li, W.; Wang, G.; Wu, K. Siglec-10 is associated with survival and natural killer cell dysfunction in hepatocellular carcinoma. J. Surg. Res., 2015, 194(1), 107-113.
[113]
Tao, L.; Wang, S.; Yang, L.; Jiang, L.; Li, J.; Wang, X. Reduced Siglec-7 expression on NK cells predicts NK cell dysfunction in primary hepatocellular carcinoma. Clin. Exp. Immunol., 2020, 201(2), 161-170.
[http://dx.doi.org/10.1111/cei.13444] [PMID: 32319079]
[114]
Tamaki, N.; Kuno, A.; Matsuda, A.; Tsujikawa, H.; Yamazaki, K.; Yasui, Y.; Tsuchiya, K.; Nakanishi, H.; Itakura, J.; Korenaga, M.; Mizokami, M.; Kurosaki, M.; Sakamoto, M.; Narimatsu, H.; Izumi, N. Serum wisteria floribunda agglutinin-positive sialylated mucin 1 as a marker of progenitor/biliary features in hepatocellular carcinoma. Sci. Rep., 2017, 7(1), 244.
[http://dx.doi.org/10.1038/s41598-017-00357-8] [PMID: 28325920]
[115]
Cascio, S.; Finn, O.J. Intra-and extra-cellular events related to altered glycosylation of MUC 1 promote chronic inflammation, tumor progression, invasion, and metastasis. Biomolecules, 2016, 6(4), 39.
[http://dx.doi.org/10.3390/biom6040039] [PMID: 27754373]
[116]
Cascio, S.; Finn, O.J. Complex of MUC 1, CIN85 and CBL in colon cancer progression and metastasis. Cancers (Basel), 2015, 7(1), 342-352.
[http://dx.doi.org/10.3390/cancers7010342] [PMID: 25675408]
[117]
Koido, S.; Homma, S.; Hara, E.; Mitsunaga, M.; Namiki, Y.; Takahara, A.; Nagasaki, E.; Komita, H.; Sagawa, Y.; Ohkusa, T.; Fujise, K.; Gong, J.; Tajiri, H. In vitro generation of cytotoxic and regulatory T cells by fusions of human dendritic cells and hepatocellular carcinoma cells. J. Transl. Med., 2008, 6(1), 51.
[http://dx.doi.org/10.1186/1479-5876-6-51] [PMID: 18793383]
[118]
Hiltbold, E.M.; Vlad, A.M.; Ciborowski, P.; Watkins, S.C.; Finn, O.J. The mechanism of unresponsiveness to circulating tumor antigen MUC 1 is a block in intracellular sorting and processing by dendritic cells. J. Immunol., 2000, 165(7), 3730-3741.
[http://dx.doi.org/10.4049/jimmunol.165.7.3730] [PMID: 11034378]
[119]
Carlos, C.A.; Dong, H.F.; Howard, O.M.; Oppenheim, J.J.; Hanisch, F.G.; Finn, O.J. Human tumor antigen MUC 1 is chemotactic for immature dendritic cells and elicits maturation but does not promote Th1 type immunity. J. Immunol., 2005, 175(3), 1628-1635.
[http://dx.doi.org/10.4049/jimmunol.175.3.1628] [PMID: 16034102]
[120]
Monti, P.; Leone, B.E.; Zerbi, A.; Balzano, G.; Cainarca, S.; Sordi, V.; Pontillo, M.; Mercalli, A.; Di Carlo, V.; Allavena, P.; Piemonti, L. Tumor-derived MUC 1 mucins interact with differentiating monocytes and induce IL-10highIL-12low regulatory dendritic cell. J. Immunol., 2004, 172(12), 7341-7349.
[http://dx.doi.org/10.4049/jimmunol.172.12.7341] [PMID: 15187110]
[121]
Carrascal, M.A.; Severino, P.F.; Guadalupe Cabral, M.; Silva, M.; Ferreira, J.A.; Calais, F.; Quinto, H.; Pen, C.; Ligeiro, D.; Santos, L.L.; Dall’Olio, F.; Videira, P.A. Sialyl TN-expressing bladder cancer cells induce a tolerogenic phenotype in innate and adaptive immune cells. Mol. Oncol., 2014, 8(3), 753-765.
[http://dx.doi.org/10.1016/j.molonc.2014.02.008] [PMID: 24656965]
[122]
Ichikawa, T.; Yamamoto, T.; Uenishi, T.; Tanaka, H.; Takemura, S.; Ogawa, M.; Tanaka, S.; Suehiro, S.; Hirohashi, K.; Kubo, S. Clinicopathological implications of immunohistochemically demonstrated mucin core protein expression in hepatocellular carcinoma. J. Hepatobiliary Pancreat. Surg., 2006, 13(3), 245-251.
[http://dx.doi.org/10.1007/s00534-005-1070-4] [PMID: 16708303]
[123]
Jandus, C.; Boligan, K.F.; Chijioke, O.; Liu, H.; Dahlhaus, M.; Démoulins, T.; Schneider, C.; Wehrli, M.; Hunger, R.E.; Baerlocher, G.M.; Simon, H.U.; Romero, P.; Münz, C.; von Gunten, S. Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. JCI, 2014, 124(4), 1810-1820.
[http://dx.doi.org/10.1172/JCI65899] [PMID: 24569453]
[124]
Bouillez, A.; Rajabi, H.; Jin, C.; Samur, M.; Tagde, A.; Alam, M.; Hiraki, M.; Maeda, T.; Hu, X.; Adeegbe, D.; Kharbanda, S.; Wong, K.K.; Kufe, D. MUC 1-C integrates PD-L1 induction with repression of immune effectors in non-small-cell lung cancer. Oncogene, 2017, 36(28), 4037-4046.
[http://dx.doi.org/10.1038/onc.2017.47] [PMID: 28288138]
[125]
Bouillez, A.; Adeegbe, D.; Jin, C.; Hu, X.; Tagde, A.; Alam, M.; Rajabi, H.; Wong, K.K.; Kufe, D. MUC 1-C promotes the suppressive immune microenvironment in non-small cell lung cancer. OncoImmunology, 2017, 6(9), e1338998.
[http://dx.doi.org/10.1080/2162402X.2017.1338998] [PMID: 28932637]
[126]
Alsuliman, A.; Colak, D.; Al-Harazi, O.; Fitwi, H.; Tulbah, A.; Al-Tweigeri, T.; Al-Alwan, M.; Ghebeh, H. Bidirectional crosstalk between PD-L1 expression and epithelial to mesenchymal transition: Significance in claudin-low breast cancer cells. Mol. Cancer, 2015, 14(1), 149.
[http://dx.doi.org/10.1186/s12943-015-0421-2] [PMID: 26245467]
[127]
Noman, M.Z.; Janji, B.; Abdou, A.; Hasmim, M.; Terry, S.; Tan, T.Z.; Mami-Chouaib, F.; Thiery, J.P.; Chouaib, S. The immune checkpoint ligand PD-L1 is upregulated in EMT-activated human breast cancer cells by a mechanism involving ZEB-1 and miR-200. OncoImmunology, 2017, 6(1), e1263412.
[http://dx.doi.org/10.1080/2162402X.2016.1263412] [PMID: 28197390]
[128]
Rajabi, H.; Alam, M.; Takahashi, H.; Kharbanda, A.; Guha, M.; Ahmad, R.; Kufe, D. MUC 1-C oncoprotein activates the ZEB1/miR-200c regulatory loop and epithelial-mesenchymal transition. Oncogene, 2014, 33(13), 1680-1689.
[http://dx.doi.org/10.1038/onc.2013.114] [PMID: 23584475]
[129]
Alam, M.; Bouillez, A.; Tagde, A.; Ahmad, R.; Rajabi, H.; Maeda, T.; Hiraki, M.; Suzuki, Y.; Kufe, D. MUC 1-C represses the Crumbs complex polarity factor CRB3 and downregulates the Hippo pathway. Mol. Cancer Res., 2016, 14(12), 1266-1276.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0233] [PMID: 27658423]
[130]
Rajabi, H.; Kufe, D. MUC 1-C oncoprotein integrates a program of EMT, epigenetic reprogramming and immune evasion in human carcinomas. Biochim. Biophys. Acta Rev. Cancer, 2017, 1868(1), 117-122.
[http://dx.doi.org/10.1016/j.bbcan.2017.03.003] [PMID: 28302417]
[131]
Agrawal, B.; Krantz, M.J.; Reddish, M.A.; Longenecker, B.M. Cancer-associated MUC 1 mucin inhibits human T-cell proliferation, which is reversible by IL-2. Nat. Med., 1998, 4(1), 43-49.
[http://dx.doi.org/10.1038/nm0198-043] [PMID: 9427605]
[132]
Hayes, D.F.; Silberstein, D.S.; Rodrique, S.W.; Kufe, D.W. DF3 antigen, a human epithelial cell mucin, inhibits adhesion of eosinophils to antibody-coated targets. J. Immunol., 1990, 145(3), 962-970.
[PMID: 2373864]
[133]
Acres, B.; Apostolopoulos, V.; Balloul, J.M.; Wreschner, D.; Xing, P.X.; Ali-Hadji, D.; Bizouarne, N.; Kieny, M.P.; McKenzie, I.F. MUC 1-specific immune responses in human MUC 1 transgenic mice immunized with various human MUC 1 vaccines. Cancer Immunol. Immunother., 2000, 48(10), 588-594.
[http://dx.doi.org/10.1007/PL00006677] [PMID: 10630311]
[134]
Koning, N.; Kessen, S.F.; Van Der Voorn, J.P.; Appelmelk, B.J.; Jeurink, P.V.; Knippels, L.M.; Garssen, J.; Van Kooyk, Y.; Van Kooyk, Y. Human milk blocks DC-SIGN-pathogen interaction via MUC 1. Front. Immunol., 2015, 6, 112.
[http://dx.doi.org/10.3389/fimmu.2015.00112] [PMID: 25821450]
[135]
Tanida, S.; Akita, K.; Ishida, A.; Mori, Y.; Toda, M.; Inoue, M.; Ohta, M.; Yashiro, M.; Sawada, T.; Hirakawa, K.; Nakada, H. Binding of the sialic acid-binding lectin, Siglec-9, to the membrane mucin, MUC 1, induces recruitment of β-catenin and subsequent cell growth. J. Biol. Chem., 2013, 288(44), 31842-31852.
[http://dx.doi.org/10.1074/jbc.M113.471318] [PMID: 24045940]
[136]
Rahn, J.J.; Chow, J.W.; Horne, G.J.; Mah, B.K.; Emerman, J.T.; Hoffman, P.; Hugh, J.C. MUC 1 mediates transendothelial migration in vitro by ligating endothelial cell ICAM-1. Clin. Exp. Metastasis, 2005, 22(6), 475-483.
[http://dx.doi.org/10.1007/s10585-005-3098-x] [PMID: 16320110]
[137]
McDermott, K.M.; Crocker, P.R.; Harris, A.; Burdick, M.D.; Hinoda, Y.; Hayashi, T.; Imai, K.; Hollingsworth, M.A. Overexpression of MUC 1 reconfigures the binding properties of tumor cells. Int. J. Cancer, 2001, 94(6), 783-791.
[http://dx.doi.org/10.1002/ijc.1554] [PMID: 11745478]
[138]
Agrawal, B.; Krantz, M.J.; Parker, J.; Longenecker, B.M. Expression of MUC 1 mucin on activated human T cells: Implications for a role of MUC 1 in normal immune regulation. Cancer Res., 1998, 58(18), 4079-4081.
[PMID: 9751614]
[139]
Mukherjee, P.; Tinder, T.L.; Basu, G.D.; Gendler, S.J. MUC 1 (CD227) interacts with LCK tyrosine kinase in Jurkat lymphoma cells and normal T cells. J. Leukoc. Biol., 2005, 77(1), 90-99.
[http://dx.doi.org/10.1189/jlb.0604333] [PMID: 15513966]
[140]
Correa, I.; Plunkett, T.; Vlad, A.; Mungul, A.; Candelora-Kettel, J.; Burchell, J.M.; Taylor-Papadimitriou, J.; Finn, O.J. Form and pattern of MUC 1 expression on T cells activated in vivo or in vitro suggests a function in T-cell migration. Immunology, 2003, 108(1), 32-41.
[http://dx.doi.org/10.1046/j.1365-2567.2003.01562.x] [PMID: 12519300]
[141]
Zhao, Q.C. Interaction of Circulating Galectin-3 and Cancer-Associated MUC 1 in Cancer Metastasis; The University of Liverpool: United Kingdom, 2010.
[142]
Díaz-Alvarez, L.; Ortega, E. The many roles of galectin-3, a multifaceted molecule, in innate immune responses against pathogens. Mediators Inflamm., 2017, 2017, 9247574.
[http://dx.doi.org/10.1155/2017/9247574]
[143]
Mehla, K.; Singh, P.K. MUC 1: A novel metabolic master regulator. Biochim. Biophys. Acta, 2014, 1845(2), 126-135.
[PMID: 24418575]
[144]
Konowalchuk, J.D.; Agrawal, B. MUC 1 is a novel costimulatory molecule of human T cells and functions in an AP-1-dependent manner. Hum. Immunol., 2012, 73(5), 448-455.
[http://dx.doi.org/10.1016/j.humimm.2012.02.024] [PMID: 22425740]
[145]
Hollingsworth, R.E.; Jansen, K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines, 2019, 4(1), 7.
[http://dx.doi.org/10.1038/s41541-019-0103-y] [PMID: 30774998]
[146]
Wang, J.; Tai, G. Role of C-Jun N-terminal kinase in hepatocellular carcinoma development. Target. Oncol., 2016, 11(6), 723-738.
[http://dx.doi.org/10.1007/s11523-016-0446-5] [PMID: 27392951]
[147]
Li, Q.; Wang, F.; Liu, G.; Yuan, H.; Chen, T.; Wang, J.; Xie, F.; Zhai, R.; Wang, F.; Guo, Y.; Ni, W.; Tai, G. Impact of Mucin1 knockdown on the phenotypic characteristics of the human hepatocellular carcinoma cell line SMMC-7721. Oncol. Rep., 2014, 31(6), 2811-2819.
[http://dx.doi.org/10.3892/or.2014.3136] [PMID: 24737121]
[148]
Li, Q.; Liu, G.; Shao, D.; Wang, J.; Yuan, H.; Chen, T.; Zhai, R.; Ni, W.; Tai, G. Mucin1 mediates autocrine transforming growth factor beta signaling through activating the c-Jun N-terminal kinase/activator protein 1 pathway in human hepatocellular carcinoma cells. Int. J. Biochem. Cell Biol., 2015, 59, 116-125.
[http://dx.doi.org/10.1016/j.biocel.2014.11.012] [PMID: 25526895]
[149]
Wang, J.; Liu, G.; Li, Q.; Wang, F.; Xie, F.; Zhai, R.; Guo, Y.; Chen, T.; Zhang, N.; Ni, W.; Yuan, H.; Tai, G. Mucin1 promotes the migration and invasion of hepatocellular carcinoma cells via JNK-mediated phosphorylation of Smad2 at the C-terminal and linker regions. Oncotarget, 2015, 6(22), 19264-19278.
[http://dx.doi.org/10.18632/oncotarget.4267] [PMID: 26057631]
[150]
Wang, J.; Ni, W.H.; Hu, K.B.; Zhai, X.Y.; Xie, F.; Jie, J.; Zhang, N.N.; Jiang, L.N.; Yuan, H.Y.; Tai, G.X. Targeting MUC 1 and JNK by RNA interference and inhibitor inhibit the development of hepatocellular carcinoma. Cancer Sci., 2017, 108(3), 504-511.
[http://dx.doi.org/10.1111/cas.13144] [PMID: 28012230]
[151]
Nagata, H.; Hatano, E.; Tada, M.; Murata, M.; Kitamura, K.; Asechi, H.; Narita, M.; Yanagida, A.; Tamaki, N.; Yagi, S.; Ikai, I.; Matsuzaki, K.; Uemoto, S. Inhibition of c-Jun NH2-terminal kinase switches Smad3 signaling from oncogenesis to tumor- suppression in rat hepatocellular carcinoma. Hepatology, 2009, 49(6), 1944-1953.
[http://dx.doi.org/10.1002/hep.22860] [PMID: 19418558]
[152]
Ma, Y.D.; Wang, Z.; Gong, R.Z.; Li, L.F.; Wu, H.P.; Jin, H.J.; Qian, Q. Specific cytotoxicity of MUC 1 chimeric antigen receptor-engineered Jurkat T cells against hepatocellular carcinoma. Acad. J. Second Mil. Med. Coll., 2014, 35(11), 1177-1182.
[http://dx.doi.org/10.3724/SP.J.1008.2014.01177]
[153]
Mantovani, S.; Oliviero, B.; Varchetta, S.; Mele, D.; Mondelli, M.U. Natural killer cell responses in hepatocellular carcinoma: Implications for novel immunotherapeutic approaches. Cancers (Basel), 2020, 12(4), 926.
[http://dx.doi.org/10.3390/cancers12040926] [PMID: 32283827]
[154]
Oelsner, S.; Friede, M.E.; Zhang, C.; Wagner, J.; Badura, S.; Bader, P.; Ullrich, E.; Ottmann, O.G.; Klingemann, H.; Tonn, T.; Wels, W.S. Continuously expanding CAR NK-92 cells display selective cytotoxicity against B-cell leukemia and lymphoma. Cytotherapy, 2017, 19(2), 235-249.
[http://dx.doi.org/10.1016/j.jcyt.2016.10.009] [PMID: 27887866]
[155]
Klingemann, H.; Boissel, L.; Toneguzzo, F. Natural killer cells for immunotherapy-advantages of the NK-92 cell line over blood NK cells. Front. Immunol., 2016, 7, 91.
[http://dx.doi.org/10.3389/fimmu.2016.00091] [PMID: 27014270]
[156]
Rochigneux, P.; Chanez, B.; De Rauglaudre, B.; Mitry, E.; Chabannon, C.; Gilabert, M. Adoptive cell therapy in hepatocellular carcinoma: Biological rationale and first results in early phase clinical trials. Cancers (Basel), 2021, 13(2), E271.
[http://dx.doi.org/10.3390/cancers13020271] [PMID: 33450845]
[157]
Beatson, R.E.; Taylor-Papadimitriou, J.; Burchell, J.M. MUC 1 immunotherapy. Immunotherapy, 2010, 2(3), 305-327.
[http://dx.doi.org/10.2217/imt.10.17] [PMID: 20635898]
[158]
Hodge, J.W.; Ardiani, A.; Farsaci, B.; Kwilas, A.R.; Gameiro, S.R. The tipping point for combination therapy: Cancer vaccines with radiation, chemotherapy, or targeted small molecule inhibitors. Semin. Oncol., 2012, 39(3), 323-339.
[http://dx.doi.org/10.1053/j.seminoncol.2012.02.006] [PMID: 22595055]
[159]
Siracusano, G.; Tagliamonte, M.; Buonaguro, L.; Lopalco, L. Cell surface proteins in hepatocellular carcinoma: From bench to bedside. Vaccines (Basel), 2020, 8(1), 41.
[http://dx.doi.org/10.3390/vaccines8010041] [PMID: 31991677]
[160]
Jonckheere, N.; Vincent, A.; Neve, B.; Van Seuningen, I. Mucin expression, epigenetic regulation and patient survival: A toolkit of prognostic biomarkers in epithelial cancers. Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(1), 188538.
[http://dx.doi.org/10.1016/j.bbcan.2021.188538]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy