Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Research Article

LINC00936/microRNA-221-3p Regulates Tumor Progression in Ovarian Cancer by Interacting with LAMA3

Author(s): Chenggan Shu, Weiwei Wang, Lipei Wu, Chunrun Qi, Wenhui Yan, Wenying Lu, Jiale Tian* and Anquan Shang*

Volume 18, Issue 1, 2023

Published on: 17 May, 2022

Page: [66 - 79] Pages: 14

DOI: 10.2174/1574892817666220316152201

Price: $65

Abstract

Background: Ovarian cancer remains a leading cause of mortality in women. It is known that long non-coding RNA (lncRNA) controls various biological processes and pathogenesis of many diseases, including cancers. This study aimed to determine whether LINC00936 and microRNA-221-3p (miR-221-3p) influence the laminin alpha 3 chain gene (LAMA3) in the development of ovarian cancer.

Methods: The expressions of LINC00936, miR-221-3p, and LAMA3 in ovarian cancer and adjacent tissues were assessed. Furthermore, ovarian cancer cells were transfected with vectors with overexpressed LINC00936, miR-221-3p mimic, miR-221-3p inhibitor, and si-LAMA3 to elucidate their functions in ovarian cancer cell proliferation, migration, invasion, angiogenesis, and tumorigenesis. The binding relationship between LINC00936 and miR-221-3p and the relationship between miR-221-3p and LAMA3 were verified to explore the mechanism of action of LINC00936 in ovarian cancer. LINC00936 binds to miR-221-3p as a ceRNA and regulates the expression of LAMA3.

Results: LINC00936 and LAMA3 were poorly expressed, while miR-221-3p was highly expressed in ovarian cancer tissues. Over-expression of LINC00936 contributed to decreasing miR- 221-3p expression and increasing LAMA3 expression. LINC00936 overexpression or miR-221- 3p silencing downregulated the levels of PCNA, MMP-2, MMP-9, and VEGF and decreased cell proliferation, migration, invasion, angiogenesis, and ovarian cancer tumorigenesis.

Conclusion: Collectively, overexpression of LINC00936 suppressed the development of ovarian cancer by competitively binding to miR-221-3p and controlling LAMA3 expression. These results could serve as a novel theoretical base for the treatment of ovarian cancer.

Keywords: Ovarian cancer, LINC00936, LAMA3, microRNA-221-3p, tumorigenesis, tumor progression.

[1]
Minlikeeva AN, Freudenheim JL, Cannioto RA, et al. History of hypertension, heart disease, and diabetes and ovarian cancer patient survival: evidence from the ovarian cancer association consortium. Cancer Causes Control 2017; 28(5): 469-86.
[http://dx.doi.org/10.1007/s10552-017-0867-1] [PMID: 28293802]
[2]
Stewart SL, Harewood R, Matz M, et al. Disparities in ovarian cancer survival in the United States (2001-2009): Findings from the CONCORD-2 study. Cancer 2017; 123 (Suppl. 24): 5138-59.
[http://dx.doi.org/10.1002/cncr.31027] [PMID: 29205312]
[3]
Melamed A, Manning-Geist B, Bregar AJ, et al. Associations between residual disease and survival in epithelial ovarian cancer by histologic type. Gynecol Oncol 2017; 147(2): 250-6.
[http://dx.doi.org/10.1016/j.ygyno.2017.08.003] [PMID: 28822556]
[4]
Babic A, Harris HR, Vitonis AF, et al. Menstrual pain and risk of epithelial ovarian cancer: Results from the ovarian cancer association consortium. Int J Cancer 2018; 142(3): 460-9.
[http://dx.doi.org/10.1002/ijc.31010] [PMID: 28833087]
[5]
Salavaty A, Motlagh FM, Barabadi M, et al. Potential role of RAB6C-AS1 long noncoding RNA in different cancers. J Cell Physiol 2018; 234(1): 891-903.
[http://dx.doi.org/10.1002/jcp.26910] [PMID: 30076712]
[6]
Yang G, Lu X, Yuan L. LncRNA: a link between RNA and cancer. Biochim Biophys Acta 2014; 1839(11): 1097-109.
[http://dx.doi.org/10.1016/j.bbagrm.2014.08.012] [PMID: 25159663]
[7]
Filippov-Levy N, Cohen-Schussheim H, Tropé CG, et al. Expression and clinical role of long non-coding RNA in high-grade serous carcinoma. Gynecol Oncol 2018; 148(3): 559-66.
[http://dx.doi.org/10.1016/j.ygyno.2018.01.004] [PMID: 29310950]
[8]
Zhang J, Wang H, Wang Y, Dong W, Jiang Z, Yang G. Substrate-mediated gene transduction of LAMA3 for promoting biological sealing between titanium surface and gingival epithelium. Colloids Surf B Biointerfaces 2018; 161: 314-23.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.030] [PMID: 29096376]
[9]
Januchowski R, Zawierucha P, Ruciński M, Zabel M. Microarray-based detection and expression analysis of extracellular matrix proteins in drug resistant ovarian cancer cell lines. Oncol Rep 2014; 32(5): 1981-90.
[http://dx.doi.org/10.3892/or.2014.3468] [PMID: 25199881]
[10]
Moller-Levet CS, Betts GN, Harris AL, Homer JJ, West CM, Miller CJ. Exon array analysis of head and neck cancers identifies a hypoxia related splice variant of LAMA3 associated with a poor prognosis. PLOS Comput Biol 2009; 5(11): e1000571.
[http://dx.doi.org/10.1371/journal.pcbi.1000571] [PMID: 19936049]
[11]
Yamashita H, Tripathi M, Harris MP, et al. The role of a recombinant fragment of laminin-332 in integrin alpha3beta1-dependent cell binding, spreading and migration. Biomaterials 2010; 31(19): 5110-21.
[http://dx.doi.org/10.1016/j.biomaterials.2010.03.003] [PMID: 20347131]
[12]
Di Zenzo G, El Hachem M, Diociaiuti A, et al. A truncating mutation in the laminin-332α chain highlights the role of the LG45 proteolytic domain in regulating keratinocyte adhesion and migration. Br J Dermatol 2014; 170(5): 1056-64.
[http://dx.doi.org/10.1111/bjd.12816] [PMID: 24387836]
[13]
Ying J, Wang J, Ji H, et al. Transcriptome analysis of phycocyanin inhibitory effects on SKOV-3 cell proliferation. Gene 2016; 585(1): 58-64.
[http://dx.doi.org/10.1016/j.gene.2016.03.023] [PMID: 26995654]
[14]
Rohan T, Ye K, Wang Y, Glass AG, Ginsberg M, Loudig O. MicroRNA expression in benign breast tissue and risk of subsequent invasive breast cancer. PLoS One 2018; 13(2): e0191814.
[http://dx.doi.org/10.1371/journal.pone.0191814] [PMID: 29432432]
[15]
Woo I, Christenson LK, Gunewardena S, et al. Micro-RNAs involved in cellular proliferation have altered expression profiles in granulosa of young women with diminished ovarian reserve. J Assist Reprod Genet 2018; 35(10): 1777-86.
[http://dx.doi.org/10.1007/s10815-018-1239-9] [PMID: 29987422]
[16]
Abak A, Amini S, Estiar MA, Montazeri V, Sakhinia E, Abhari A. Analysis of miRNA-221 expression level in tumors and marginal biopsies from patients with breast cancer (cross-sectional observational study). Clin Lab 2018; 64(1): 169-75.
[http://dx.doi.org/10.7754/Clin.Lab.2017.170821] [PMID: 29479893]
[17]
Li F, Xu JW, Wang L, Liu H, Yan Y, Hu SY. MicroRNA-221-3p is up-regulated and serves as a potential biomarker in pancreatic cancer. Artif Cells Nanomed Biotechnol 2018; 46(3): 482-7.
[http://dx.doi.org/10.1080/21691401.2017.1315429] [PMID: 28434388]
[18]
Gautier L, Cope L, Bolstad BM, Irizarry RA. affy--analysis of affymetrix genechip data at the probe level. Bioinformatics 2004; 20(3): 307-15.
[http://dx.doi.org/10.1093/bioinformatics/btg405] [PMID: 14960456]
[19]
Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004; 3.
[http://dx.doi.org/10.2202/1544-6115.1027]
[20]
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method Methods 2001; 25(4): 402-8.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[21]
Kim CJ, Terado T, Tambe Y, et al. Anti-oncogenic activities of cyclin D1b siRNA on human bladder cancer cells via induction of apoptosis and suppression of cancer cell stemness and invasiveness. Int J Oncol 2018; 52(1): 231-40.
[http://dx.doi.org/10.3892/ijo.2017.4194] [PMID: 29115414]
[22]
Chiyomaru T, Fukuhara S, Saini S, et al. Long non-coding RNA HOTAIR is targeted and regulated by miR-141 in human cancer cells. J Biol Chem 2014; 289(18): 12550-65.
[http://dx.doi.org/10.1074/jbc.M113.488593] [PMID: 24616104]
[23]
Yoon JH, Abdelmohsen K, Srikantan S, et al. LincRNA-p21 suppresses target mRNA translation. Mol Cell 2012; 47(4): 648-55.
[http://dx.doi.org/10.1016/j.molcel.2012.06.027] [PMID: 22841487]
[24]
Sureechatchaiyan P, Hamacher A, Brockmann N, Stork B, Kassack MU. Adenosine enhances cisplatin sensitivity in human ovarian cancer cells. Purinergic Signal 2018; 14(4): 395-408.
[http://dx.doi.org/10.1007/s11302-018-9622-7] [PMID: 30078088]
[25]
Zhang L, Zhou Q. Bevacizumab with dose-dense paclitaxel/carboplatin as first-line chemotherapy for advanced ovarian cancer. Eur J Pharmacol 2018; 837: 64-71.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.049] [PMID: 30059681]
[26]
Martianov I, Ramadass A, Serra Barros A, Chow N, Akoulitchev A. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 2007; 445(7128): 666-70.
[http://dx.doi.org/10.1038/nature05519] [PMID: 17237763]
[27]
Rezaei M, Emadi-Baygi M, Hoffmann MJ, Schulz WA, Nikpour P. Altered expression of LINC-ROR in cancer cell lines and tissues. Tumour Biol 2016; 37(2): 1763-9.
[http://dx.doi.org/10.1007/s13277-015-3933-x] [PMID: 26314857]
[28]
Li L, Zhang GQ, Chen H, et al. Plasma and tumor levels of Linc-pint are diagnostic and prognostic biomarkers for pancreatic cancer. Oncotarget 2016; 7(44): 71773-81.
[http://dx.doi.org/10.18632/oncotarget.12365] [PMID: 27708234]
[29]
Li J, Yang C, Li Y, Chen A, Li L, You Z. LncRNA GAS5 suppresses ovarian cancer by inducing inflammasome formation. Biosci Rep 2018; 38(2): 38.
[http://dx.doi.org/10.1042/BSR20171150] [PMID: 29229673]
[30]
Wu Q, Ren X, Zhang Y, et al. MiR-221-3p targets ARF4 and inhibits the proliferation and migration of epithelial ovarian cancer cells. Biochem Biophys Res Commun 2018; 497(4): 1162-70.
[http://dx.doi.org/10.1016/j.bbrc.2017.01.002] [PMID: 28057486]
[31]
Amini-Farsani Z, Sangtarash MH, Shamsara M, Teimori H. MiR-221/222 promote chemoresistance to cisplatin in ovarian cancer cells by targeting PTEN/PI3K/AKT signaling pathway. Cytotechnology 2018; 70(1): 203-13.
[http://dx.doi.org/10.1007/s10616-017-0134-z] [PMID: 28887606]
[32]
Hong F, Li Y, Xu Y, Zhu L. Prognostic significance of serum microRNA-221 expression in human epithelial ovarian cancer. J Int Med Res 2013; 41(1): 64-71.
[http://dx.doi.org/10.1177/0300060513475759] [PMID: 23569131]
[33]
Li H, Zhao C, Zhao H, Liu G, Mao H, Liu Y. Elevated linc00936 or silenced microRNA-425-3p inhibits immune escape of gastric cancer cells via elevation of ZC3H12A. Int Immunopharmacol 2021; 95: 107559.
[http://dx.doi.org/10.1016/j.intimp.2021.107559] [PMID: 33756228]
[34]
Tan JT, Ernst B, Kieper WC, LeRoy E, Sprent J, Surh CD. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J Exp Med 2002; 195(12): 1523-32.
[http://dx.doi.org/10.1084/jem.20020066] [PMID: 12070280]
[35]
Li X, Wang Z. The role of noncoding RNA in thyroid cancer. Gland Surg 2012; 1(3): 146-50.
[http://dx.doi.org/10.3978/j.issn.2227-684X.2012.10.07] [PMID: 25083438]
[36]
Feng L, Shi L, Lu YF, et al. Linc-ROR promotes osteogenic differentiation of mesenchymal stem cells by functioning as a competing endogenous RNA for miR-138 and miR-145. Mol Ther Nucleic Acids 2018; 11: 345-53.
[http://dx.doi.org/10.1016/j.omtn.2018.03.004] [PMID: 29858070]
[37]
Mangiavacchi A, Sorci M, Masciarelli S, et al. The miR-223 host non-coding transcript linc-223 induces IRF4 expression in acute myeloid leukemia by acting as a competing endogenous RNA. Oncotarget 2016; 7(37): 60155-68.
[http://dx.doi.org/10.18632/oncotarget.11165] [PMID: 27517498]
[38]
Ye K, Wang S, Zhang H, Han H, Ma B, Nan W. Long noncoding RNA GAS5 suppresses cell growth and epithelial-mesenchymal transition in osteosarcoma by regulating the miR-221/ARHI pathway. J Cell Biochem 2017; 118(12): 4772-81.
[http://dx.doi.org/10.1002/jcb.26145] [PMID: 28519068]
[39]
Kinoshita T, Hanazawa T, Nohata N, et al. Tumor suppressive microRNA-218 inhibits cancer cell migration and invasion through targeting laminin-332 in head and neck squamous cell carcinoma. Oncotarget 2012; 3(11): 1386-400.
[http://dx.doi.org/10.18632/oncotarget.709] [PMID: 23159910]
[40]
Calderón A, Ortiz-Espín A, Iglesias-Fernández R, et al. Thioredoxin (Trxo1) interacts with proliferating cell nuclear antigen (PCNA) and its overexpression affects the growth of tobacco cell culture. Redox Biol 2017; 11: 688-700.
[http://dx.doi.org/10.1016/j.redox.2017.01.018] [PMID: 28183062]
[41]
Strzalka W, Ziemienowicz A. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. Ann Bot (Lond) 2011; 107(7): 1127-40.
[http://dx.doi.org/10.1093/aob/mcq243] [PMID: 21169293]
[42]
Nie X, Chen Y, Tan J, et al. MicroRNA-221-3p promotes pulmonary artery smooth muscle cells proliferation by targeting AXIN2 during pulmonary arterial hypertension. Vascul Pharmacol 2019; 116: 24-35.
[http://dx.doi.org/10.1016/j.vph.2017.07.002] [PMID: 28694128]
[43]
Huang CF, Teng YH, Lu FJ, et al. β-mangostin suppresses human hepatocellular carcinoma cell invasion through inhibition of MMP-2 and MMP-9 expression and activating the ERK and JNK pathways. Environ Toxicol 2017; 32(11): 2360-70.
[http://dx.doi.org/10.1002/tox.22449] [PMID: 28722351]
[44]
Zou M, Xu C, Li H, Zhang X, Fan W. 3,3′-Diindolylmethane suppresses ovarian cancer cell viability and metastasis and enhances chemotherapy sensitivity via STAT3 and Akt signaling in vitro and in vivo. Arch Biochem Biophys 2018; S0003-9861(18): 30087-0.
[http://dx.doi.org/10.1016/j.abb.2018.07.002] [PMID: 30040917]
[45]
Liu Z, Wang C, Jiao X, et al. miR-221 promotes growth and invasion of hepatocellular carcinoma cells by constitutive activation of NFκB. Am J Transl Res 2016; 8(11): 4764-77.
[PMID: 27904678]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy