Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

MIR17HG: A Cancerogenic Long-Noncoding RNA in Different Cancers

Author(s): Fangshun Tan, Jinlan Chen, Zhuoying Du, Fangnan Zhao, Yuling Liu, Qi Zhang and Chengfu Yuan*

Volume 28, Issue 15, 2022

Published on: 05 April, 2022

Page: [1272 - 1281] Pages: 10

DOI: 10.2174/1381612828666220310144500

Price: $65

Abstract

LncRNA MIR17HG, located at chromosome 13q31, plays an inevitable role in promoting tumor progressions, such as tumorigenesis, proliferation, and metastasis. Besides, lncRNA MIR17HG is rare due to its open reading frame (ORF), which can be translated to produce protein. By systematically retrieval, we summarized that MIR17HG is an emerging lncRNA that exhibits carcinogenically in osteosarcoma (OS), glioma, cervical squamous cell carcinoma (CSCC), colorectal cancer (CRC), gastric cancer (GC), atypical teratoid rhabdoid tumors (ATRT). Furthermore, a high expression level of MIR17HG protein is also linked with meningioma. Additionally, MIR17HG polymorphisms in glioma, CRC, liver cancer (LC), breast cancer (BC), head and neck squamous cell carcinoma (HNSCC), and multiple myeloma (MM) also have a large influence on cancer susceptibility, prognosis, and so on. Collectively, long non-coding RNA MIR17HG’s tumor-stimulative role could be a promising therapeutic target. Besides, by investigating patients’ MIR17HG single-nucleotide polymorphisms (SNPs), clinicians could also personalize the productive interventions in gene therapy or predict the diagnosis/prognosis precisely.

Keywords: Long non-coding RNA, MIR17HG, biomarker, therapeutic molecular target, diagnosis, prognosis, cancer, molecular mechanism.

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Boon RA, Jaé N, Holdt L, Dimmeler S. Long noncoding RNAs. J Am Coll Cardiol 2016; 67(10): 1214-26.
[http://dx.doi.org/10.1016/j.jacc.2015.12.051] [PMID: 26965544]
[3]
Huang JZ, Chen M, Chen D, et al. A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Mol Cell 2017; 68(1): 171-184.e6.
[http://dx.doi.org/10.1016/j.molcel.2017.09.015] [PMID: 28985503]
[4]
Matsumoto A, Pasut A, Matsumoto M, et al. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature 2017; 541(7636): 228-32.
[http://dx.doi.org/10.1038/nature21034] [PMID: 28024296]
[5]
Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell 2009; 136(4): 629-41.
[http://dx.doi.org/10.1016/j.cell.2009.02.006] [PMID: 19239885]
[6]
Robinson EK, Covarrubias S, Carpenter S. The how and why of lncRNA function: An innate immune perspective. Biochim Biophys Acta Gene Regul Mech 2020; 1863(4): 194419.
[http://dx.doi.org/10.1016/j.bbagrm.2019.194419] [PMID: 31487549]
[7]
Yang Z, Jiang S, Shang J, et al. LncRNA: Shedding light on mechanisms and opportunities in fibrosis and aging. Ageing Res Rev 2019; 52: 17-31.
[http://dx.doi.org/10.1016/j.arr.2019.04.001] [PMID: 30954650]
[8]
Ang CE, Trevino AE, Chang HY. Diverse lncRNA mechanisms in brain development and disease. Curr Opin Genet Dev 2020; 65: 42-6.
[http://dx.doi.org/10.1016/j.gde.2020.05.006] [PMID: 32554106]
[9]
Uchida S, Dimmeler S. Long noncoding RNAs in cardiovascular diseases. Circ Res 2015; 116(4): 737-50.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.302521] [PMID: 25677520]
[10]
Yang Y, Zhang Y, Yang Y, et al. Differential expression of long noncoding RNAs and their function-related mRNAs in the peripheral blood of allergic rhinitis patients. Am J Rhinol Allergy 2020; 34(4): 508-18.
[http://dx.doi.org/10.1177/1945892420912164] [PMID: 32168998]
[11]
Liu N, Wang ZZ, Zhao M, Zhang Y, Chen NH. Role of non-coding RNA in the pathogenesis of depression. Gene 2020; 735: 144276.
[http://dx.doi.org/10.1016/j.gene.2019.144276] [PMID: 31816363]
[12]
Guo J, Liu Z, Gong R. Long noncoding RNA: An emerging player in diabetes and diabetic kidney disease. Clin Sci (Lond) 2019; 133(12): 1321-39.
[http://dx.doi.org/10.1042/CS20190372] [PMID: 31221822]
[13]
Gao Y, Li S, Zhang Z, Yu X, Zheng J. The role of long non-coding RNAs in the pathogenesis of RA, SLE, and SS. Front Med (Lausanne) 2018; 5: 193.
[http://dx.doi.org/10.3389/fmed.2018.00193] [PMID: 30018955]
[14]
Loda A, Heard E. Xist RNA in action: Past, present, and future. PLoS Genet 2019; 15(9): e1008333.
[http://dx.doi.org/10.1371/journal.pgen.1008333] [PMID: 31537017]
[15]
Gutschner T, Diederichs S. The hallmarks of cancer: A long non-coding RNA point of view. RNA Biol 2012; 9(6): 703-19.
[http://dx.doi.org/10.4161/rna.20481] [PMID: 22664915]
[16]
Wan S, Chen X, He Y, Yu X. Novel functions of MicroRNA-17-92 cluster in the endocrine system. Curr Drug Targets 2018; 19(2): 191-200.
[http://dx.doi.org/10.2174/1389450118666171117125319] [PMID: 29149826]
[17]
Chacon-Cortes D, Smith RA, Lea RA, Youl PH, Griffiths LR. Association of microRNA 17-92 cluster host gene (MIR17HG) polymorphisms with breast cancer. Tumour Biol 2015; 36(7): 5369-76.
[http://dx.doi.org/10.1007/s13277-015-3200-1] [PMID: 25680407]
[18]
Xie L, Huang R, Liu S, et al. A positive feedback loop of SIRT1 and miR17HG promotes the repair of DNA double-stranded breaks. Cell Cycle 2019; 18(17): 2110-23.
[http://dx.doi.org/10.1080/15384101.2019.1641388] [PMID: 31290724]
[19]
Ganjavi H, Siu VM, Speevak M, MacDonald PA. A fourth case of feingold syndrome type 2: Psychiatric presentation and management. BMJ Case Rep 2014 2014.
[20]
Lei J, Han L, Huang Y, et al. Feingold syndrome type 2 in a patient from China. Am J Med Genet A 2021; 185(7): 2262-6.
[http://dx.doi.org/10.1002/ajmg.a.62190] [PMID: 33818875]
[21]
Liu T, Cao Y, Han C, et al. Association of MIR17HG and MIR155HG gene variants with steroid-induced osteonecrosis of the femoral head in the population of northern China. J Orthop Surg Res 2021; 16(1): 673.
[http://dx.doi.org/10.1186/s13018-021-02669-y] [PMID: 34781979]
[22]
Yang K, Zhang Y, Mai X, Hu L, Ma C, Wei J. MIR17HG genetic variations affect the susceptibility of IgA nephropathy in Chinese Han people. Gene 2021; 800: 145838.
[http://dx.doi.org/10.1016/j.gene.2021.145838] [PMID: 34274472]
[23]
Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol 2018; 141(4): 1202-7.
[http://dx.doi.org/10.1016/j.jaci.2017.08.034] [PMID: 29074454]
[24]
Mohr A, Mott J. Overview of microRNA biology. Seminars in Liver Disease 2015; 35: 003-11.
[http://dx.doi.org/10.1055/s-0034-1397344]
[25]
Siavrienė E, Preikšaitienė E, Maldžienė Ž, et al. A de novo 13q31.3 microduplication encompassing the miR-17 ~ 92 cluster results in features mirroring those associated with Feingold syndrome 2. Gene 2020; 753: 144816.
[http://dx.doi.org/10.1016/j.gene.2020.144816] [PMID: 32473250]
[26]
Yuan J, Tan L, Yin Z, et al. MIR17HG-miR-18a/19a axis, regulated by interferon regulatory factor-1, promotes gastric cancer metastasis via Wnt/β-catenin signalling. Cell Death Dis 2019; 10(6): 454.
[http://dx.doi.org/10.1038/s41419-019-1685-z] [PMID: 31186404]
[27]
Nair MG, Prabhu JS, Korlimarla A, et al. miR-18a activates Wnt pathway in ER-positive breast cancer and is associated with poor prognosis. Cancer Med 2020; 9(15): 5587-97.
[http://dx.doi.org/10.1002/cam4.3183] [PMID: 32543775]
[28]
Lopez MF, Niu P, Wang L, et al. Opposing activities of oncogenic MIR17HG and tumor suppressive MIR100HG clusters and their gene targets regulate replicative senescence in human adult stem cells. NPJ Aging Mech Dis 2017; 3(1): 7.
[http://dx.doi.org/10.1038/s41514-017-0006-y] [PMID: 28649425]
[29]
Vu M, Yu J, Awolude OA, Chuang L. Cervical cancer worldwide. Curr Probl Cancer 2018; 42(5): 457-65.
[http://dx.doi.org/10.1016/j.currproblcancer.2018.06.003] [PMID: 30064936]
[30]
Zhou Y, Liu H, Wang J, et al. ΔNp63α exerts antitumor functions in cervical squamous cell carcinoma Oncogene 2020; 39(4): 905-21.
[http://dx.doi.org/10.1038/s41388-019-1033-x] [PMID: 31576015]
[31]
Liu H, Zhu C, Xu Z, et al. lncRNA PART1 and MIR17HG as ΔNp63α direct targets regulate tumor progression of cervical squamous cell carcinoma. Cancer Sci 2020; 111(11): 4129-41.
[http://dx.doi.org/10.1111/cas.14649] [PMID: 32920922]
[32]
Diwanji TP, Engelman A, Snider JW, Mohindra P. Epidemiology, diagnosis, and optimal management of glioma in adolescents and young adults. Adolesc Health Med Ther 2017; 8: 99-113.
[http://dx.doi.org/10.2147/AHMT.S53391] [PMID: 28989289]
[33]
Cao S, Zheng J, Liu X, et al. FXR1 promotes the malignant biological behavior of glioma cells via stabilizing MIR17HG. J Exp Clin Cancer Res 2019; 38(1): 37.
[http://dx.doi.org/10.1186/s13046-018-0991-0] [PMID: 30691465]
[34]
Leng X, Ma J, Liu Y, et al. Mechanism of piR-DQ590027/MIR17HG regulating the permeability of glioma conditioned normal BBB. J Exp Clin Cancer Res 2018; 37(1): 246.
[http://dx.doi.org/10.1186/s13046-018-0886-0] [PMID: 30305135]
[35]
Van Loo P, Nilsen G, Nordgard SH, et al. Analyzing cancer samples with SNP arrays. Methods Mol Biol 2012; 802: 57-72.
[http://dx.doi.org/10.1007/978-1-61779-400-1_4] [PMID: 22130873]
[36]
Feng J, Ouyang Y, Xu D, et al. Genetic variants in MIR17HG affect the susceptibility and prognosis of glioma in a Chinese Han population. BMC Cancer 2020; 20(1): 976.
[http://dx.doi.org/10.1186/s12885-020-07417-9] [PMID: 33036577]
[37]
Sadykova LR, Ntekim AI, Muyangwa-Semenova M, et al. Epidemiology and risk factors of osteosarcoma. Cancer Invest 2020; 38(5): 259-69.
[http://dx.doi.org/10.1080/07357907.2020.1768401] [PMID: 32400205]
[38]
Meng Y, Hao D, Huang Y, et al. Positive feedback loop SP1/MIR17HG/miR-130a-3p promotes osteosarcoma proliferation and cisplatin resistance. Biochem Biophys Res Commun 2020; 521(3): 739-45.
[http://dx.doi.org/10.1016/j.bbrc.2019.10.180] [PMID: 31706574]
[39]
Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet 2019; 394(10207): 1467-80.
[http://dx.doi.org/10.1016/S0140-6736(19)32319-0] [PMID: 31631858]
[40]
Xu J, Meng Q, Li X, et al. Long noncoding RNA MIR17HG promotes colorectal cancer progression via miR-17-5p. Cancer Res 2019; 79(19): 4882-95.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3880] [PMID: 31409641]
[41]
Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 checkpoint. Immunity 2018; 48(3): 434-52.
[http://dx.doi.org/10.1016/j.immuni.2018.03.014] [PMID: 29562194]
[42]
Zhao S, Guan B, Mi Y, et al. LncRNA MIR17HG promotes colorectal cancer liver metastasis by mediating a glycolysis-associated positive feedback circuit. Oncogene 2021; 40(28): 4709-24.
[http://dx.doi.org/10.1038/s41388-021-01859-6] [PMID: 34145399]
[43]
Chen P, Bai Y, Li Y, et al. Association between polymorphisms of MIR17HG and risk of colorectal cancer in the Chinese Han population. Mol Genet Genomic Med 2019; 7(6): e667.
[http://dx.doi.org/10.1002/mgg3.667] [PMID: 30941921]
[44]
Molinari C, Salvi S, Foca F, et al. miR-17-92a-1 cluster host gene (MIR17HG) evaluation and response to neoadjuvant chemoradiotherapy in rectal cancer. OncoTargets Ther 2016; 9: 2735-42.
[PMID: 27226732]
[45]
Smyth EC, Nilsson M, Grabsch HI, van Grieken NCT, Lordick F. Gastric cancer. Lancet 2020; 396(10251): 635-48.
[http://dx.doi.org/10.1016/S0140-6736(20)31288-5] [PMID: 32861308]
[46]
Chen FF, Jiang G, Xu K, Zheng JN. Function and mechanism by which interferon regulatory factor-1 inhibits oncogenesis. Oncol Lett 2013; 5(2): 417-23.
[http://dx.doi.org/10.3892/ol.2012.1051] [PMID: 23420765]
[47]
Bahari F, Emadi-Baygi M, Nikpour P. miR-17-92 host gene, uderexpressed in gastric cancer and its expression was negatively correlated with the metastasis. Indian J Cancer 2015; 52(1): 22-5.
[http://dx.doi.org/10.4103/0019-509X.175605] [PMID: 26837962]
[48]
Huntoon K, Toland AMS, Dahiya S. Meningioma: A review of clinicopathological and molecular aspects. Front Oncol 2020; 10: 579599.
[http://dx.doi.org/10.3389/fonc.2020.579599] [PMID: 33194703]
[49]
Evran S, Baran O, Kayhan A, et al. The expression of MIR17HG protein as a potential therapeutic target in meningioma. World Neurosurg 2020; 137: e554-63.
[http://dx.doi.org/10.1016/j.wneu.2020.02.039] [PMID: 32068173]
[50]
Frühwald MC, Biegel JA, Bourdeaut F, Roberts CW, Chi SN. Atypical teratoid/rhabdoid tumors-current concepts, advances in biology, and potential future therapies. Neuro-oncol 2016; 18(6): 764-78.
[http://dx.doi.org/10.1093/neuonc/nov264] [PMID: 26755072]
[51]
Xue Y, Zhu X, Meehan B, et al. SMARCB1 loss induces druggable cyclin D1 deficiency via upregulation of MIR17HG in atypical teratoid rhabdoid tumors. J Pathol 2020; 252(1): 77-87.
[http://dx.doi.org/10.1002/path.5493] [PMID: 32558936]
[52]
Jiao Y, Li Y, Ji B, Cai H, Liu Y. Clinical value of lncRNA LUCAT1 expression in liver cancer and its potential pathways. J Gastrointestin Liver Dis 2019; 28(4): 439-47.
[http://dx.doi.org/10.15403/jgld-356] [PMID: 31826070]
[53]
Zhang Z, Wang S, Liu Y, Meng Z, Chen F. Low lncRNA ZNF385D-AS2 expression and its prognostic significance in liver cancer. Oncol Rep 2019; 42(3): 1110-24.
[http://dx.doi.org/10.3892/or.2019.7238] [PMID: 31322274]
[54]
Chao X, Feng X, Shi H, et al. MIR17HG polymorphism (rs7318578) is associated with liver cancer risk in the Chinese Han population. Biosci Rep 2020; 40(8): 40.
[http://dx.doi.org/10.1042/BSR20193312] [PMID: 32748943]
[55]
Barzaman K, Karami J, Zarei Z, et al. Breast cancer: Biology, biomarkers, and treatments. Int Immunopharmacol 2020; 84: 106535.
[http://dx.doi.org/10.1016/j.intimp.2020.106535] [PMID: 32361569]
[56]
Liang Y, Song X, Li Y, et al. LncRNA BCRT1 promotes breast cancer progression by targeting miR-1303/PTBP3 axis. Mol Cancer 2020; 19(1): 85.
[http://dx.doi.org/10.1186/s12943-020-01206-5] [PMID: 32384893]
[57]
Solomon B, Young RJ, Rischin D. Head and neck squamous cell carcinoma: Genomics and emerging biomarkers for immunomodulatory cancer treatments. Semin Cancer Biol 2018; 52(Pt 2): 228-40.
[http://dx.doi.org/10.1016/j.semcancer.2018.01.008] [PMID: 29355614]
[58]
Kolenda T, Guglas K, Kopczyńska M, et al. Oncogenic role of ZFAS1 lncRNA in head and neck squamous cell carcinomas. Cells 2019; 8(4): 8.
[http://dx.doi.org/10.3390/cells8040366] [PMID: 31010087]
[59]
Xu C, Han P, Ren W, et al. The genetic polymorphisms in the MIR17HG gene are associated with the risk of head and neck squamous cell carcinoma in the Chinese Han population. BioMed Res Int 2020; 2020: 2329196.
[http://dx.doi.org/10.1155/2020/2329196] [PMID: 33299861]
[60]
Gerecke C, Fuhrmann S, Strifler S, Schmidt-Hieber M, Einsele H, Knop S. The diagnosis and treatment of multiple myeloma. Dtsch Arztebl Int 2016; 113(27-28): 470-6.
[http://dx.doi.org/10.3238/arztebl.2016.0470] [PMID: 27476706]
[61]
Chen R, Zhang X, Wang C. LncRNA HOXB-AS1 promotes cell growth in multiple myeloma via FUT4 mRNA stability by ELAVL1. J Cell Biochem 2020; 121(10): 4043-51.
[http://dx.doi.org/10.1002/jcb.29573] [PMID: 31886581]
[62]
Wu H, Huang T, Ye Z, Fu X, Hu K, Yang X. Correlation of MicroRNA 17-92 cluster host gene (MIR17HG) polymorphisms with susceptibility and prognosis for multiple myeloma. Clin Lymphoma Myeloma Leuk 2019; 19(7): e359-66.
[http://dx.doi.org/10.1016/j.clml.2019.03.018] [PMID: 31029648]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy