Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Design and Synthesis of Novel Celecoxib Analogues with Potential Cytotoxic and Pro-apoptotic Activity against Breast Cancer Cell Line MCF-7

Author(s): Eman F. Abdelhaleem, Asmaa E. Kassab*, Hala B. El-Nassan* and Omneya M. Khalil

Volume 18, Issue 8, 2022

Published on: 27 April, 2022

Page: [903 - 914] Pages: 12

DOI: 10.2174/1573406418666220309123648

Price: $65

Abstract

Background: Breast cancer is currently the leading cause of worldwide cancer incidence exceeding lung cancer. In addition, breast cancer accounts for 1 in 4 cancer cases and 1 in 6 cancer deaths among women. Cytotoxic chemotherapy is still the main therapeutic approach for patients with metastatic breast cancer.

Objective: The aim of the study was to synthesize a series of novel celecoxib analogues to evaluate their anticancer activity against the MCF-7 cell line.

Methods: Our design of target compounds was based on preserving the pyrazole moiety of celecoxib attached to two phenyl rings, one of them having a polar hydrogen bonding group (sulfonamide or methoxy group). The methyl group of the second phenyl ring was replaced with chlorine or bromine atom. Finally, the trifluoromethyl group was replaced with arylidene hydrazine-1-carbonyl moiety, which is substituted either with fluoro or methoxy group, offering various electronic and lipophilic environments. These modifications were carried out to investigate their effects on the antiproliferative activity of the newly synthesized celecoxib analogues and to provide a valuable structure- activity relationship.

Results: Four compounds, namely 4e-h, exhibited significant antitumor activity. Compounds 4e, 4f and 4h showed 1.2-2 folds more potent anticancer activity than celecoxib. Celecoxib analogue 4f showed the most potent anti-proliferative activity. Its anti-proliferative activity seems to associate well with its ability to inhibit BCL-2. Moreover, activation of the damage response pathway of the DNA leads to cell cycle arrest at the G2/M phase and accumulation of cells in the pre-G1 phase, indicating that cell death proceeds through an apoptotic mechanism. Compound 4f exhibited a potent pro-apoptotic effect via induction of the intrinsic mitochondrial pathway of apoptosis. This mechanistic pathway was proved by a significant increase in the expression of the tumor suppressor gene p53, elevation in Bax/BCL-2 ratio, and a significant increase in the level of active caspase-7. Furthermore, compound 4f showed moderate COX-2 inhibitory activity.

Conclusion: Celecoxib analogue 4f is a promising multi-targeted lead for the design and synthesis of potent anticancer agents.

Keywords: Celecoxib, design, synthesis, anticancer activity, cell cycle arrest profile, apoptosis, BCL-2.

« Previous
Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN esti-mates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Espinosa-Cano, E.; Huerta-Madroñal, M.; Cámara-Sánchez, P.; Seras-Franzoso, J.; Schwartz, S., Jr; Abasolo, I.; San Román, J.; Aguilar, M.R. Hyaluronic acid (HA)-coated naproxen-nanoparticles selectively target breast cancer stem cells through COX-independent pathways. Mater. Sci. Eng. C, 2021, 124, 112024.
[http://dx.doi.org/10.1016/j.msec.2021.112024] [PMID: 33947532]
[3]
Arora, A.; Scholar, E.M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther., 2005, 315(3), 971-979.
[http://dx.doi.org/10.1124/jpet.105.084145] [PMID: 16002463]
[4]
Agúndez, J.A.; Blanca, M.; Cornejo-García, J.A.; García-Martín, E. Pharmacogenomics of cyclooxygenases. Pharmacogenomics, 2015, 16(5), 501-522.
[http://dx.doi.org/10.2217/pgs.15.6] [PMID: 25916522]
[5]
Zelenay, S.; van der Veen, A.G.; Böttcher, J.P.; Snelgrove, K.J.; Rogers, N.; Acton, S.E.; Chakravarty, P.; Girotti, M.R.; Marais, R.; Queza-da, S.A.; Sahai, E.; Reis e Sousa, C. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell, 2015, 162(6), 1257-1270.
[http://dx.doi.org/10.1016/j.cell.2015.08.015] [PMID: 26343581]
[6]
Hashemi Goradel, N.; Najafi, M.; Salehi, E.; Farhood, B.; Mortezaee, K. Cyclooxygenase-2 in cancer: A review. J. Cell. Physiol., 2019, 234(5), 5683-5699.
[http://dx.doi.org/10.1002/jcp.27411] [PMID: 30341914]
[7]
Teicher, B.A.; Korbut, T.T.; Menon, K.; Holden, S.A.; Ara, G. Cyclooxygenase and lipoxygenase inhibitors as modulators of cancer ther-apies. Cancer Chemother. Pharmacol., 1994, 33(6), 515-522.
[http://dx.doi.org/10.1007/BF00686511] [PMID: 8137463]
[8]
Urade, M. Cyclooxygenase (COX) -2 as a potent molecular target for prevention and therapy of oral cancer. Jpn. Dent. Sci. Rev., 2008, 44(1), 57-65.
[http://dx.doi.org/10.1016/j.jdsr.2007.10.003]
[9]
Bjarnason, I. COX-2 inhibitors. Lancet, 1999, 353(9162), 1440.
[http://dx.doi.org/10.1016/S0140-6736(05)75961-4] [PMID: 10227244]
[10]
Coombes, R.C.; Von Minckwitz, G.; Hicks, J.; Klare, P.; Evans, A.A.; Schmidt, M.; Makris, A.; Grieve, R.; Loibl, S.; Maher, L.; Mousa, K.; Buchsenscuhtz, K.; A’Hern, R.; Bliss, J.M. A phase III, multicenter, double-blind, randomized trial of celecoxib versus placebo in pri-mary breast cancer patients: Randomized European Celecoxib Trial (REACT). J. Clin. Oncol., 2011, 29(15)(Suppl.), TPS115-TPS115.
[http://dx.doi.org/10.1200/jco.2011.29.15_suppl.tps115]
[11]
Li, J.; Hao, Q.; Cao, W.; Vadgama, J.V.; Wu, Y. Celecoxib in breast cancer prevention and therapy. Cancer Manag. Res., 2018, 10, 4653-4667.
[http://dx.doi.org/10.2147/CMAR.S178567] [PMID: 30464589]
[12]
Wullen, B.; Mühlhöfer, A.; Zoller, W.G. the effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. Z. Gastroenterol., 2001, 39(4), 335-337.
[http://dx.doi.org/10.1055/s-2001-12868] [PMID: 11367984]
[13]
Mohammad, S.; Mahboubi, I.; Zarghi, A. Selective COX-2 inhibitors as anticancer agents: A patent review (2014-2018). Expert Opin. Ther. Pat., 2019, 29, 407-427.
[http://dx.doi.org/10.1080/13543776.2019.1623880]
[14]
Baumann, K.H.; Klusmeier, E.; Eggemann, I.; Reinartz, S.; Almeroth, A.; Kalder, M.; Wagner, U. Effects of celecoxib and ly117018 com-bination on human breast cancer cells in vitro. Breast Cancer (Auckl.), 2009, 3, 23-34.
[http://dx.doi.org/10.4137/BCBCR.S2291] [PMID: 21556247]
[15]
El-Awady, R.A.; Saleh, E.M.; Ezz, M.; Elsayed, A.M. Interaction of celecoxib with different anti-cancer drugs is antagonistic in breast but not in other cancer cells. Toxicol. Appl. Pharmacol., 2011, 255(3), 271-286.
[http://dx.doi.org/10.1016/j.taap.2011.06.019] [PMID: 21763710]
[16]
Dai, Z.J.; Ma, X.B.; Kang, H.F.; Gao, J.; Min, W.L.; Guan, H.T.; Diao, Y.; Lu, W.F.; Wang, X.J. Antitumor activity of the selective cy-clooxygenase-2 inhibitor, celecoxib, on breast cancer in vitro and in Vivo. Cancer Cell Int., 2012, 12(1), 53.
[http://dx.doi.org/10.1186/1475-2867-12-53] [PMID: 23249419]
[17]
Majdzadeh, M.; Aliebrahimi, S. Vatankhah; Ostad, S.N. Effects of celecoxib and L-NAME on apoptosis and cell cycle of MCF-7 CD44+/CD24–/low subpopulation. Turk. J. Biol., 2017, 41, 826-834.
[http://dx.doi.org/10.3906/biy-1703-101]
[18]
Kismet, K.; Akay, M.T. Abbasoǧlu, O.; Ercan, A. Celecoxib: A potent cyclooxygenase-2 inhibitor in cancer prevention. Cancer Detect. Prev., 2004, 28(2), 127-142.
[http://dx.doi.org/10.1016/j.cdp.2003.12.005] [PMID: 15068837]
[19]
Ding, H.; Han, C.; Zhu, J.; Chen, C.S.; D’Ambrosio, S.M. Celecoxib derivatives induce apoptosis via the disruption of mitochondrial membrane potential and activation of caspase 9. Int. J. Cancer, 2005, 113(5), 803-810.
[http://dx.doi.org/10.1002/ijc.20639] [PMID: 15499625]
[20]
Schönthal, A.H.; Chen, T.C.; Hofman, F.M.; Louie, S.G.; Petasis, N.A. Celecoxib analogs that lack COX-2 inhibitory function: Preclinical development of novel anticancer drugs. Expert Opin. Investig. Drugs, 2008, 17(2), 197-208.
[http://dx.doi.org/10.1517/13543784.17.2.197] [PMID: 18230053]
[21]
Sinicrope, F.A.; Gill, S. Role of cyclooxygenase-2 in colorectal cancer. Cancer Metastasis Rev., 2004, 23(1-2), 63-75.
[http://dx.doi.org/10.1023/A:1025863029529] [PMID: 15000150]
[22]
Jendrossek, V. Targeting apoptosis pathways by Celecoxib in cancer. Cancer Lett., 2013, 332(2), 313-324.
[http://dx.doi.org/10.1016/j.canlet.2011.01.012] [PMID: 21345578]
[23]
Li, Z.; Hao, Q.; Luo, J.; Xiong, J.; Zhang, S.; Wang, T.; Bai, L.; Wang, W.; Chen, M.; Wang, W.; Gu, L.; Lv, K.; Chen, J. USP4 inhibits p53 and NF-κB through deubiquitinating and stabilizing HDAC2. Oncogene, 2016, 35(22), 2902-2912.
[http://dx.doi.org/10.1038/onc.2015.349] [PMID: 26411366]
[24]
Tacconelli, S.; Capone, M.L.; Patrignani, P. Clinical pharmacology of novel selective COX-2 inhibitors. Curr. Pharm. Des., 2004, 10(6), 589-601.
[http://dx.doi.org/10.2174/1381612043453108] [PMID: 14965322]
[25]
Winfield, L.L.; Payton-Stewart, F. Celecoxib and Bcl-2: Emerging possibilities for anticancer drug design. Future Med. Chem., 2012, 4(3), 361-383.
[http://dx.doi.org/10.4155/fmc.11.177] [PMID: 22393942]
[26]
Desai, D.; Sinha, I.; Null, K.; Wolter, W.; Suckow, M.A.; King, T.; Amin, S.; Sinha, R. Synthesis and antitumor properties of selenocoxib-1 against rat prostate adenocarcinoma cells. Int. J. Cancer, 2010, 127(1), 230-238.
[http://dx.doi.org/10.1002/ijc.25033] [PMID: 19918950]
[27]
Zhu, J.; Song, X.; Lin, H.; Young, D.C.; Yan, S.; Marquez, V.E.; Chen, C. Using cyclooxygenase-2 inhibitors as molecular apoptosis-inducing agents. J. Natl. Cancer Inst., 2002, 94, 1745-1757.
[http://dx.doi.org/10.1093/jnci/94.23.1745] [PMID: 12464646]
[28]
Qiu, H.Y.; Wang, P.F.; Li, Z.; Ma, J.T.; Wang, X.M.; Yang, Y.H.; Zhu, H.L. Synthesis of dihydropyrazole sulphonamide derivatives that act as anti-cancer agents through COX-2 inhibition. Pharmacol. Res., 2016, 104, 86-96.
[http://dx.doi.org/10.1016/j.phrs.2015.12.025] [PMID: 26723906]
[29]
Hantgan, R.R.; Stahle, M.C. Integrin priming dynamics: Mechanisms of integrin antagonist-promoted alphaIIbbeta3:PAC-1 molecular recognition. Biochemistry, 2009, 48(35), 8355-8365.
[http://dx.doi.org/10.1021/bi900475k] [PMID: 19640007]
[30]
Liang, Z.; Zhang, D.; Ai, J.; Chen, L.; Wang, H.; Kong, X.; Zheng, M.; Liu, H.; Luo, C.; Geng, M.; Jiang, H.; Chen, K. Identification and synthesis of N'-(2-oxoindolin-3-ylidene)hydrazide derivatives against c-Met kinase. Bioorg. Med. Chem. Lett., 2011, 21(12), 3749-3754.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.064] [PMID: 21561768]
[31]
Hsu, D.C.; Roth, H.S.; West, D.C.; Botham, R.C.; Novotny, C.J.; Schmid, S.C.; Hergenrother, P.J. Parallel synthesis and biological evalua-tion of 837 analogues of procaspase-activating compound 1 (PAC-1). ACS Comb. Sci., 2012, 14(1), 44-50.
[http://dx.doi.org/10.1021/co2001372] [PMID: 22007686]
[32]
Gardner, T.S.; Wenis, E.; Lee, J. GARDNER, T.S.; WENS, E.; LEE, J. Synthesis of 5- substituted 3-isoxazolecarboxylic acid hydrazides and derivatives. J. Org. Chem., 1961, 26(5), 1514-1518.
[http://dx.doi.org/10.1021/jo01064a050]
[33]
Nayak, N.; Ramprasad, J.; Dalimba, U.; Yogeeswari, P.; Sriram, D.; Kumar, H.S.S.; Peethambar, S.K.; Achur, R. Synthesis of new pyra-zole-triazole hybrids by click reaction using a green solvent and evaluation of their antitubercular and antibacterial activity. Res. Chem. Intermed., 2016, 42(4), 3721-3741.
[http://dx.doi.org/10.1007/s11164-015-2241-9]
[34]
Murray, W.V.; Wachter, M.P. A simple regioselective synthesis of Ethyl 1,5-diarylpyrazole-3-carboxylates. J. Heterocycl. Chem., 1989, 26(5), 1389-1392.
[http://dx.doi.org/10.1002/jhet.5570260529]
[35]
Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New color-imetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 1990, 82(13), 1107-1112.
[http://dx.doi.org/10.1093/jnci/82.13.1107] [PMID: 2359136]
[36]
Palla, G.; Predieri, G.; Domiano, P.; Vignali, C.; Turner, W. Conformational behaviour and E/Z isomerization of N-acyl and N-aroylhydrazones. Tetrahedron, 1986, 42(13), 3649-3654.
[http://dx.doi.org/10.1016/S0040-4020(01)87332-4]
[37]
Tisovský, P.; Csicsai, K.; Donovalová, J.; Šandrik, R.; Sokolík, R.; Gáplovský, A. Effect of a =X-NH-fragment, (X = C, N), on Z/E isomer-ization and ON/OFF functionality of isatin arylhydrazones, ((arylamino)methylene)indolin-2-ones and their anions. Molecules, 2020, 25(13), 3082.
[http://dx.doi.org/10.3390/molecules25133082] [PMID: 32640761]
[38]
Reis, D.C.; Despaigne, A.A.R.; Da Silva, J.G.; Silva, N.F.; Vilela, C.F.; Mendes, I.C.; Takahashi, J.A.; Beraldo, H. Structural studies and investigation on the activity of imidazole-derived thiosemicarbazones and hydrazones against crop-related fungi. Molecules, 2013, 18(10), 12645-12662.
[http://dx.doi.org/10.3390/molecules181012645] [PMID: 24129274]
[39]
Miyashita, T.; Krajewski, S.; Krajewska, M.; Wang, H.G.; Lin, H.K.; Liebermann, D.A.; Hoffman, B.; Reed, J.C. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in Vivo. Oncogene, 1994, 9(6), 1799-1805.
[PMID: 8183579]
[40]
Lamkanfi, M.; Kanneganti, T.D. Caspase-7: A protease involved in apoptosis and inflammation. Int. J. Biochem. Cell Biol., 2010, 42(1), 21-24.
[http://dx.doi.org/10.1016/j.biocel.2009.09.013] [PMID: 19782763]
[41]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy