Review Article

作为药物的细菌:了解肠道菌群和癌症治疗之间的联系

卷 23, 期 9, 2022

发表于: 22 April, 2022

页: [869 - 888] 页: 20

弟呕挨: 10.2174/1389450123666220309101345

价格: $65

摘要

众所周知,共生菌群可以调节宿主的生理机能。微生物生态失调或恢复力受损与癌症的迫近风险有关。大量证据表明,癌症和微生物群之间存在着潜在的联系。本综述详细探讨了导致和/或促进肿瘤发生的各种联系,为其用作潜在治疗靶点提供了合理的推理或基础。本综述强调了癌症中微生物组的现有知识,并进一步阐述了基因修改、饮食成分的影响和环境因素等因素,这些因素被认为是评估微生物在肿瘤发生过程中和对宿主健康的直接和间接影响。此外,还讨论了调节微生物组和新型生物疗法的策略。药物微生物学是一个这样的生态位,解释微生物组之间的相互作用,外来生物,和宿主反应,这也是被关注的。本次审查的文献检索策略是按照系统审查和Meta分析的首选报告项目 (PRISMA) 的方法进行的。该方法包括从不同的搜索引擎收集数据,如PubMed, ScienceDirect, SciFinder等,以获得相关文献的覆盖,以积累有关微生物组、癌症及其联系的适当信息。这些考虑是为了扩展现有文献对肠道菌群在宿主健康中的作用、宿主和菌群之间的相互作用以及菌群与修饰肿瘤细胞之间的相互关系的研究。本文详细讨论了癌症微生物群的潜在治疗意义,这些微生物群在改善人类健康方面有着丰富的治疗红利,但尚未被探索。

关键词: 肠道菌群,癌症,菌群,靶向调节,药物菌群,基于菌群治疗。

图形摘要

[1]
Montané X, Bajek A, Roszkowski K, et al. Encapsulation for cancer therapy. Molecules 2020; 25(7): 1605.
[http://dx.doi.org/10.3390/molecules25071605] [PMID: 32244513]
[2]
Wiwanitkit V. Cancer nanotherapy: Concept for design of new drug. J Med Hypotheses Ideas 2013; 7(1): 3-4.
[http://dx.doi.org/10.1016/j.jmhi.2012.10.002]
[3]
International agency for research on cancer.. World cancer report 2014. Lyon, France: IARC 2014.
[4]
Vivarelli S, Salemi R, Candido S, et al. Gut microbiota and cancer: From pathogenesis to therapy. Cancers 2019; 11(1): 38.
[http://dx.doi.org/10.3390/cancers11010038] [PMID: 30609850]
[5]
Sampathkumar K, Arulkumar S, Ramalingam M. Advances in stimuli responsive nanobiomaterials for cancer therapy. J Biomed Nanotechnol 2014; 10(3): 367-82.
[http://dx.doi.org/10.1166/jbn.2014.1778] [PMID: 24730233]
[6]
Afshar M, Madani S, Tarazoj AA, et al. Salehiniya. Physical activity and types of cancer. WCRJ 2018; 5(4): e1164.
[7]
Anand P, Kunnumakkara AB, Sundaram C, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 2008; 25(9): 2097-116.
[http://dx.doi.org/10.1007/s11095-008-9661-9] [PMID: 18626751]
[8]
Gunjur A. Cancer and the microbiome. Lancet Oncol 2020; 21(7): 888.
[http://dx.doi.org/10.1016/S1470-2045(20)30351-X] [PMID: 32563279]
[9]
Wong SH, Kwong TNY, Wu CY, Yu J. Clinical applications of gut microbiota in cancer biology. Semin Cancer Biol 2019; 55: 28-36.
[http://dx.doi.org/10.1016/j.semcancer.2018.05.003] [PMID: 29782923]
[10]
Gorbach SL. Microbiology of the Gastrointestinal Tract. In: Samuel B, Ed. Medical Microbiology. 4th ed. Galveston (TX): University of Texas Medical Branch at Galveston 1996; pp. 1-7.
[11]
Zitvogel L, Galluzzi L, Viaud S, et al. Cancer and the gut microbiota: An unexpected link. Sci Transl Med 2015; 7(271): 271ps1.
[http://dx.doi.org/10.1126/scitranslmed.3010473] [PMID: 25609166]
[12]
Kho ZY, Lal SK. The human gut microbiome - A potential controller of wellness and disease. Front Microbiol 2018; 9: 1835.
[http://dx.doi.org/10.3389/fmicb.2018.01835] [PMID: 30154767]
[13]
Suraya R, Nagano T, Kobayashi K, Nishimura Y. Microbiome as a target for cancer therapy. Integr Cancer Ther 2020; 19: 1534735420920721.
[http://dx.doi.org/10.1177/1534735420920721] [PMID: 32564632]
[14]
Song W, Anselmo AC, Huang L. Nanotechnology intervention of the microbiome for cancer therapy. Nat Nanotechnol 2019; 14(12): 1093-103.
[http://dx.doi.org/10.1038/s41565-019-0589-5] [PMID: 31802032]
[15]
Poore GD, Kopylova E, Zhu Q, et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 2020; 579(7800): 567-74.
[http://dx.doi.org/10.1038/s41586-020-2095-1] [PMID: 32214244]
[16]
Rao BC, Lou JM, Wang WJ, et al. Human microbiome is a diagnostic biomarker in hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2020; 19(2): 109-15.
[http://dx.doi.org/10.1016/j.hbpd.2020.01.003] [PMID: 32037278]
[17]
Wang J, Jia H. Metagenome-wide association studies: Fine-mining the microbiome. Nat Rev Microbiol 2016; 14(8): 508-22.
[http://dx.doi.org/10.1038/nrmicro.2016.83] [PMID: 27396567]
[18]
Zhuang H, Cheng L, Wang Y, et al. Dysbiosis of the gut microbiome in lung cancer. Front Cell Infect Microbiol 2019; 9: 112.
[http://dx.doi.org/10.3389/fcimb.2019.00112] [PMID: 31065547]
[19]
Wong SH, Kwong TNY, Chow TC, et al. Quantitation of faecal Fusobacterium improves faecal immunochemical test in detecting ad-vanced colorectal neoplasia. Gut 2017; 66(8): 1441-8.
[http://dx.doi.org/10.1136/gutjnl-2016-312766] [PMID: 27797940]
[20]
Hamada T, Zhang X, Mima K, et al. Fusobacterium nucleatum in colorectal cancer relates to immune response differentially by tumor microsatellite instability status. Cancer Immunol Res 2018; 6(11): 1327-36.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0174] [PMID: 30228205]
[21]
Mima K, Nishihara R, Qian ZR, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 2016; 65(12): 1973-80.
[http://dx.doi.org/10.1136/gutjnl-2015-310101] [PMID: 26311717]
[22]
Wei Z, Cao S, Liu S, et al. Could gut microbiota serve as prognostic biomarker associated with colorectal cancer patients’ survival? A pilot study on relevant mechanism. Oncotarget 2016; 7(29): 46158-72.
[http://dx.doi.org/10.18632/oncotarget.10064] [PMID: 27323816]
[23]
Zheng Y, Fang Z, Xue Y, et al. Specific gut microbiome signature predicts the early-stage lung cancer. Gut Microbes 2020; 11(4): 1030-42.
[http://dx.doi.org/10.1080/19490976.2020.1737487] [PMID: 32240032]
[24]
Plottel CS, Blaser MJ. Microbiome and malignancy. Cell Host Microbe 2011; 10(4): 324-35.
[http://dx.doi.org/10.1016/j.chom.2011.10.003] [PMID: 22018233]
[25]
Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer 2013; 13(11): 800-12.
[http://dx.doi.org/10.1038/nrc3610] [PMID: 24132111]
[26]
Candela M, Guidotti M, Fabbri A, Brigidi P, Franceschi C, Fiorentini C. Human intestinal microbiota: Cross-talk with the host and its potential role in colorectal cancer. Crit Rev Microbiol 2011; 37(1): 1-14.
[http://dx.doi.org/10.3109/1040841X.2010.501760] [PMID: 20874522]
[27]
Cheng WY, Wu CY, Yu J. The role of gut microbiota in cancer treatment: Friend or foe? Gut 2020; 69(10): 1867-76.
[http://dx.doi.org/10.1136/gutjnl-2020-321153] [PMID: 32759302]
[28]
Alexander JL, Wilson ID, Teare J, Marchesi JR, Nicholson JK, Kinross JM. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol 2017; 14(6): 356-65.
[http://dx.doi.org/10.1038/nrgastro.2017.20] [PMID: 28270698]
[29]
Sharma A, Das P, Buschmann M, Gilbert JA. The future of microbiome-based therapeutics in clinical applications. Clin Pharmacol Ther 2020; 107(1): 123-8.
[http://dx.doi.org/10.1002/cpt.1677] [PMID: 31617205]
[30]
Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013; 342(6161): 971-6.
[http://dx.doi.org/10.1126/science.1240537] [PMID: 24264990]
[31]
Viaud S, Flament C, Zoubir M, et al. Cyclophosphamide induces differentiation of Th17 cells in cancer patients. Cancer Res 2011; 71(3): 661-5.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1259] [PMID: 21148486]
[32]
Ross AB, Bruce SJ, Blondel-Lubrano A, et al. A whole-grain cereal-rich diet increases plasma betaine, and tends to decrease total and LDL-cholesterol compared with a refined-grain diet in healthy subjects. Br J Nutr 2011; 105(10): 1492-502.
[http://dx.doi.org/10.1017/S0007114510005209] [PMID: 21272402]
[33]
Wallace BD, Wang H, Lane KT, et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 2010; 330(6005): 831-5.
[http://dx.doi.org/10.1126/science.1191175] [PMID: 21051639]
[34]
Diasio RB. Sorivudine and 5-fluorouracil; A clinically significant drug-drug interaction due to inhibition of dihydropyrimidine dehydro-genase. Br J Clin Pharmacol 1998; 46(1): 1-4.
[http://dx.doi.org/10.1046/j.1365-2125.1998.00050.x] [PMID: 9690942]
[35]
Garrett WS. Cancer and the microbiota. Science 2015; 348(6230): 80-6.
[http://dx.doi.org/10.1126/science.aaa4972] [PMID: 25838377]
[36]
Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S. Global burden of cancers attributable to infections in 2012: A synthetic analysis. Lancet Glob Health 2016; 4(9): e609-16.
[http://dx.doi.org/10.1016/S2214-109X(16)30143-7] [PMID: 27470177]
[37]
Rea D, Coppola G, Palma G, et al. Microbiota effects on cancer: From risks to therapies. Oncotarget 2018; 9(25): 17915-27.
[http://dx.doi.org/10.18632/oncotarget.24681] [PMID: 29707157]
[38]
Eslami-SZ. Majidzadeh-AK, Halvaei S, Babapirali F, Esmaeili R. Microbiome and breast cancer: New role for an ancient population. Front Oncol 2020; 10: 120.
[http://dx.doi.org/10.3389/fonc.2020.00120] [PMID: 32117767]
[39]
Goodman B, Gardner H. The microbiome and cancer. J Pathol 2018; 244(5): 667-76.
[http://dx.doi.org/10.1002/path.5047] [PMID: 29377130]
[40]
Fulbright LE, Ellermann M, Arthur JC. The microbiome and the hallmarks of cancer. PLoS Pathog 2017; 13: e1006480.
[http://dx.doi.org/10.1371/journal.ppat.1006480]
[41]
Qu X, Tang Y, Hua S. Immunological approaches towards cancer and inflammation: A cross talk. Front Immunol 2018; 9: 563.
[http://dx.doi.org/10.3389/fimmu.2018.00563] [PMID: 29662489]
[42]
Labani-Motlagh A, Ashja-Mahdavi M, Loskog A. The tumor microenvironment: A milieu hindering and obstructing antitumor immune responses. Front Immunol 2020; 11: 940.
[http://dx.doi.org/10.3389/fimmu.2020.00940] [PMID: 32499786]
[43]
Dzutsev A, Goldszmid RS, Viaud S, Zitvogel L, Trinchieri G. The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. Eur J Immunol 2015; 45(1): 17-31.
[http://dx.doi.org/10.1002/eji.201444972] [PMID: 25328099]
[44]
Kuhn MA. Oxygen free radicals and antioxidants. Am J Nurs 2003; 103(4): 58-62.
[http://dx.doi.org/10.1097/00000446-200304000-00022] [PMID: 12677123]
[45]
Huycke MM, Moore D, Joyce W, et al. Extracellular superoxide production by Enterococcus faecalis requires demethylmenaquinone and is attenuated by functional terminal quinol oxidases. Mol Microbiol 2001; 42(3): 729-40.
[http://dx.doi.org/10.1046/j.1365-2958.2001.02638.x] [PMID: 11722738]
[46]
Elatrech I, Marzaioli V, Boukemara H, et al. Escherichia coli LF82 differentially regulates ROS production and mucin expression in intestinal epithelial T84 cells: Implication of NOX1. Inflamm Bowel Dis 2015; 21(5): 1018-26.
[http://dx.doi.org/10.1097/MIB.0000000000000365] [PMID: 25822013]
[47]
Shapiro O, Bratslavsky G. Genetic diseases Brenner’s Encycl Genet. Second 2013; 429: 246-7.
[48]
Paul B, Barnes S, Demark-Wahnefried W, et al. Influences of diet and the gut microbiome on epigenetic modulation in cancer and other diseases. Clin Epigenetics 2015; 7(1): 112.
[http://dx.doi.org/10.1186/s13148-015-0144-7] [PMID: 26478753]
[49]
Zhao Y, Wang C, Goel A. Role of gut microbiota in epigenetic regulation of colorectal cancer. Biochim Biophys Acta Rev Cancer 2021; 1875(1): 188490.
[http://dx.doi.org/10.1016/j.bbcan.2020.188490] [PMID: 33321173]
[50]
Zhou Z, Chen J, Yao H, Hu H. Fusobacterium and colorectal cancer. Front Oncol 2018; 8: 371.
[PMID: 30374420]
[51]
Nakata K, Sugi Y, Narabayashi H, et al. Commensal microbiota-induced microRNA modulates intestinal epithelial permeability through the small GTPase ARF4. J Biol Chem 2017; 292(37): 15426-33.
[http://dx.doi.org/10.1074/jbc.M117.788596] [PMID: 28760826]
[52]
Hullar MA, Fu BC. Diet, the gut microbiome, and epigenetics. Cancer J 2014; 20(3): 170-5.
[PMID: 24855003]
[53]
Bultman SJ. Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Mol Nutr Food Res 2017; 61(1): 1-12.
[http://dx.doi.org/10.1002/mnfr.201500902] [PMID: 27138454]
[54]
Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia 2015; 3: 83-92.
[http://dx.doi.org/10.2147/HP.S93413] [PMID: 27774485]
[55]
Gilkes DM, Semenza GL, Wirtz D. Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nat Rev Cancer 2014; 14(6): 430-9.
[http://dx.doi.org/10.1038/nrc3726] [PMID: 24827502]
[56]
Gao J, Cao H, Zhang Q, Wang B. The effect of intermittent hypoxia and fecal microbiota of OSAS on genes associated with colorectal cancer. Sleep Breath 2021; 25(2): 1075-87.
[http://dx.doi.org/10.1007/s11325-020-02204-z] [PMID: 33029691]
[57]
Boleij A, Hechenbleikner EM, Goodwin AC, et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal can-cer patients. Clin Infect Dis 2015; 60(2): 208-15.
[http://dx.doi.org/10.1093/cid/ciu787] [PMID: 25305284]
[58]
Bashiardes S, Tuganbaev T, Federici S, Elinav E. The microbiome in anti-cancer therapy. Semin Immunol 2017; 32: 74-81.
[http://dx.doi.org/10.1016/j.smim.2017.04.001] [PMID: 28431920]
[59]
Manzoor SS, Doedens A, Burns MB. The promise and challenge of cancer microbiome research. Genome Biol 2020; 21(1): 131.
[http://dx.doi.org/10.1186/s13059-020-02037-9] [PMID: 32487228]
[60]
Chakrabarty AM. Microorganisms and cancer: Quest for a therapy. J Bacteriol 2003; 185(9): 2683-6.
[http://dx.doi.org/10.1128/JB.185.9.2683-2686.2003] [PMID: 12700245]
[61]
Bernardes N, Seruca R, Chakrabarty AM, Fialho AM. Microbial-based therapy of cancer: Current progress and future prospects. Bioeng Bugs 2010; 1(3): 178-90.
[http://dx.doi.org/10.4161/bbug.1.3.10903] [PMID: 21326924]
[62]
Roy S, Trinchieri G. Microbiota: A key orchestrator of cancer therapy. Nat Rev Cancer 2017; 17(5): 271-85.
[http://dx.doi.org/10.1038/nrc.2017.13] [PMID: 28303904]
[63]
Blaser M. Antibiotic overuse: Stop the killing of beneficial bacteria. Nature 2011; 476(7361): 393-4.
[http://dx.doi.org/10.1038/476393a] [PMID: 21866137]
[64]
Iizumi T, Battaglia T, Ruiz V, Perez Perez GI. Gut microbiome and antibiotics. Arch Med Res 2017; 48(8): 727-34.
[http://dx.doi.org/10.1016/j.arcmed.2017.11.004] [PMID: 29221800]
[65]
Hsu PI, Pan CY, Kao JY, et al. Taiwan Acid-related Disease (TARD) Study Group. Helicobacter pylori eradication with bismuth quadruple therapy leads to dysbiosis of gut microbiota with an increased relative abundance of Proteobacteria and decreased relative abundances of Bacteroidetes and Actinobacteria. Helicobacter 2018; 23(4): e12498.
[http://dx.doi.org/10.1111/hel.12498] [PMID: 29897654]
[66]
Tucak P. Plumb’s veterinary drug handbook. Wiley-Blackwell 8th. 2015; 93: 404.
[67]
Vrieze A, Out C, Fuentes S, et al. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol 2014; 60(4): 824-31.
[http://dx.doi.org/10.1016/j.jhep.2013.11.034] [PMID: 24316517]
[68]
Stewardson AJ, Gaïa N, François P, et al. SATURN WP1 and WP3 Study Groups. Collateral damage from oral ciprofloxacin versus nitro-furantoin in outpatients with urinary tract infections: A culture-free analysis of gut microbiota. Clin Microbiol Infect 2015; 21(4): 344.
[http://dx.doi.org/10.1016/j.cmi.2014.11.016] [PMID: 25658522]
[69]
Perrin-Guyomard A, Poul JM, Corpet DE, Sanders P, Fernández AH, Bartholomew M. Impact of residual and therapeutic doses of ciprofloxacin in the human-flora-associated mice model. Regul Toxicol Pharmacol 2005; 42(2): 151-60.
[http://dx.doi.org/10.1016/j.yrtph.2005.03.001] [PMID: 15963836]
[70]
Korpela K, Salonen A, Virta LJ, et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun 2016; 7(1): 10410.
[http://dx.doi.org/10.1038/ncomms10410] [PMID: 26811868]
[71]
Nord CE, Lidbeck A, Orrhage K, Sjöstedt S. Oral supplementation with lactic acid-producing bacteria during intake of clindamycin. Clin Microbiol Infect 1997; 3(1): 124-32.
[http://dx.doi.org/10.1111/j.1469-0691.1997.tb00262.x] [PMID: 11864087]
[72]
Reikvam DH, Erofeev A, Sandvik A, et al. Depletion of murine intestinal microbiota: Effects on gut mucosa and epithelial gene expression. PLoS One 2011; 6(3): e17996.
[http://dx.doi.org/10.1371/journal.pone.0017996] [PMID: 21445311]
[73]
Panebianco C, Andriulli A, Pazienza V. Pharmacomicrobiomics: Exploiting the drug-microbiota interactions in anticancer therapies. Microbiome 2018; 6(1): 92.
[http://dx.doi.org/10.1186/s40168-018-0483-7] [PMID: 29789015]
[74]
Shurin MR, Naiditch H, Gutkin DW, Umansky V, Shurin GV. ChemoImmunoModulation: Immune regulation by the antineoplastic chemotherapeutic agents. Curr Med Chem 2012; 19(12): 1792-803.
[http://dx.doi.org/10.2174/092986712800099785] [PMID: 22414087]
[75]
Patel RM, Denning PW. Therapeutic use of prebiotics, probiotics, and postbiotics to prevent necrotizing enterocolitis: What is the current evidence? Clin Perinatol 2013; 40(1): 11-25.
[http://dx.doi.org/10.1016/j.clp.2012.12.002] [PMID: 23415261]
[76]
Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 2017; 14(8): 491-502.
[http://dx.doi.org/10.1038/nrgastro.2017.75] [PMID: 28611480]
[77]
Guarner F, Khan AG, Garisch J, et al. World Gastroenterology Organization. World gastroenterology organisation global guidelines: Pro-biotics and prebiotics October 2011. J Clin Gastroenterol 2012; 46(6): 468-81.
[http://dx.doi.org/10.1097/MCG.0b013e3182549092] [PMID: 22688142]
[78]
Pineiro M, Stanton C. Probiotic bacteria: Legislative framework-requirements to evidence basis. J Nutr 2007; 137(3)(Suppl. 2): 850S-3S.
[http://dx.doi.org/10.1093/jn/137.3.850S] [PMID: 17311986]
[79]
O’Hara AM, Shanahan F. Mechanisms of action of probiotics in intestinal diseases. Scientific World J 2007; 7: 31-46.
[http://dx.doi.org/10.1100/tsw.2007.26] [PMID: 17221140]
[80]
Dobson A, Cotter PD, Ross RP, Hill C. Bacteriocin production: A probiotic trait? Appl Environ Microbiol 2012; 78(1): 1-6.
[http://dx.doi.org/10.1128/AEM.05576-11] [PMID: 22038602]
[81]
Corr SC, Hill C, Gahan CG. Understanding the mechanisms by which probiotics inhibit gastrointestinal pathogens. Adv Food Nutr Res 2009; 56: 1-15.
[http://dx.doi.org/10.1016/S1043-4526(08)00601-3] [PMID: 19389605]
[82]
Chenoll E, Casinos B, Bataller E, et al. Novel probiotic Bifidobacterium bifidum CECT 7366 strain active against the pathogenic bacte-rium Helicobacter pylori. Appl Environ Microbiol 2011; 77(4): 1335-43.
[http://dx.doi.org/10.1128/AEM.01820-10] [PMID: 21169430]
[83]
Atassi F, Servin AL. Individual and co-operative roles of lactic acid and hydrogen peroxide in the killing activity of enteric strain Lacto-bacillus johnsonii NCC933 and vaginal strain Lactobacillus gasseri KS120.1 against enteric, uropathogenic and vaginosis-associated pathogens. FEMS Microbiol Lett 2010; 304(1): 29-38.
[http://dx.doi.org/10.1111/j.1574-6968.2009.01887.x] [PMID: 20082639]
[84]
Lim CC, Ferguson LR, Tannock GW. Dietary fibres as “prebiotics”: Implications for colorectal cancer. Mol Nutr Food Res 2005; 49(6): 609-19.
[http://dx.doi.org/10.1002/mnfr.200500015] [PMID: 15864790]
[85]
Saarela M, Mogensen G, Fondén R, Mättö J, Mattila-Sandholm T. Probiotic bacteria: Safety, functional and technological properties. J Biotechnol 2000; 84(3): 197-215.
[http://dx.doi.org/10.1016/S0168-1656(00)00375-8] [PMID: 11164262]
[86]
Hirayama K, Rafter J. The role of lactic acid bacteria in colon cancer prevention: Mechanistic considerations. Antonie van Leeuwenhoek 1999; 76(1-4): 391-4.
[PMID: 10532395]
[87]
Timmerman HM, Koning CJ, Mulder L, Rombouts FM, Beynen AC. Monostrain, multistrain and multispecies probiotics--A comparison of functionality and efficacy. Int J Food Microbiol 2004; 96(3): 219-33.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2004.05.012] [PMID: 15454313]
[88]
Gupta V, Garg R. Probiotics. Indian J Med Microbiol 2009; 27(3): 202-9.
[http://dx.doi.org/10.4103/0255-0857.53201] [PMID: 19584499]
[89]
Hosono A, Kashina T, Kada T. Antimutagenic properties of lactic acid-cultured milk on chemical and fecal mutagens. J Dairy Sci 1986; 69(9): 2237-42.
[http://dx.doi.org/10.3168/jds.S0022-0302(86)80662-2] [PMID: 3097092]
[90]
Fernandes CF, Shahani KM. Anticarcinogenic and immunological properties of dietary Lactobacilli. J Food Prot 1990; 53(8): 704-10.
[http://dx.doi.org/10.4315/0362-028X-53.8.704] [PMID: 31018334]
[91]
Zhang XB, Ohta Y, Hosono A. Antimutagenicity and binding of lactic acid bacteria from a Chinese cheese to mutagenic pyrolyzates. J Dairy Sci 1990; 73(10): 2702-10.
[http://dx.doi.org/10.3168/jds.S0022-0302(90)78955-2] [PMID: 1980923]
[92]
Thyagaraja N, Hosono A. Antimutagenicity of lactic acid bacteria from ″idly″ against food-related mutagens. J Food Prot 1993; 56(12): 1061-6.
[http://dx.doi.org/10.4315/0362-028X-56.12.1061] [PMID: 31113116]
[93]
El-Nezami H, Kankaanpaa P, Salminen S, Ahokas J. Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food Chem Toxicol 1998; 36(4): 321-6.
[http://dx.doi.org/10.1016/S0278-6915(97)00160-9] [PMID: 9651049]
[94]
Bowen JM, Stringer AM, Gibson RJ, Yeoh ASJ, Hannam S, Keefe DMK. VSL#3 probiotic treatment reduces chemotherapy-induced diarrhea and weight loss. Cancer Biol Ther 2007; 6(9): 1449-54.
[http://dx.doi.org/10.4161/cbt.6.9.4622] [PMID: 17881902]
[95]
Bindels LB, Delzenne NM, Cani PD, Walter J. Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol 2015; 12(5): 303-10.
[http://dx.doi.org/10.1038/nrgastro.2015.47] [PMID: 25824997]
[96]
Larrosa M, González-Sarrías A, García-Conesa MT, Tomás-Barberán FA, Espín JC. Urolithins, ellagic acid-derived metabolites produced by human colonic microflora, exhibit estrogenic and antiestrogenic activities. J Agric Food Chem 2006; 54(5): 1611-20.
[http://dx.doi.org/10.1021/jf0527403] [PMID: 16506809]
[97]
Scharlau D, Borowicki A, Habermann N, et al. Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutat Res 2009; 682(1): 39-53.
[http://dx.doi.org/10.1016/j.mrrev.2009.04.001] [PMID: 19383551]
[98]
Roberfroid M, Gibson GR, Hoyles L, et al. Prebiotic effects: Metabolic and health benefits. Br J Nutr 2010; 104(Suppl. 2): S1-S63.
[PMID: 20920376]
[99]
Smith SC, Choy R, Johnson SK, Hall RS, Wildeboer-Veloo AC, Welling GW. Lupin kernel fiber consumption modifies fecal microbiota in healthy men as determined by rRNA gene fluorescent in situ hybridization. Eur J Nutr 2006; 45(6): 335-41.
[http://dx.doi.org/10.1007/s00394-006-0603-1] [PMID: 16763747]
[100]
Clarke SF, Murphy EF, Nilaweera K, et al. The gut microbiota and its relationship to diet and obesity: New insights. Gut Microbes 2012; 3(3): 186-202.
[http://dx.doi.org/10.4161/gmic.20168] [PMID: 22572830]
[101]
Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 2018; 33(4): 570-80.
[http://dx.doi.org/10.1016/j.ccell.2018.03.015] [PMID: 29634945]
[102]
Gerhauser C. Cancer chemoprevention and nutriepigenetics: State of the art and future challenges. Top Curr Chem 2013; 329: 73-132.
[http://dx.doi.org/10.1007/128_2012_360] [PMID: 22955508]
[103]
Gerhäuser C. Cancer cell metabolism, epigenetics and the potential influence of dietary components-A perspective Cancer cell metabolism. Cancer Metab Biomed Res 2012; p. 23.
[104]
Huang J, Plass C, Gerhauser C. Cancer chemoprevention by targeting the epigenome. Curr Drug Targets 2011; 12(13): 1925-56.
[http://dx.doi.org/10.2174/138945011798184155] [PMID: 21158707]
[105]
van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013; 368(5): 407-15.
[http://dx.doi.org/10.1056/NEJMoa1205037] [PMID: 23323867]
[106]
Bakken JS, Borody T, Brandt LJ, et al. Treating clostridium difficile infection with fecal microbiota transplantation. Clin Gastroenterol Hepatol 2011; 9(12): 1044-9.
[http://dx.doi.org/10.1016/j.cgh.2011.08.014] [PMID: 21871249]
[107]
Chen D, Wu J, Jin D, Wang B, Cao H. Fecal microbiota transplantation in cancer management: Current status and perspectives. Int J Cancer 2019; 145(8): 2021-31.
[http://dx.doi.org/10.1002/ijc.32003] [PMID: 30458058]
[108]
Kaiser J. Gut microbes shape response to cancer immunotherapy. Science 2017; 358(6363): 573-3.
[http://dx.doi.org/10.1126/science.358.6363.573] [PMID: 29097525]
[109]
Chang CW, Lee HC, Li LH, et al. Fecal microbiota transplantation prevents intestinal injury, upregulation of toll-like receptors, and 5-fluorouracil/oxaliplatin-induced toxicity in colorectal cancer. Int J Mol Sci 2020; 21(2): 386.
[http://dx.doi.org/10.3390/ijms21020386] [PMID: 31936237]
[110]
Pagano L, Tacconelli E, Tumbarello M, et al. Bacteremia in patients with hematological malignancies. Analysis of risk factors, etiological agents and prognostic indicators. Haematologica 1997; 82(4): 415-9.
[PMID: 9299853]
[111]
Danai PA, Moss M, Mannino DM, Martin GS. The epidemiology of sepsis in patients with malignancy. Chest 2006; 129(6): 1432-40.
[http://dx.doi.org/10.1378/chest.129.6.1432] [PMID: 16778259]
[112]
Papanicolas LE, Gordon DL, Wesselingh SL, Rogers GB. Not just antibiotics: Is cancer chemotherapy driving antimicrobial resistance? Trends Microbiol 2018; 26(5): 393-400.
[http://dx.doi.org/10.1016/j.tim.2017.10.009] [PMID: 29146383]
[113]
McKinney CA, Oliveira BC, Bedenice D, et al. The fecal microbiota of healthy donor horses and geriatric recipients undergoing fecal microbial transplantation for the treatment of diarrhea. PLoS One 2020; 15(3): e0230148.
[http://dx.doi.org/10.1371/journal.pone.0230148] [PMID: 32155205]
[114]
Xu MQ, Cao HL, Wang WQ, et al. Fecal microbiota transplantation broadening its application beyond intestinal disorders. World J Gastroenterol 2015; 21(1): 102-11.
[http://dx.doi.org/10.3748/wjg.v21.i1.102] [PMID: 25574083]
[115]
Li X, Li X, Shang Q, et al. Fecal Microbiota Transplantation (FMT) could reverse the severity of experimental necrotizing enterocolitis (NEC) via oxidative stress modulation. Free Radic Biol Med 2017; 108: 32-43.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.03.011] [PMID: 28323128]
[116]
Mohty M, Malard F, Vekhoff A, et al. The odyssee study: Prevention of dysbiosis complications with autologous Fecal Microbiota Transfer (FMT) in Acute Myeloid Leukemia (AML) patients undergoing intensive treatment: Results of a prospective multicenter trial. Blood 2018; 132(Suppl. 1): 1444.
[http://dx.doi.org/10.1182/blood-2018-99-112825]
[117]
McQuade JL, Daniel CR, Helmink BA, Wargo JA. Modulating the microbiome to improve therapeutic response in cancer. Lancet Oncol 2019; 20(2): e77-91.
[http://dx.doi.org/10.1016/S1470-2045(18)30952-5] [PMID: 30712808]
[118]
An J, Ha EM. Combination therapy of lactobacillus plantarum supernatant and 5-fluouracil increases chemosensitivity in colorectal can-cer cells. J Microbiol Biotechnol 2016; 26(8): 1490-503.
[http://dx.doi.org/10.4014/jmb.1605.05024] [PMID: 27221111]
[119]
Yeung CY, Chan WT, Jiang CB, et al. Amelioration of chemotherapy-induced intestinal mucositis by orally administered probiotics in a mouse model. PLoS One 2015; 10(9): e0138746.
[http://dx.doi.org/10.1371/journal.pone.0138746] [PMID: 26406888]
[120]
Sharma A, Rath GK, Chaudhary SP, Thakar A, Mohanti BK, Bahadur S. Lactobacillus brevis CD2 lozenges reduce radiation- and chemo-therapy-induced mucositis in patients with head and neck cancer: A randomized double-blind placebo-controlled study. Eur J Cancer 2012; 48(6): 875-81.
[http://dx.doi.org/10.1016/j.ejca.2011.06.010] [PMID: 21741230]
[121]
Choi SK, Myc A, Silpe JE, et al. Dendrimer-based multivalent vancomycin nanoplatform for targeting the drug-resistant bacterial surface. ACS Nano 2013; 7(1): 214-28.
[http://dx.doi.org/10.1021/nn3038995] [PMID: 23259666]
[122]
Karavolos M, Holban A. Nanosized drug delivery systems in gastrointestinal targeting: Interactions with microbiota. Pharmaceuticals 2016; 9(4): 9.
[http://dx.doi.org/10.3390/ph9040062] [PMID: 27690060]
[123]
Ting SY, Martínez-García E, Huang S, et al. Targeted depletion of bacteria from mixed populations by programmable adhesion with antagonistic competitor cells. Cell Host Microbe 2020; 28(2): 313-321.e6.
[http://dx.doi.org/10.1016/j.chom.2020.05.006] [PMID: 32470328]
[124]
Silverman JM, Brunet YR, Cascales E, Mougous JD. Structure and regulation of the type VI secretion system. Annu Rev Microbiol 2012; 66(1): 453-72.
[http://dx.doi.org/10.1146/annurev-micro-121809-151619] [PMID: 22746332]
[125]
Kiga K, Tan XE, Ibarra-Chávez R, et al. Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nat Commun 2020; 11(1): 2934.
[http://dx.doi.org/10.1038/s41467-020-16731-6] [PMID: 32523110]
[126]
Ambalam P, Raman M, Purama RK, Doble M. Probiotics, prebiotics and colorectal cancer prevention. Best Pract Res Clin Gastroenterol 2016; 30(1): 119-31.
[http://dx.doi.org/10.1016/j.bpg.2016.02.009] [PMID: 27048903]
[127]
Xie X, He Y, Li H, et al. Effects of prebiotics on immunologic indicators and intestinal microbiota structure in perioperative colorectal cancer patients. Nutrition 2019; 61: 132-42.
[http://dx.doi.org/10.1016/j.nut.2018.10.038] [PMID: 30711862]
[128]
Paulos CM, Wrzesinski C, Kaiser A, et al. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J Clin Invest 2007; 117(8): 2197-204.
[http://dx.doi.org/10.1172/JCI32205] [PMID: 17657310]
[129]
Barzegari A, Saei AA. Designing probiotics with respect to the native microbiome. Future Microbiol 2012; 7(5): 571-5.
[http://dx.doi.org/10.2217/fmb.12.37] [PMID: 22568713]
[130]
Sleator RD, Hill C. New frontiers in probiotic research. Lett Appl Microbiol 2008; 46(2): 143-7.
[http://dx.doi.org/10.1111/j.1472-765X.2007.02293.x] [PMID: 18028323]
[131]
Sasaki T, Fujimori M, Hamaji Y, et al. Genetically engineered Bifidobacterium longum for tumor-targeting enzyme-prodrug therapy of autochthonous mammary tumors in rats. Cancer Sci 2006; 97(7): 649-57.
[http://dx.doi.org/10.1111/j.1349-7006.2006.00221.x] [PMID: 16827806]
[132]
Chung Y, Ryu Y, An BC, et al. A synthetic probiotic engineered for colorectal cancer therapy modulates gut microbiota. Microbiome 2021; 9(1): 122.
[http://dx.doi.org/10.1186/s40168-021-01071-4] [PMID: 34039418]
[133]
Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM. Phage treatment of human infections. Bacteriophage 2011; 1(2): 66-85.
[http://dx.doi.org/10.4161/bact.1.2.15845] [PMID: 22334863]
[134]
Zhang S, Chen DC. Facing a new challenge: The adverse effects of antibiotics on gut microbiota and host immunity. Chin Med J 2019; 132(10): 1135-8.
[http://dx.doi.org/10.1097/CM9.0000000000000245] [PMID: 30973451]
[135]
Kelly CJ, Zheng L, Campbell EL, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 2015; 17(5): 662-71.
[http://dx.doi.org/10.1016/j.chom.2015.03.005] [PMID: 25865369]
[136]
Zheng DW, Dong X, Pan P, et al. Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy. Nat Biomed Eng 2019; 3(9): 717-28.
[http://dx.doi.org/10.1038/s41551-019-0423-2] [PMID: 31332342]
[137]
Dong X, Pan P, Zheng DW, Bao P, Zeng X, Zhang XZ. Bioinorganic hybrid bacteriophage for modulation of intestinal microbiota to re-model tumor-immune microenvironment against colorectal cancer. Sci Adv 2020; 6(20): eaba1590.
[http://dx.doi.org/10.1126/sciadv.aba1590] [PMID: 32440552]
[138]
Guthrie L, Kelly L. Bringing microbiome-drug interaction research into the clinic. EBioMedicine 2019; 44: 708-15.
[http://dx.doi.org/10.1016/j.ebiom.2019.05.009] [PMID: 31151933]
[139]
Pierrard J, Seront E. Impact of the gut microbiome on immune checkpoint inhibitor efficacy-A systematic review. Curr Oncol 2019; 26(6): 395-403.
[http://dx.doi.org/10.3747/co.26.5177] [PMID: 31896938]
[140]
Murciano-Goroff YR, Warner AB, Wolchok JD. The future of cancer immunotherapy: Microenvironment-targeting combinations. Cell Res 2020; 30(6): 507-19.
[http://dx.doi.org/10.1038/s41422-020-0337-2] [PMID: 32467593]
[141]
Haslam A, Prasad V. Estimation of the percentage of us patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw Open 2019; 2(5): e192535.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.2535] [PMID: 31050774]
[142]
Jin Y, Dong H, Xia L, et al. The diversity of gut microbiome is associated with favorable responses to anti-programmed death 1 immunotherapy in Chinese patients with NSCLC. J Thorac Oncol 2019; 14(8): 1378-89.
[http://dx.doi.org/10.1016/j.jtho.2019.04.007] [PMID: 31026576]
[143]
Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018; 359(6371): 91-7.
[http://dx.doi.org/10.1126/science.aan3706] [PMID: 29097494]
[144]
Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018; 359(6371): 97-103.
[http://dx.doi.org/10.1126/science.aan4236] [PMID: 29097493]
[145]
Zheng Y, Wang T, Tu X, et al. Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma. J Immunother Cancer 2019; 7(1): 193.
[http://dx.doi.org/10.1186/s40425-019-0650-9] [PMID: 31337439]
[146]
ElRakaiby M, Dutilh BE, Rizkallah MR, Boleij A, Cole JN, Aziz RK. Pharmacomicrobiomics: The impact of human microbiome variations on systems pharmacology and personalized therapeutics. Integr Biol 2014; 18(7): 402-14.
[PMID: 24785449]
[147]
Saad R, Rizkallah MR, Aziz RK. Gut pharmacomicrobiomics: The tip of an iceberg of complex interactions between drugs and gut-associated microbes. Gut Pathog 2012; 4(1): 16.
[http://dx.doi.org/10.1186/1757-4749-4-16] [PMID: 23194438]
[148]
Doestzada M, Vila AV, Zhernakova A, et al. Pharmacomicrobiomics: A novel route towards personalized medicine? Protein Cell 2018; 9(5): 432-45.
[http://dx.doi.org/10.1007/s13238-018-0547-2] [PMID: 29705929]
[149]
Rizkallah M, Saad R, Aziz R. The human microbiome project, personalized medicine and the birth of pharmacomicrobiomics. Curr Pharmacogenomics Person Med 2012; 8(3): 182-93.
[http://dx.doi.org/10.2174/187569210792246326]
[150]
Sharma A, Buschmann MM, Gilbert JA. Pharmacomicrobiomics: The holy grail to variability in drug response? Clin Pharmacol Ther 2019; 106(2): 317-28.
[http://dx.doi.org/10.1002/cpt.1437] [PMID: 30937887]
[151]
Koppel N, Maini Rekdal V, Balskus EP. Chemical transformation of xenobiotics by the human gut microbiota. Science 2017; 356(6344): 1246-57.
[PMID: 28642381]
[152]
Wu H, Esteve E, Tremaroli V, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 2017; 23(7): 850-8.
[http://dx.doi.org/10.1038/nm.4345] [PMID: 28530702]
[153]
Lindenbaum J, Rund DG, Butler VP Jr, Tse-Eng D, Saha JR. Inactivation of digoxin by the gut flora: Reversal by antibiotic therapy. N Engl J Med 1981; 305(14): 789-94.
[http://dx.doi.org/10.1056/NEJM198110013051403] [PMID: 7266632]
[154]
Holoch PA, Griffith TS. TNF-Related Apoptosis-Inducing Ligand (TRAIL): A new path to anti-cancer therapies. Eur J Pharmacol 2009; 625(1-3): 63-72.
[http://dx.doi.org/10.1016/j.ejphar.2009.06.066] [PMID: 19836385]
[155]
Heilbronner S, Krismer B, Brötz-Oesterhelt H, Peschel A. The microbiome-shaping roles of bacteriocins. Nat Rev Microbiol 2021; 19(11): 726-39.
[http://dx.doi.org/10.1038/s41579-021-00569-w] [PMID: 34075213]
[156]
Sharma P, Tiwari SK. Bacteriocins of probiotics as potent anticancer agents. Probiotic Res Ther 2021; pp. 231-50.
[http://dx.doi.org/10.1007/978-981-15-8214-1_11]
[157]
Nguyen C, Nguyen VD. Discovery of azurin-like anticancer bacteriocins from human gut microbiome through homology modeling and molecular docking against the tumor suppressor p53. BioMed Res Int 2016; 2016: 8490482.
[http://dx.doi.org/10.1155/2016/8490482] [PMID: 27239476]
[158]
Bitschar K, Sauer B, Focken J, et al. Lugdunin amplifies innate immune responses in the skin in synergy with host- and microbiota-derived factors. Nat Commun 2019; 10(1): 2730.
[http://dx.doi.org/10.1038/s41467-019-10646-7] [PMID: 31227691]
[159]
Cousin FJ, Jouan-Lanhouet S, Théret N, et al. The probiotic Propionibacterium freudenreichii as a new adjuvant for TRAIL-based thera-py in colorectal cancer. Oncotarget 2016; 7(6): 7161-78.
[http://dx.doi.org/10.18632/oncotarget.6881] [PMID: 26771233]
[160]
Dang LH, Bettegowda C, Huso DL, Kinzler KW, Vogelstein B. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci 2001; 98(26): 15155-60.
[http://dx.doi.org/10.1073/pnas.251543698] [PMID: 11724950]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy