Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

The Immune Response to SARS-CoV-2: Mechanisms, Aging, Sequelae, and Vaccines

Author(s): Carolina Espinoza and Marcelo Alarcón*

Volume 22, Issue 16, 2022

Published on: 26 April, 2022

Page: [2166 - 2185] Pages: 20

DOI: 10.2174/1389557522666220304231537

Price: $65

Abstract

This review seeks to clarify the factors involved in the various immune responses to SARSCoV- 2 infection and the mechanisms that influence the development of COVID-19 with severe evolution. The innate immune response that evolves against SARS-CoV-2 in a complex way is highlighted, integrating multiple pathways by coronaviruses to evade it, in addition to characterizing the adaptive immune response, which can lead to an effective immune response or can contribute to immunopathological imbalance. In turn, host-dependent biomarkers, such as age, gender, ABO blood group, and risk factors, that contribute to the critical and varied progress of COVID-19 immunopathogenesis are analyzed. Finally, the potential vaccine candidates are presented, capable of generating immune protection with humoral and/or cellular neutralizing responses, in favor of blocking and destroying both the new human coronavirus and its variants, which cause the current pandemic.

Keywords: COVID-19, SARS-CoV-2, immune innate, immune adaptative, vaccines, aging.

« Previous
Graphical Abstract

[1]
Lee, A. Wuhan novel coronavirus (COVID-19): Why global control is challenging? Public Health, 2020, 179, A1-A2.
[http://dx.doi.org/10.1016/j.puhe.2020.02.001] [PMID: 32111295]
[2]
World Health Organization. Coronavirus disease (COVID-19) dashboard 2021. 2021. Available from: https://covid19.who.int/
[3]
Liu, D.X.; Liang, J.Q.; Fung, T.S. Human coronavirus-229E, -OC43, -NL63, and -HKU1 (Coronaviridae). In: Encyclopedia of Virology; Bamford, D.; Zuckerman, M., Eds.; Elsevier Science: Amsterdam, 2021; Vol. 4, pp. 428-440.
[4]
Ge, H.; Wang, X.; Yuan, X.; Xiao, G.; Wang, C.; Deng, T.; Yuan, Q.; Xiao, X. The epidemiology and clinical information about COVID-19. Eur. J. Clin. Microbiol. Infect. Dis., 2020, 39(6), 1011-1019.
[http://dx.doi.org/10.1007/s10096-020-03874-z] [PMID: 32291542]
[5]
Shen, N.; Zhu, Y.; Wang, X.; Peng, J.; Liu, W.; Wang, F.; Lu, Y.; Cheng, L.; Sun, Z. Characteristics and diagnosis rate of 5630 subjects receiving SARS-CoV-2 nucleic acid tests from Wuhan, China. JCI Insight, 2020, 5(10), 137662.
[http://dx.doi.org/10.1172/jci.insight.137662] [PMID: 32352933]
[6]
Chan, J.F.; Kok, K.H.; Zhu, Z.; Chu, H.; To, K.K.; Yuan, S.; Yuen, K.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect., 2020, 9(1), 221-236.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[7]
Jaimes, J.A.; André, N.M.; Chappie, J.S.; Millet, J.K.; Whittaker, G.R. Phylogenetic analysis and structural modeling of SARS-CoV-2 spike protein reveals an evolutionary distinct and proteolytically sensitive activation loop. J. Mol. Biol., 2020, 432(10), 3309-3325.
[http://dx.doi.org/10.1016/j.jmb.2020.04.009] [PMID: 32320687]
[8]
Wang, H.; Li, X.; Li, T.; Zhang, S.; Wang, L.; Wu, X.; Liu, J. The genetic sequence, origin, and diagnosis of SARS-CoV-2. Eur. J. Clin. Microbiol. Infect. Dis., 2020, 39(9), 1629-1635.
[http://dx.doi.org/10.1007/s10096-020-03899-4] [PMID: 32333222]
[9]
Zhou, P.; Yang, X-L.; Wang, X-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[10]
Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; Wang, X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020, 581(7807), 215-220.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[11]
Walls, A.C.; Park, Y-J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 181(2), 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[12]
Wang, Q.; Zhang, Y.; Wu, L.; Niu, S.; Song, C.; Zhang, Z.; Lu, G.; Qiao, C.; Hu, Y.; Yuen, K.Y.; Wang, Q.; Zhou, H.; Yan, J.; Qi, J. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 2020, 181(4), 894-904.e9.
[http://dx.doi.org/10.1016/j.cell.2020.03.045] [PMID: 32275855]
[13]
Gheblawi, M.; Wang, K.; Viveiros, A.; Nguyen, Q.; Zhong, J.C.; Turner, A.J.; Raizada, M.K.; Grant, M.B.; Oudit, G.Y. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: Celebrating the 20th anniversary of the discovery of ACE2. Circ. Res., 2020, 126(10), 1456-1474.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317015] [PMID: 32264791]
[14]
Muniyappa, R.; Gubbi, S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am. J. Physiol. Endocrinol. Metab., 2020, 318(5), E736-E41.
[15]
Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol., 2020, 20(6), 363-374.
[http://dx.doi.org/10.1038/s41577-020-0311-8] [PMID: 32346093]
[16]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[17]
Choudhury, A.; Das, N.C.; Patra, R.; Bhattacharya, M.; Ghosh, P.; Patra, B.C. Exploring the binding efficacy of ivermectin against the key proteins of SARS-CoV-2 pathogenesis: An in silico approach. Future Virol., 2021, 16(4), 277-291.
[http://dx.doi.org/10.2217/fvl-2020-0342]
[18]
Feng, Z.; Diao, B.; Wang, R.; Wang, G.; Wang, C.; Tan, Y. The novel severe acute respiratory syndrome coronavirus 2 (SARSCoV- 2) directly decimates human spleens and lymph nodes medRxiv, 2020, 2020
[19]
Tang, D.; Comish, P.; Kang, R. The hallmarks of COVID-19 disease. PLoS Pathog., 2020, 16(5), e1008536.
[http://dx.doi.org/10.1371/journal.ppat.1008536] [PMID: 32442210]
[20]
Henderson, L.A.; Canna, S.W.; Schulert, G.S.; Volpi, S.; Lee, P.Y.; Kernan, K.F.; Caricchio, R.; Mahmud, S.; Hazen, M.M.; Halyabar, O.; Hoyt, K.J.; Han, J.; Grom, A.A.; Gattorno, M.; Ravelli, A.; De Benedetti, F.; Behrens, E.M.; Cron, R.Q.; Nigrovic, P.A. On the alert for cytokine storm: Immunopathology in COVID-19. Arthritis Rheumatol., 2020, 72(7), 1059-1063.
[http://dx.doi.org/10.1002/art.41285] [PMID: 32293098]
[21]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[22]
Tisoncik, J.R.; Korth, M.J.; Simmons, C.P.; Farrar, J.; Martin, T.R.; Katze, M.G. Into the eye of the cytokine storm. Microbiol. Mol. Biol. Rev., 2012, 76(1), 16-32.
[http://dx.doi.org/10.1128/MMBR.05015-11] [PMID: 22390970]
[23]
Rokni, M.; Ghasemi, V.; Tavakoli, Z. Immune responses and pathogenesis of SARS-CoV-2 during an outbreak in Iran: Comparison with SARS and MERS. Rev. Med. Virol., 2020, 30(3), e2107.
[http://dx.doi.org/10.1002/rmv.2107] [PMID: 32267987]
[24]
Lega, S.; Naviglio, S.; Volpi, S.; Tommasini, A. Recent insight into SARS-CoV2 immunopathology and rationale for potential treatment and preventive strategies in COVID-19. Vaccines (Basel), 2020, 8(2), E224.
[http://dx.doi.org/10.3390/vaccines8020224] [PMID: 32423059]
[25]
Kumar, V. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int. Immunopharmacol., 2020, 89(Pt B) 107087
[http://dx.doi.org/10.1016/j.intimp.2020.107087]
[26]
Choudhury, A.; Mukherjee, S. Taming the storm in the heart: Exploring different therapeutic choices against myocardial inflammation in COVID-19. Recent Adv. Anti-Infective Drug Discov., 2021, 16(2), 89-93.
[http://dx.doi.org/10.2174/2772434416666210616124505]
[27]
Patra, R.; Chandra Das, N.; Mukherjee, S. Targeting human TLRs to combat COVID-19: A solution? J. Med. Virol., 2021, 93(2), 615-617.
[http://dx.doi.org/10.1002/jmv.26387] [PMID: 32749702]
[28]
Choudhury, A.; Mukherjee, S. In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs. J. Med. Virol., 2020, 92(10), 2105-2113.
[http://dx.doi.org/10.1002/jmv.25987] [PMID: 32383269]
[29]
Choudhury, A.; Das, N.C.; Patra, R.; Mukherjee, S. In silico analyses on the comparative sensing of SARS-CoV-2 mRNA by the intracellular TLRs of humans. J. Med. Virol., 2021, 93(4), 2476-2486.
[http://dx.doi.org/10.1002/jmv.26776]
[30]
Liu, Q.; Zhu, Y.; Yong, W.K.; Sze, N.S.; Tan, N.S.; Ding, J.L. Cutting edge: Synchronization of IRF1, JunB, and C/EBPβ activities during TLR3-TLR7 cross-talk orchestrates timely cytokine synergy in the proinflammatory response J. Immunol.(Baltimore), 2015, 195(3), 801-805.
[31]
Anaeigoudari, A.; Mollaei, H.R.; Arababadi, M.K.; Nosratabadi, R. Severe acute respiratory syndrome coronavirus 2: The role of the main components of the innate immune system. Inflammation, 2021, 44(6), 2151-2169.
[http://dx.doi.org/10.1007/s10753-021-01519-7] [PMID: 34524614]
[32]
Tangye, S.G.; Bucciol, G.; Meyts, I. Mechanisms underlying host defense and disease pathology in response to severe acute respiratory syndrome (SARS)-CoV2 infection: insights from inborn errors of immunity. Curr. Opin. Allergy Clin. Immunol., 2021, 21(6), 515-524.
[http://dx.doi.org/10.1097/ACI.0000000000000786] [PMID: 34494617]
[33]
Conti, P.; Ronconi, G.; Caraffa, A.; Gallenga, C.E.; Ross, R.; Frydas, I.; Kritas, S.K. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI- 19 or SARS-CoV-2): Anti-inflammatory strategies J. Biol. Regul. Homeost. Agents, 2020, 34(2), 327-331.
[PMID: 32171193]
[34]
Khanmohammadi, S.; Rezaei, N. Role of Toll-like receptors in the pathogenesis of COVID-19. J. Med. Virol., 2021, 93(5), 2735-2739.
[http://dx.doi.org/10.1002/jmv.26826] [PMID: 33506952]
[35]
Yazdanpanah, F.; Hamblin, M.R.; Rezaei, N. The immune system and COVID-19: Friend or foe? Life Sci., 2020, 256, 117900.
[http://dx.doi.org/10.1016/j.lfs.2020.117900] [PMID: 32502542]
[36]
Solanich, X.; Vargas-Parra, G.; van der Made, C.I.; Simons, A.; Schuurs-Hoeijmakers, J.; Antolí, A.; Del Valle, J.; Rocamora-Blanch, G.; Setién, F.; Esteller, M.; van Reijmersdal, S.V.; Riera-Mestre, A.; Sabater-Riera, J.; Capellá, G.; van de Veerdonk, F.L.; van der Hoven, B.; Corbella, X.; Hoischen, A.; Lázaro, C. Genetic screening for TLR7 variants in young and previously healthy men with severe COVID-19. Front. Immunol., 2021, 12(2965), 719115.
[http://dx.doi.org/10.3389/fimmu.2021.719115] [PMID: 34367187]
[37]
Fallerini, C.; Daga, S.; Mantovani, S.; Benetti, E.; Picchiotti, N.; Francisci, D.; Paciosi, F.; Schiaroli, E.; Baldassarri, M.; Fava, F.; Palmieri, M.; Ludovisi, S.; Castelli, F.; Quiros-Roldan, E.; Vaghi, M.; Rusconi, S.; Siano, M.; Bandini, M.; Spiga, O.; Capitani, K.; Furini, S.; Mari, F.; Renieri, A.; Mondelli, M.U.; Frullanti, E. Association of toll-like receptor 7 variants with life-threatening COVID-19 disease in males: Findings from a nested case-control study. eLife, 2021, 10, e67569.
[http://dx.doi.org/10.7554/eLife.67569] [PMID: 33650967]
[38]
van der Made, C.I.; Simons, A.; Schuurs-Hoeijmakers, J.; van den Heuvel, G.; Mantere, T.; Kersten, S.; van Deuren, R.C.; Steehouwer, M.; van Reijmersdal, S.V.; Jaeger, M.; Hofste, T.; Astuti, G.; Corominas Galbany, J.; van der Schoot, V.; van der Hoeven, H.; Hagmolen Of Ten Have, W.; Klijn, E.; van den Meer, C.; Fiddelaers, J.; de Mast, Q.; Bleeker-Rovers, C.P.; Joosten, L.A.B.; Yntema, H.G.; Gilissen, C.; Nelen, M.; van der Meer, J.W.M.; Brunner, H.G.; Netea, M.G.; van de Veerdonk, F.L.; Hoischen, A. Presence of genetic variants among young men with severe COVID-19. JAMA, 2020, 324(7), 663-673.
[http://dx.doi.org/10.1001/jama.2020.13719] [PMID: 32706371]
[39]
Sariol, A.; Perlman, S. SARS-CoV-2 takes its toll. Nat. Immunol., 2021, 22(7), 801-802.
[http://dx.doi.org/10.1038/s41590-021-00962-w] [PMID: 34103714]
[40]
Zheng, M.; Karki, R.; Williams, E.P.; Yang, D.; Fitzpatrick, E.; Vogel, P.; Jonsson, C.B.; Kanneganti, T.D. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat. Immunol., 2021, 22(7), 829-838.
[http://dx.doi.org/10.1038/s41590-021-00937-x] [PMID: 33963333]
[41]
Schattner, M. Platelet TLR4 at the crossroads of thrombosis and the innate immune response. J. Leukoc. Biol., 2019, 105(5), 873-880.
[http://dx.doi.org/10.1002/JLB.MR0618-213R] [PMID: 30512209]
[42]
Brandão, S.C.S.; Ramos, J.O.X.; Dompieri, L.T.; Godoi, E.T.A.M.; Figueiredo, J.L.; Sarinho, E.S.C.; Chelvanambi, S.; Aikawa, M. Is Toll-like receptor 4 involved in the severity of COVID-19 pathology in patients with cardiometabolic comorbidities? Cytokine Growth Factor Rev., 2021, 58, 102-110.
[http://dx.doi.org/10.1016/j.cytogfr.2020.09.002] [PMID: 32988728]
[43]
Aboudounya, M.M.; Heads, R.J. COVID-19 and toll-like receptor 4 (TLR4): SARS-CoV-2 may bind and activate tlr4 to increase ACE2 expression, facilitating entry and causing hyperinflammation. Mediators Inflamm., 2021, 2021, 8874339.
[http://dx.doi.org/10.1155/2021/8874339] [PMID: 33505220]
[44]
Nelemans, T.; Kikkert, M. Viral innate immune evasion and the pathogenesis of emerging RNA virus infections. Viruses, 2019, 11(10), E961.
[http://dx.doi.org/10.3390/v11100961] [PMID: 31635238]
[45]
Channappanavar, R.; Perlman, S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol., 2017, 39(5), 529-539.
[http://dx.doi.org/10.1007/s00281-017-0629-x] [PMID: 28466096]
[46]
Jamilloux, Y.; Henry, T.; Belot, A.; Viel, S.; Fauter, M.; El Jammal, T.; Walzer, T.; François, B.; Sève, P. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun. Rev., 2020, 19(7), 102567.
[http://dx.doi.org/10.1016/j.autrev.2020.102567] [PMID: 32376392]
[47]
Chiang, C.; Liu, G.; Gack, M.U. Viral evasion of RIG-I-like receptor-mediated immunity through dysregulation of ubiquitination and ISGylation. Viruses, 2021, 13(2), 182.
[http://dx.doi.org/10.3390/v13020182] [PMID: 33530371]
[48]
Osipiuk, J.; Azizi, S-A.; Dvorkin, S.; Endres, M.; Jedrzejczak, R.; Jones, K.A.; Kang, S.; Kathayat, R.S.; Kim, Y.; Lisnyak, V.G.; Maki, S.L.; Nicolaescu, V.; Taylor, C.A.; Tesar, C.; Zhang, Y.A.; Zhou, Z.; Randall, G.; Michalska, K.; Snyder, S.A.; Dickinson, B.C.; Joachimiak, A. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat. Commun., 2021, 12(1), 743.
[http://dx.doi.org/10.1038/s41467-021-21060-3] [PMID: 33531496]
[49]
Liu, G.; Lee, J-H.; Parker, Z.M.; Acharya, D.; Chiang, J.J.; van Gent, M.; Riedl, W.; Davis-Gardner, M.E.; Wies, E.; Chiang, C.; Gack, M.U. ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity. Nat. Microbiol., 2021, 6(4), 467-478.
[http://dx.doi.org/10.1038/s41564-021-00884-1] [PMID: 33727702]
[50]
Long, Q-X.; Liu, B-Z.; Deng, H-J.; Wu, G-C.; Deng, K.; Chen, Y-K.; Liao, P.; Qiu, J.F.; Lin, Y.; Cai, X.F.; Wang, D.Q.; Hu, Y.; Ren, J.H.; Tang, N.; Xu, Y.Y.; Yu, L.H.; Mo, Z.; Gong, F.; Zhang, X.L.; Tian, W.G.; Hu, L.; Zhang, X.X.; Xiang, J.L.; Du, H.X.; Liu, H.W.; Lang, C.H.; Luo, X.H.; Wu, S.B.; Cui, X.P.; Zhou, Z.; Zhu, M.M.; Wang, J.; Xue, C.J.; Li, X.F.; Wang, L.; Li, Z.J.; Wang, K.; Niu, C.C.; Yang, Q.J.; Tang, X.J.; Zhang, Y.; Liu, X.M.; Li, J.J.; Zhang, D.C.; Zhang, F.; Liu, P.; Yuan, J.; Li, Q.; Hu, J.L.; Chen, J.; Huang, A.L. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med., 2020, 26(6), 845-848.
[http://dx.doi.org/10.1038/s41591-020-0897-1] [PMID: 32350462]
[51]
Jafarzadeh, A.; Chauhan, P.; Saha, B.; Jafarzadeh, S.; Nemati, M. Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions. Life Sci., 2020, 257, 118102.
[http://dx.doi.org/10.1016/j.lfs.2020.118102] [PMID: 32687918]
[52]
Koh, Y-C.; Yang, G.; Lai, C-S.; Weerawatanakorn, M.; Pan, M-H. Chemopreventive effects of phytochemicals and medicines on M1/M2 polarized macrophage role in inflammation-related diseases. Int. J. Mol. Sci., 2018, 19(8), 2208.
[http://dx.doi.org/10.3390/ijms19082208] [PMID: 30060570]
[53]
Merad, M.; Martin, J.C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat. Rev. Immunol., 2020, 20(6), 355-362.
[http://dx.doi.org/10.1038/s41577-020-0331-4] [PMID: 32376901]
[54]
Delgado-Roche, L.; Mesta, F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch. Med. Res., 2020, 51(5), 384-387.
[http://dx.doi.org/10.1016/j.arcmed.2020.04.019] [PMID: 32402576]
[55]
Sun, X.; Wang, T.; Cai, D.; Hu, Z.; Chen, J.; Liao, H.; Zhi, L.; Wei, H.; Zhang, Z.; Qiu, Y.; Wang, J.; Wang, A. Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth Factor Rev., 2020, 53, 38-42.
[http://dx.doi.org/10.1016/j.cytogfr.2020.04.002] [PMID: 32360420]
[56]
Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Correction to: Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med., 2020, 46(6), 1294-1297.
[http://dx.doi.org/10.1007/s00134-020-06028-z] [PMID: 32253449]
[57]
Gubernatorova, E.O.; Gorshkova, E.A.; Polinova, A.I.; Drutskaya, M.S. IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev., 2020, 53, 13-24.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.009] [PMID: 32475759]
[58]
Wu, D.; Yang, X.O. TH17 responses in cytokine storm of COVID- 19: An emerging target of JAK2 inhibitor Fedratinib J. Microbiol. Immunol. Infect., 2020, 53(3), 368-370.
[59]
Shah, A. Novel coronavirus-induced NLRP3 inflammasome activation: A potential drug target in the treatment of COVID-19. Front. Immunol., 2020, 11, 1021.
[http://dx.doi.org/10.3389/fimmu.2020.01021] [PMID: 32574259]
[60]
Nieto-Torres, J.L.; Verdiá-Báguena, C.; Jimenez-Guardeño, J.M.; Regla-Nava, J.A.; Castaño-Rodriguez, C.; Fernandez-Delgado, R.; Torres, J.; Aguilella, V.M.; Enjuanes, L. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology, 2015, 485, 330-339.
[http://dx.doi.org/10.1016/j.virol.2015.08.010] [PMID: 26331680]
[61]
Ratajczak, M.Z.; Kucia, M. SARS-CoV-2 infection and overactivation of NLRP3 inflammasome as a trigger of cytokine “storm” and risk factor for damage of hematopoietic stem cells. Leukemia, 2020, 34(7), 1726-1729.
[http://dx.doi.org/10.1038/s41375-020-0887-9] [PMID: 32483300]
[62]
Sebastian, J.T.; Alexander, S.; Christoph, K.; Matthias, Z.; Julia, F.; Marie-Christine, A. The SARS-CoV-2 spike protein primes inflammasome-mediated interleukin-1- beta secretion in COVID-19 patient-derived macrophages. Res. Square 2020. Available from: https://www.researchsquare.com/article/rs-30407/v1
[http://dx.doi.org/10.21203/rs.3.rs-30407/v1.]
[63]
Domingo, P.; Mur, I.; Pomar, V.; Corominas, H.; Casademont, J.; de Benito, N. The four horsemen of a viral Apocalypse: The pathogenesis of SARS-CoV-2 infection (COVID-19). EBioMedicine, 2020, 58, 102887.
[http://dx.doi.org/10.1016/j.ebiom.2020.102887] [PMID: 32736307]
[64]
Mitchell, W.B. Thromboinflammation in COVID-19 acute lung injury Paediatr. Respir. Rev., 2020, 35, 20-24.
[PMID: 32653469]
[65]
Connors, J.M.; Levy, J.H. Thromboinflammation and the hypercoagulability of COVID-19. J. Thromb. Haemost., 2020, 18(7), 1559-1561.
[http://dx.doi.org/10.1111/jth.14849] [PMID: 32302453]
[66]
Cicco, S.; Cicco, G.; Racanelli, V.; Vacca, A. Neutrophil extracellular traps (NETs) and damage-associated molecular patterns (DAMPs): Two potential targets for COVID-19 treatment. Mediators Inflamm., 2020, 2020, 7527953.
[http://dx.doi.org/10.1155/2020/7527953] [PMID: 32724296]
[67]
Hottz, E.D.; Azevedo-Quintanilha, I.G.; Palhinha, L.; Teixeira, L.; Barreto, E.A.; Pão, C.R.R.; Righy, C.; Franco, S.; Souza, T.M.L.; Kurtz, P.; Bozza, F.A.; Bozza, P.T. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood, 2020, 136(11), 1330-1341.
[http://dx.doi.org/10.1182/blood.2020007252] [PMID: 32678428]
[68]
Bonaventura, A.; Vecchié, A.; Dagna, L.; Martinod, K.; Dixon, D.L.; Van Tassell, B.W.; Dentali, F.; Montecucco, F.; Massberg, S.; Levi, M.; Abbate, A. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat. Rev. Immunol., 2021, 21(5), 319-329.
[http://dx.doi.org/10.1038/s41577-021-00536-9] [PMID: 33824483]
[69]
Kaklamanos, A.; Belogiannis, K.; Skendros, P.; Gorgoulis, V.G.; Vlachoyiannopoulos, P.G.; Tzioufas, A.G. COVID-19 immunobiology: Lessons learned, new questions arise Front. Immunol., 2021, 12, 719023.
[70]
Magro, C.; Mulvey, J.J.; Berlin, D.; Nuovo, G.; Salvatore, S.; Harp, J.; Baxter-Stoltzfus, A.; Laurence, J. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl. Res., 2020, 220, 1-13.
[http://dx.doi.org/10.1016/j.trsl.2020.04.007] [PMID: 32299776]
[71]
Zuo, Y.; Yalavarthi, S.; Shi, H.; Gockman, K.; Zuo, M.; Madison, J.A.; Blair, C.; Weber, A.; Barnes, B.J.; Egeblad, M.; Woods, R.J.; Kanthi, Y.; Knight, J.S. Neutrophil extracellular traps in COVID- 19 JCI Insight, 2020, 5(11), 138999.
[PMID: 32329756]
[72]
Java, A.; Apicelli, A.J.; Liszewski, M.K.; Coler-Reilly, A.; Atkinson, J.P.; Kim, A.H.J.; Kulkarni, H.S. The complement system in COVID-19: friend and foe? JCI Insight, 2020, 5(15), 140711.
[http://dx.doi.org/10.1172/jci.insight.140711] [PMID: 32554923]
[73]
Grifoni, A.; Weiskopf, D.; Ramirez, S.I.; Mateus, J.; Dan, J.M.; Moderbacher, C.R.; Rawlings, S.A.; Sutherland, A.; Premkumar, L.; Jadi, R.S.; Marrama, D.; de Silva, A.M.; Frazier, A.; Carlin, A.F.; Greenbaum, J.A.; Peters, B.; Krammer, F.; Smith, D.M.; Crotty, S.; Sette, A. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell, 2020, 181(7), 1489-1501.e15.
[http://dx.doi.org/10.1016/j.cell.2020.05.015] [PMID: 32473127]
[74]
Jeyanathan, M.; Afkhami, S.; Smaill, F.; Miller, M.S.; Lichty, B.D.; Xing, Z. Immunological considerations for COVID-19 vaccine strategies. Nat. Rev. Immunol., 2020, 20(10), 615-632.
[http://dx.doi.org/10.1038/s41577-020-00434-6] [PMID: 32887954]
[75]
Mortaz, E.; Tabarsi, P.; Varahram, M.; Folkerts, G.; Adcock, I.M. The immune response and immunopathology of COVID-19. Front. Immunol., 2020, 11, 2037.
[http://dx.doi.org/10.3389/fimmu.2020.02037]
[76]
Yu, L.; Tong, Y.; Shen, G.; Fu, A.; Lai, Y.; Zhou, X.; Yuan, Y.; Wang, Y.; Pan, Y.; Yu, Z.; Li, Y.; Liu, T.; Jiang, H. Immunodepletion with hypoxemia: A potential high risk subtype of coronavirus disease medRxiv, 2020.
[77]
Tan, L.; Wang, Q.; Zhang, D.; Ding, J.; Huang, Q.; Tang, Y.Q.; Wang, Q.; Miao, H. Lymphopenia predicts disease severity of COVID-19: A descriptive and predictive study. Signal Transduct. Target. Ther., 2020, 5(1), 33.
[http://dx.doi.org/10.1038/s41392-020-0148-4] [PMID: 32296069]
[78]
Muralidar, S.; Ambi, S.V.; Sekaran, S.; Krishnan, U.M. The emergence of COVID-19 as a global pandemic: Understanding the epidemiology, immune response and potential therapeutic targets of SARS-CoV-2. Biochimie, 2020, 179, 85-100.
[http://dx.doi.org/10.1016/j.biochi.2020.09.018] [PMID: 32971147]
[79]
Wang, J.; Jiang, M.; Chen, X.; Montaner, L.J. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J. Leukoc. Biol., 2020, 108(1), 17-41.
[http://dx.doi.org/10.1002/JLB.3COVR0520-272R] [PMID: 32534467]
[80]
Megna, M.; Napolitano, M.; Fabbrocini, G. May IL-17 have a role in COVID-19 infection? Med. Hypotheses, 2020, 140, 109749.
[http://dx.doi.org/10.1016/j.mehy.2020.109749] [PMID: 32339777]
[81]
Diao, B.; Wang, C.; Tan, Y.; Chen, X.; Liu, Y.; Ning, L.; Chen, L.; Li, M.; Liu, Y.; Wang, G.; Yuan, Z.; Feng, Z.; Zhang, Y.; Wu, Y.; Chen, Y. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19) Front. Immunol., 2020, 11, 827.
[82]
Xiong, Y.; Liu, Y.; Cao, L.; Wang, D.; Guo, M.; Jiang, A.; Guo, D.; Hu, W.; Yang, J.; Tang, Z.; Wu, H.; Lin, Y.; Zhang, M.; Zhang, Q.; Shi, M.; Liu, Y.; Zhou, Y.; Lan, K.; Chen, Y. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg. Microbes Infect., 2020, 9(1), 761-770.
[http://dx.doi.org/10.1080/22221751.2020.1747363] [PMID: 32228226]
[83]
López-Collazo, E.; Avendaño-Ortiz, J.; Martín-Quirós, A.; Aguirre, L.A. Immune response and COVID-19: A mirror image of sepsis. Int. J. Biol. Sci., 2020, 16(14), 2479-2489.
[http://dx.doi.org/10.7150/ijbs.48400] [PMID: 32792851]
[84]
Ouyang, L.; Gong, J. Mitochondrial-targeted ubiquinone: A potential treatment for COVID-19. Med. Hypotheses, 2020, 144, 110161.
[http://dx.doi.org/10.1016/j.mehy.2020.110161] [PMID: 32795832]
[85]
Chen, Z.; John Wherry, E. T cell responses in patients with COVID-19. Nat. Rev. Immunol., 2020, 20(9), 529-536.
[http://dx.doi.org/10.1038/s41577-020-0402-6] [PMID: 32728222]
[86]
Wang, F.; Hou, H.; Luo, Y.; Tang, G.; Wu, S.; Huang, M.; Liu, W.; Zhu, Y.; Lin, Q.; Mao, L.; Fang, M.; Zhang, H.; Sun, Z. The laboratory tests and host immunity of COVID-19 patients with different severity of illness. JCI Insight, 2020, 5(10), e137799.
[http://dx.doi.org/10.1172/jci.insight.137799] [PMID: 32324595]
[87]
de Candia, P.; Prattichizzo, F.; Garavelli, S.; Matarese, G.T. Cells: WaErriors of SARS-CoV-2 infection! Trends Immunol., 2021, 42(1), 18-30.
[PMID: 33277181]
[88]
Okba, N.M.A.; Müller, M.A.; Li, W.; Wang, C. GeurtsvanKessel, C.H.; Corman, V.M.; Lamers, M.M.; Sikkema, R.S.; de Bruin, E.; Chandler, F.D.; Yazdanpanah, Y.; Le Hingrat, Q.; Descamps, D.; Houhou-Fidouh, N.; Reusken, C.B.E.M.; Bosch, B.J.; Drosten, C.; Koopmans, M.P.G.; Haagmans, B.L. Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease patients. Emerg. Infect. Dis., 2020, 26(7), 1478-1488.
[http://dx.doi.org/10.3201/eid2607.200841] [PMID: 32267220]
[89]
Jaume, M.; Yip, M.S.; Cheung, C.Y.; Leung, H.L.; Li, P.H.; Kien, F.; Dutry, I.; Callendret, B.; Escriou, N.; Altmeyer, R.; Nal, B.; Daëron, M.; Bruzzone, R.; Peiris, J.S. Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway. J. Virol., 2011, 85(20), 10582-10597.
[http://dx.doi.org/10.1128/JVI.00671-11] [PMID: 21775467]
[90]
Takahashi, T.; Wong, P.; Ellingson, M.; Lucas, C.; Klein, J.; Israelow, B. Sex differences in immune responses to SARS-CoV-2 that underlie disease outcomes. medRxiv, 2020, 2020.06.06.20123414.
[http://dx.doi.org/10.1101/2020.06.06.20123414]
[91]
Shah, V.K.; Firmal, P.; Alam, A.; Ganguly, D.; Chattopadhyay, S. Overview of immune response during SARS-CoV-2 infection Lessons From the Past., 1949, 2020, 11.
[92]
Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.; Guo, Q. Prevalence of comorbidities and its effects in patients infected with SARSCoV- 2: A systematic review and meta-analysis Int. J. Infect. Dis., 2020, 94, 91-95.
[93]
Zhand, S.; Saghaeian Jazi, M.; Mohammadi, S.; Tarighati Rasekhi, R.; Rostamian, G.; Kalani, M.R.; Rostamian, A.; George, J.; Douglas, M.W. COVID-19: The immune responses and clinical therapy candidates. Int. J. Mol. Sci., 2020, 21(15), 5559.
[http://dx.doi.org/10.3390/ijms21155559] [PMID: 32756480]
[94]
Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; Zhang, Y.; Song, J.; Wang, S.; Chao, Y.; Yang, Z.; Xu, J.; Zhou, X.; Chen, D.; Xiong, W.; Xu, L.; Zhou, F.; Jiang, J.; Bai, C.; Zheng, J.; Song, Y. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med., 2020, 180(7), 934-943.
[http://dx.doi.org/10.1001/jamainternmed.2020.0994] [PMID: 32167524]
[95]
Pan, A.; Liu, L.; Wang, C.; Guo, H.; Hao, X.; Wang, Q.; Huang, J.; He, N.; Yu, H.; Lin, X.; Wei, S.; Wu, T. Association of public health interventions with the epidemiology of the COVID-19 outbreak in Wuhan, China. JAMA, 2020, 323(19), 1915-1923.
[http://dx.doi.org/10.1001/jama.2020.6130] [PMID: 32275295]
[96]
Meftahi, G.H.; Jangravi, Z.; Sahraei, H.; Bahari, Z. The possible pathophysiology mechanism of cytokine storm in elderly adults with COVID-19 infection: The contribution of “inflame-aging”. Inflamm. Res., 2020, 69(9), 825-839.
[http://dx.doi.org/10.1007/s00011-020-01372-8] [PMID: 32529477]
[97]
Nguyen, L.N.; Kanneganti, T-D. PANoptosis in viral infection: The missing puzzle piece in the cell death field. J. Mol. Biol., 2021, 167249.
[http://dx.doi.org/10.1016/j.jmb.2021.167249] [PMID: 34537233]
[98]
Karki, R.; Sharma, B.R.; Tuladhar, S.; Williams, E.P.; Zalduondo, L.; Samir, P.; Zheng, M.; Sundaram, B.; Banoth, B.; Malireddi, R.K.S.; Schreiner, P.; Neale, G.; Vogel, P.; Webby, R.; Jonsson, C.B.; Kanneganti, T.D. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell, 2021, 184(1), 149-168.e17.
[http://dx.doi.org/10.1016/j.cell.2020.11.025] [PMID: 33278357]
[99]
Moulton, V.R. Sex hormones in acquired immunity and autoimmune disease. Front. Immunol., 2018, 9, 2279.
[http://dx.doi.org/10.3389/fimmu.2018.02279] [PMID: 30337927]
[100]
Scully, E.P.; Haverfield, J.; Ursin, R.L.; Tannenbaum, C.; Klein, S.L. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat. Rev. Immunol., 2020, 20(7), 442-447.
[http://dx.doi.org/10.1038/s41577-020-0348-8] [PMID: 32528136]
[101]
Griesbeck, M.; Ziegler, S.; Laffont, S.; Smith, N.; Chauveau, L.; Tomezsko, P. Sex differences in plasmacytoid dendritic cell levels of IRF5 drive higher IFN-α production in women J. Immunol., 2015, 195(11), 5327-5336.
[102]
Pasquarelli-do-Nascimento, G.; Braz-de-Melo, H.A.; Faria, S.S.; Santos, I.O.; Kobinger, G.P.; Magalhães, K.G. Hypercoagulopathy and adipose tissue exacerbated inflammation may explain higher mortality in COVID-19 patients with obesity. Front. Endocrinol. (Lausanne), 2020, 11, 530.
[http://dx.doi.org/10.3389/fendo.2020.00530] [PMID: 32849309]
[103]
Lebeau, G.; Vagner, D.; Frumence, É.; Ah-Pine, F.; Guillot, X.; Nobécourt, E.; Raffray, L.; Gasque, P. Deciphering SARS-CoV-2 virologic and immunologic features. Int. J. Mol. Sci., 2020, 21(16), 5932.
[http://dx.doi.org/10.3390/ijms21165932] [PMID: 32824753]
[104]
Huang, Y.; Lu, Y.; Huang, Y-M.; Wang, M.; Ling, W.; Sui, Y.; Zhao, H.L. Obesity in patients with COVID-19: A systematic review and meta-analysis. Metabolism, 2020, 113, 154378.
[http://dx.doi.org/10.1016/j.metabol.2020.154378] [PMID: 33002478]
[105]
Yang, J.M.; Koh, H.Y.; Moon, S.Y.; Yoo, I.K.; Ha, E.K.; You, S.; Kim, S.Y.; Yon, D.K.; Lee, S.W. Allergic disorders and susceptibility to and severity of COVID-19: A nationwide cohort study. J. Allergy Clin. Immunol., 2020, 146(4), 790-798.
[http://dx.doi.org/10.1016/j.jaci.2020.08.008] [PMID: 32810517]
[106]
Kumar, R.K.; Foster, P.S.; Rosenberg, H.F. Respiratory viral infection, epithelial cytokines, and innate lymphoid cells in asthma exacerbations. J. Leukoc. Biol., 2014, 96(3), 391-396.
[http://dx.doi.org/10.1189/jlb.3RI0314-129R] [PMID: 24904000]
[107]
Kimura, H.; Francisco, D.; Conway, M.; Martinez, F.D.; Vercelli, D.; Polverino, F.; Billheimer, D.; Kraft, M. Type 2 inflammation modulates ACE2 and TMPRSS2 in airway epithelial cells. J. Allergy Clin. Immunol., 2020, 146(1), 80-88.e8.
[http://dx.doi.org/10.1016/j.jaci.2020.05.004] [PMID: 32422146]
[108]
Ad’hiah, A.H.; Allami, R.H.; Mohsin, R.H.; Abdullah, M.H.; Al-Sa’ady, A.J.R.; Alsudani, M.Y. Evaluating of the association between ABO blood groups and coronavirus disease 2019 (COVID-19) in Iraqi patients. Egypt. J. Med. Hum. Genet., 2020, 21(1), 50.
[http://dx.doi.org/10.1186/s43042-020-00097-x]
[109]
Guillon, P.; Clément, M.; Sébille, V.; Rivain, J-G.; Chou, C-F.; Ruvoën-Clouet, N.; Le Pendu, J. Inhibition of the interaction between the SARS-CoV spike protein and its cellular receptor by anti-histo-blood group antibodies. Glycobiology, 2008, 18(12), 1085-1093.
[http://dx.doi.org/10.1093/glycob/cwn093] [PMID: 18818423]
[110]
AbdelMassih, A.F.; Mahrous, R.; Taha, A.; Saud, A.; Osman, A.; Kamel, B.; Yacoub, E.; Menshawey, E.; Ismail, H.A.; Aita, L.; Dous, M.; Saad, M.; AbdelAziz, M.; Zaghar, M.; Shebl, N.; El-Husseiny, N.; Fahmy, N.; Hegazy, N.; Khalid, O.; Saad, O.; Afdal, P.; Menshawey, R.; Husseiny, R.; Sherien, S.; Salama, S.; Gad, S.; Ali, S.; Maalim, S.; Ismail, S.; ElHefnawi, Y.; Aziz, Y.; Fouda, R. The potential use of ABO blood group system for risk stratification of COVID-19. Med. Hypotheses, 2020, 145, 110343.
[http://dx.doi.org/10.1016/j.mehy.2020.110343] [PMID: 33086161]
[111]
Dai, X. ABO blood group predisposes to COVID-19 severity and cardiovascular diseases. Eur. J. Prev. Cardiol., 2020, 27(13), 1436-1437.
[http://dx.doi.org/10.1177/2047487320922370] [PMID: 32343152]
[112]
Westblade, L.F.; Brar, G.; Pinheiro, L.C.; Paidoussis, D.; Rajan, M.; Martin, P.; Goyal, P.; Sepulveda, J.L.; Zhang, L.; George, G.; Liu, D.; Whittier, S.; Plate, M.; Small, C.B.; Rand, J.H.; Cushing, M.M.; Walsh, T.J.; Cooke, J.; Safford, M.M.; Loda, M.; Satlin, M.J. SARS-CoV-2 viral load predicts mortality in patients with and without cancer who are hospitalized with COVID-19. Cancer Cell, 2020, 38(5), 661-671.e2.
[http://dx.doi.org/10.1016/j.ccell.2020.09.007] [PMID: 32997958]
[113]
Fajnzylber, J.; Regan, J.; Coxen, K.; Corry, H.; Wong, C.; Rosenthal, A.; Worrall, D.; Giguel, F.; Piechocka-Trocha, A.; Atyeo, C.; Fischinger, S.; Chan, A.; Flaherty, K.T.; Hall, K.; Dougan, M.; Ryan, E.T.; Gillespie, E.; Chishti, R.; Li, Y.; Jilg, N.; Hanidziar, D.; Baron, R.M.; Baden, L.; Tsibris, A.M.; Armstrong, K.A.; Kuritzkes, D.R.; Alter, G.; Walker, B.D.; Yu, X.; Li, J.Z. SARS-CoV-2 viral load is associated with increased disease severity and mortality. Nat. Commun., 2020, 11(1), 5493.
[http://dx.doi.org/10.1038/s41467-020-19057-5] [PMID: 33127906]
[114]
Qin, W.; Chen, S.; Zhang, Y.; Dong, F.; Zhang, Z.; Hu, B. Diffusion capacity abnormalities for carbon monoxide in patients with COVID-19 at three-month follow-up Eur. Respir. J., 2021, 58(1), 2003677.
[115]
Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; Ahluwalia, N.; Bikdeli, B.; Dietz, D.; Der-Nigoghossian, C.; Liyanage-Don, N.; Rosner, G.F.; Bernstein, E.J.; Mohan, S.; Beckley, A.A.; Seres, D.S.; Choueiri, T.K.; Uriel, N.; Ausiello, J.C.; Accili, D.; Freedberg, D.E.; Baldwin, M.; Schwartz, A.; Brodie, D.; Garcia, C.K.; Elkind, M.S.V.; Connors, J.M.; Bilezikian, J.P.; Landry, D.W.; Wan, E.Y. Post-acute COVID-19 syndrome. Nat. Med., 2021, 27(4), 601-615.
[http://dx.doi.org/10.1038/s41591-021-01283-z] [PMID: 33753937]
[116]
Salamanna, F.; Veronesi, F.; Martini, L.; Landini, M.P.; Fini, M. Post-COVID-19 syndrome: The persistent symptoms at the postviral stage of the disease. A systematic review of the current data. Front. Med. (Lausanne), 2021, 8, 653516.
[117]
Khan, F.; Sharma, P.; Pandey, S.; Sharma, D. v, V.; Kumar, N.; Shukla, S.; Dandu, H.; Jain, A.; Garg, R.K.; Malhotra, H.S. COVID-19-associated Guillain-Barre syndrome: Postinfectious alone or neuroinvasive too? J. Med. Virol., 2021, 93(10), 6045-6049.
[http://dx.doi.org/10.1002/jmv.27159] [PMID: 34170552]
[118]
Alonso-Bellido, I.M.; Bachiller, S.; Vázquez, G.; Cruz-Hernández, L.; Martínez, E.; Ruiz-Mateos, E. The other side of SARS-CoV-2 infection: Neurological sequelae in patients. Front. Aging Neurosci., 2021, 13(159)
[119]
Al-Jahdhami, I.; Al-Naamani, K.; Al-Mawali, A. The post-acute COVID-19 syndrome (long COVID) Oman Med. J., 2021, 36(1), e220.
[120]
Ramakrishnan, R.K.; Kashour, T.; Hamid, Q.; Halwani, R.; Tleyjeh, I.M. Unraveling the mystery surrounding post-acute sequelae of COVID-19. Front. Immunol., 2021, 12, 686029.
[http://dx.doi.org/10.3389/fimmu.2021.686029]
[121]
Xiong, Q.; Xu, M.; Li, J.; Liu, Y.; Zhang, J.; Xu, Y.; Dong, W. Clinical sequelae of COVID-19 survivors in Wuhan, China: A single-centre longitudinal study. Clin. Microbiol. Infect., 2021, 27(1), 89-95.
[http://dx.doi.org/10.1016/j.cmi.2020.09.023] [PMID: 32979574]
[122]
Korompoki, E.; Gavriatopoulou, M.; Hicklen, R.S.; Ntanasis-Stathopoulos, I.; Kastritis, E.; Fotiou, D. Epidemiology and organ specific sequelae of post-acute COVID19: A narrative review. J. Infect, 2021. S0163-4453(21), 00247-4.
[123]
Galeotti, C.; Bayry, J. Autoimmune and inflammatory diseases following COVID-19. Nat. Rev. Rheumatol., 2020, 16(8), 413-414.
[http://dx.doi.org/10.1038/s41584-020-0448-7] [PMID: 32499548]
[124]
Lutchmansingh, D.D.; Knauert, M.P.; Antin-Ozerkis, D.E.; Chupp, G.; Cohn, L.; Dela Cruz, C.S.; Ferrante, L.E.; Herzog, E.L.; Koff, J.; Rochester, C.L.; Ryu, C.; Singh, I.; Tickoo, M.; Winks, V.; Gulati, M.; Possick, J.D. A clinic blueprint for post-coronavirus disease 2019 RECOVERY: Learning from the past, looking to the future. Chest, 2021, 159(3), 949-958.
[http://dx.doi.org/10.1016/j.chest.2020.10.067] [PMID: 33159907]
[125]
Poland, G.A.; Ovsyannikova, I.G.; Kennedy, R.B. SARS-CoV-2 immunity: Review and applications to phase 3 vaccine candidates. Lancet, 2020, 396(10262), 1595-1606.
[http://dx.doi.org/10.1016/S0140-6736(20)32137-1] [PMID: 33065034]
[126]
Tregoning, J.S.; Brown, E.S.; Cheeseman, H.M.; Flight, K.E.; Higham, S.L.; Lemm, N.M.; Pierce, B.F.; Stirling, D.C.; Wang, Z.; Pollock, K.M. Vaccines for COVID-19. Clin. Exp. Immunol., 2020, 202(2), 162-192.
[http://dx.doi.org/10.1111/cei.13517] [PMID: 32935331]
[127]
Kaur, S.P.; Gupta, V. COVID-19 Vaccine: A comprehensive status report. Virus Res., 2020, 288, 198114.
[http://dx.doi.org/10.1016/j.virusres.2020.198114] [PMID: 32800805]
[128]
Arashkia, A.; Jalilvand, S.; Mohajel, N.; Afchangi, A.; Azadmanesh, K.; Salehi-Vaziri, M. Severe acute respiratory syndromecoronavirus- 2 spike (S) protein based vaccine candidates: State of the art and future prospects Rev. Med. Virol., 2021, 31(3), e2183.
[129]
Callaway, E. The race for coronavirus vaccines: A graphical guide. Nature, 2020, 580(7805), 576-577.
[http://dx.doi.org/10.1038/d41586-020-01221-y] [PMID: 32346146]
[130]
Organization, W.H. Status of COVID-19 vaccines within WHO EUL/PQ evaluation process. 2021. Available from: https://wwwwhoint/emergencies/diseases/novel-coronavirus- 2019/covid-19-vaccines
[131]
Corbett, K.S.; Edwards, D.K.; Leist, S.R.; Abiona, O.M.; Boyoglu-Barnum, S.; Gillespie, R.A.; Himansu, S.; Schäfer, A.; Ziwawo, C.T.; DiPiazza, A.T.; Dinnon, K.H.; Elbashir, S.M.; Shaw, C.A.; Woods, A.; Fritch, E.J.; Martinez, D.R.; Bock, K.W.; Minai, M.; Nagata, B.M.; Hutchinson, G.B.; Wu, K.; Henry, C.; Bahl, K.; Garcia-Dominguez, D.; Ma, L.; Renzi, I.; Kong, W.P.; Schmidt, S.D.; Wang, L.; Zhang, Y.; Phung, E.; Chang, L.A.; Loomis, R.J.; Altaras, N.E.; Narayanan, E.; Metkar, M.; Presnyak, V.; Liu, C.; Louder, M.K.; Shi, W.; Leung, K.; Yang, E.S.; West, A.; Gully, K.L.; Stevens, L.J.; Wang, N.; Wrapp, D.; Doria-Rose, N.A.; Stewart-Jones, G.; Bennett, H.; Alvarado, G.S.; Nason, M.C.; Ruckwardt, T.J.; McLellan, J.S.; Denison, M.R.; Chappell, J.D.; Moore, I.N.; Morabito, K.M.; Mascola, J.R.; Baric, R.S.; Carfi, A.; Graham, B.S. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature, 2020, 586(7830), 567-571.
[http://dx.doi.org/10.1038/s41586-020-2622-0] [PMID: 32756549]
[132]
Widge, A.T.; Rouphael, N.G.; Jackson, L.A.; Anderson, E.J.; Roberts, P.C.; Makhene, M. Durability of responses after SARS-CoV- 2 mRNA-1273 vaccination N. Engl. J. Med., 2020, 384(1), 80-82.
[PMID: 33270381]
[133]
MODERNA. Moderna’s work on a COVID-19 vaccine candidate. 2020. Available from: https://wwwmodernatxcom/modernaswork- potential-vaccine-against-covid-19
[134]
Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med., 2020, 383(27), 2603-2615.
[http://dx.doi.org/10.1056/NEJMoa2034577]
[135]
Pfizer. Pfizer and biontech provide data from german phase 1/2 study further characterizing immune response following immunization with lead COVID-19 vaccine candidate BNT162B2 2020. Available from: https://wwwpfizercom/news/press-release/pressrelease- detail/pfizer-and-biontech-provide-data-german-phase-12- study
[136]
Choudhury, A.; Mukherjee, G.; Mukherjee, S. Chemotherapy vs. immunotherapy in combating nCOVID19: An update. Hum. Immunol., 2021, 82(9), 649-658.
[http://dx.doi.org/10.1016/j.humimm.2021.05.001] [PMID: 34020832]
[137]
Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines - a new era in vaccinology. Nat. Rev. Drug Discov., 2018, 17(4), 261-279.
[http://dx.doi.org/10.1038/nrd.2017.243] [PMID: 29326426]
[138]
Zhang, C.; Maruggi, G.; Shan, H.; Li, J. Advances in mRNA vaccines for infectious diseases. Front. Immunol., 2019, 10, 594.
[http://dx.doi.org/10.3389/fimmu.2019.00594]
[139]
Dai, L.; Gao, G.F. Viral targets for vaccines against COVID-19. Nat. Rev. Immunol., 2021, 21(2), 73-82.
[http://dx.doi.org/10.1038/s41577-020-00480-0] [PMID: 33340022]
[140]
Zhang, Y.; Zeng, G.; Pan, H.; Li, C.; Hu, Y.; Chu, K.; Han, W.; Chen, Z.; Tang, R.; Yin, W.; Chen, X.; Hu, Y.; Liu, X.; Jiang, C.; Li, J.; Yang, M.; Song, Y.; Wang, X.; Gao, Q.; Zhu, F. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis., 2021, 21(2), 181-192.
[http://dx.doi.org/10.1016/S1473-3099(20)30843-4] [PMID: 33217362]
[141]
Gao, Q.; Bao, L.; Mao, H.; Wang, L.; Xu, K.; Yang, M.; Li, Y.; Zhu, L.; Wang, N.; Lv, Z.; Gao, H.; Ge, X.; Kan, B.; Hu, Y.; Liu, J.; Cai, F.; Jiang, D.; Yin, Y.; Qin, C.; Li, J.; Gong, X.; Lou, X.; Shi, W.; Wu, D.; Zhang, H.; Zhu, L.; Deng, W.; Li, Y.; Lu, J.; Li, C.; Wang, X.; Yin, W.; Zhang, Y.; Qin, C. Development of an inactivated vaccine candidate for SARS-CoV-2. Science, 2020, 369(6499), 77-81.
[http://dx.doi.org/10.1126/science.abc1932] [PMID: 32376603]
[142]
Funk, C.D.; Laferrière, C.; Ardakani, A. A snapshot of the global race for vaccines targeting SARS-CoV-2 and the COVID-19 pandemic. Front. Pharmacol., 2020, 11, 937.
[http://dx.doi.org/10.3389/fphar.2020.00937] [PMID: 32636754]
[143]
Liang, Z.; Zhu, H.; Wang, X.; Jing, B.; Li, Z.; Xia, X.; Sun, H.; Yang, Y.; Zhang, W.; Shi, L.; Zeng, H.; Sun, B. Adjuvants for coronavirus vaccines. Front. Immunol., 2020, 11(2896), 589833.
[http://dx.doi.org/10.3389/fimmu.2020.589833]
[144]
Kyriakidis, N.C.; López-Cortés, A.; González, E.V.; Grimaldos, A.B.; Prado, E.O. SARS-CoV-2 vaccines strategies: A comprehensive review of phase 3 candidates Vaccines (Basel), 2021, 6(1), 28.
[PMID: 33430428]
[145]
Li, T.; Zhang, T.; Gu, Y.; Li, S.; Xia, N. Current progress and challenges in the design and development of a successful COVID-19 vaccine. Fundam. Res., 2021, 1(2), 139-150.
[http://dx.doi.org/10.1016/j.fmre.2021.01.011]
[146]
Loo, K-Y.; Letchumanan, V.; Ser, H-L.; Teoh, S.L.; Law, J.W-F.; Tan, L.T-H.; Ab Mutalib, N.S.; Chan, K.G.; Lee, L.H. COVID-19: Insights into potential vaccines. Microorganisms, 2021, 9(3), 605.
[http://dx.doi.org/10.3390/microorganisms9030605] [PMID: 33804162]
[147]
Han, B.; Song, Y.; Li, C.; Yang, W.; Ma, Q.; Jiang, Z.; Li, M.; Lian, X.; Jiao, W.; Wang, L.; Shu, Q.; Wu, Z.; Zhao, Y.; Li, Q.; Gao, Q. Safety, tolerability and immunogenicity of an inactivated SARS-CoV-2 Vaccine (CoronaVac) in healthy children and adolescents: A randomised, double-blind, and placebo-controlled, phase 1/2 clinical trial Lancet Infect. Dis., 2021, 21(12), 1645-1653.
[148]
Wang, H.; Zhang, Y.; Huang, B.; Deng, W.; Quan, Y.; Wang, W.; Xu, W.; Zhao, Y.; Li, N.; Zhang, J.; Liang, H.; Bao, L.; Xu, Y.; Ding, L.; Zhou, W.; Gao, H.; Liu, J.; Niu, P.; Zhao, L.; Zhen, W.; Fu, H.; Yu, S.; Zhang, Z.; Xu, G.; Li, C.; Lou, Z.; Xu, M.; Qin, C.; Wu, G.; Gao, G.F.; Tan, W.; Yang, X. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell, 2020, 182(3), 713-721.e9.
[http://dx.doi.org/10.1016/j.cell.2020.06.008] [PMID: 32778225]
[149]
Xia, S.; Zhang, Y.; Wang, Y.; Wang, H.; Yang, Y.; Gao, G.F.; Tan, W.; Wu, G.; Xu, M.; Lou, Z.; Huang, W.; Xu, W.; Huang, B.; Wang, H.; Wang, W.; Zhang, W.; Li, N.; Xie, Z.; Ding, L.; You, W.; Zhao, Y.; Yang, X.; Liu, Y.; Wang, Q.; Huang, L.; Yang, Y.; Xu, G.; Luo, B.; Wang, W.; Liu, P.; Guo, W.; Yang, X. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: A randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect. Dis., 2021, 21(1), 39-51.
[http://dx.doi.org/10.1016/S1473-3099(20)30831-8] [PMID: 33069281]
[150]
Ura, T.; Okuda, K.; Shimada, M. Developments in viral vector-based vaccines. Vaccines (Basel), 2014, 2(3), 624-641.
[http://dx.doi.org/10.3390/vaccines2030624] [PMID: 26344749]
[151]
Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; Bibi, S.; Briner, C.; Cicconi, P.; Collins, A.M.; Colin-Jones, R.; Cutland, C.L.; Darton, T.C.; Dheda, K.; Duncan, C.J.A.; Emary, K.R.W.; Ewer, K.J.; Fairlie, L.; Faust, S.N.; Feng, S.; Ferreira, D.M.; Finn, A.; Goodman, A.L.; Green, C.M.; Green, C.A.; Heath, P.T.; Hill, C.; Hill, H.; Hirsch, I.; Hodgson, S.H.C.; Izu, A.; Jackson, S.; Jenkin, D.; Joe, C.C.D.; Kerridge, S.; Koen, A.; Kwatra, G.; Lazarus, R.; Lawrie, A.M.; Lelliott, A.; Libri, V.; Lillie, P.J.; Mallory, R.; Mendes, A.V.A.; Milan, E.P.; Minassian, A.M.; McGregor, A.; Morrison, H.; Mujadidi, Y.F.; Nana, A.; O’Reilly, P.J.; Padayachee, S.D.; Pittella, A.; Plested, E.; Pollock, K.M.; Ramasamy, M.N.; Rhead, S.; Schwarzbold, A.V.; Singh, N.; Smith, A.; Song, R.; Snape, M.D.; Sprinz, E.; Sutherland, R.K.; Tarrant, R.; Thomson, E.C.; Török, M.E.; Toshner, M.; Turner, D.P.J.; Vekemans, J.; Villafana, T.L.; Watson, M.E.E.; Williams, C.J.; Douglas, A.D.; Hill, A.V.S.; Lambe, T.; Gilbert, S.C.; Pollard, A.J. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet, 2021, 397(10269), 99-111.
[http://dx.doi.org/10.1016/S0140-6736(20)32661-1] [PMID: 33306989]
[152]
van Doremalen, N.; Lambe, T.; Spencer, A.; Belij-Rammerstorfer, S.; Purushotham, J.N.; Port, J.R.; Avanzato, V.A.; Bushmaker, T.; Flaxman, A.; Ulaszewska, M.; Feldmann, F.; Allen, E.R.; Sharpe, H.; Schulz, J.; Holbrook, M.; Okumura, A.; Meade-White, K.; Pérez-Pérez, L.; Edwards, N.J.; Wright, D.; Bissett, C.; Gilbride, C.; Williamson, B.N.; Rosenke, R.; Long, D.; Ishwarbhai, A.; Kailath, R.; Rose, L.; Morris, S.; Powers, C.; Lovaglio, J.; Hanley, P.W.; Scott, D.; Saturday, G.; de Wit, E.; Gilbert, S.C.; Munster, V.J. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature, 2020, 586(7830), 578-582.
[http://dx.doi.org/10.1038/s41586-020-2608-y] [PMID: 32731258]
[153]
Ramasamy, M.N.; Minassian, A.M.; Ewer, K.J.; Flaxman, A.L.; Folegatti, P.M.; Owens, D.R.; Voysey, M.; Aley, P.K.; Angus, B.; Babbage, G.; Belij-Rammerstorfer, S.; Berry, L.; Bibi, S.; Bittaye, M.; Cathie, K.; Chappell, H.; Charlton, S.; Cicconi, P.; Clutterbuck, E.A.; Colin-Jones, R.; Dold, C.; Emary, K.R.W.; Fedosyuk, S.; Fuskova, M.; Gbesemete, D.; Green, C.; Hallis, B.; Hou, M.M.; Jenkin, D.; Joe, C.C.D.; Kelly, E.J.; Kerridge, S.; Lawrie, A.M.; Lelliott, A.; Lwin, M.N.; Makinson, R.; Marchevsky, N.G.; Mujadidi, Y.; Munro, A.P.S.; Pacurar, M.; Plested, E.; Rand, J.; Rawlinson, T.; Rhead, S.; Robinson, H.; Ritchie, A.J.; Ross-Russell, A.L.; Saich, S.; Singh, N.; Smith, C.C.; Snape, M.D.; Song, R.; Tarrant, R.; Themistocleous, Y.; Thomas, K.M.; Villafana, T.L.; Warren, S.C.; Watson, M.E.E.; Douglas, A.D.; Hill, A.V.S.; Lambe, T.; Gilbert, S.C.; Faust, S.N.; Pollard, A.J. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): A single-blind, randomised, controlled, phase 2/3 trial. Lancet, 2021, 396(10267), 1979-1993.
[http://dx.doi.org/10.1016/S0140-6736(20)32466-1] [PMID: 33220855]
[155]
Soiza, R.L.; Scicluna, C.; Thomson, E.C. Efficacy and safety of COVID-19 vaccines in older people. Age Ageing, 2021, 50(2), 279-283.
[http://dx.doi.org/10.1093/ageing/afaa274] [PMID: 33320183]
[156]
Teo, S.P. Review of COVID-19 vaccines and their evidence in older adults Ann. Geriatr. Med. Res., 2021, 25(1), 4-9.
[157]
Anderson, E.J.; Rouphael, N.G.; Widge, A.T.; Jackson, L.A.; Roberts, P.C.; Makhene, M.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; Pruijssers, A.J.; McDermott, A.B.; Flach, B.; Lin, B.C.; Doria-Rose, N.A.; O’Dell, S.; Schmidt, S.D.; Corbett, K.S.; Swanson, P.A., II; Padilla, M.; Neuzil, K.M.; Bennett, H.; Leav, B.; Makowski, M.; Albert, J.; Cross, K.; Edara, V.V.; Floyd, K.; Suthar, M.S.; Martinez, D.R.; Baric, R.; Buchanan, W.; Luke, C.J.; Phadke, V.K.; Rostad, C.A.; Ledgerwood, J.E.; Graham, B.S.; Beigel, J.H. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N. Engl. J. Med., 2020, 383(25), 2427-2438.
[http://dx.doi.org/10.1056/NEJMoa2028436] [PMID: 32991794]
[158]
Wu, Z.; Hu, Y.; Xu, M.; Chen, Z.; Yang, W.; Jiang, Z.; Li, M.; Jin, H.; Cui, G.; Chen, P.; Wang, L.; Zhao, G.; Ding, Y.; Zhao, Y.; Yin, W. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial Lancet Infect. Dis., 2021, 21(6), 803-812.
[159]
Merck and ridgeback’s investigational oral antiviral molnupiravir reduced the risk of hospitalization or death by approximately 50 percent compared to placebo for patients with mild or moderate COVID-19 in positive interim analysis of phase 3 study 2021. Available from: https://www.businesswire.com/news/home/20211001005189/en/
[160]
Das, C.N.; Labala, K.R.; Patra, R.; Chattoraj, A.; Mukherjee, S. In silico identification of new Anti-SARS-CoV-2 agents from bioactive phytocompounds targeting the viral spike glycoprotein and human TLR4. Lett. Drug Des. Discov., 2021, 18, 1-17.
[http://dx.doi.org/10.2174/1570180818666210901125519]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy