Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Review Article

A Review on Unknown Repercussions Associated with Metallic Nanoparticles and their Rectification Techniques

Author(s): Saman Aqeel*, Aparna Gupta and Lalit Singh

Volume 7, Issue 3, 2022

Published on: 30 March, 2022

Page: [181 - 192] Pages: 12

DOI: 10.2174/2405461507666220304204152

Price: $65

Abstract

Background: The wide use of metallic nanoparticles (MNPs) has toxic effects on the human body affecting vital organs such as brain, liver and kidney. Therefore it is necessary to develop approaches to eradicate such health issues without compromising plus the potential benefits of the respective metallic nanoparticles including silver, gold, zinc, copper, etc.

Objective: This study aimed to assess methods which can mutually reduce the nanotoxicity while retaining the therapeutic benefits of metal-based nanocarriers.

Methods: The implementation of certain methods, such as the addition of chelating agents, providing protective coatings and surface modification during the synthesis of metallic nanoparticles can subsequently minimize metallic toxicity.

Results: Through extensive and exhaustive literature survey it was proved that the above strategies are effective in reducing nanotoxic effects which can be further assessed by toxicity assessment tools as biochemistry, histopathology, etc.

Conclusion: Metallic nanoparticles have emerged as a beneficial tool for treating various diseases such as cancer, hepatitis, etc. Scientists are also preserving their efficacy by escorting novel techniques for limiting its toxicity in the world of nanotechnology.

Keywords: Drug delivery, nanoparticles, metallic toxicity, reactive oxygen species, chelating agents, toxicity assessment.

Graphical Abstract

[1]
Rasmussen JW, Martinez E, Louka P, Wingett DG. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 2010; 7(9): 1063-77.
[http://dx.doi.org/10.1517/17425247.2010.502560] [PMID: 20716019]
[2]
Zhang Y, Guo R, Wang D, Sun X, Xu Z. Pd nanoparticle-decorated hydroxy boron nitride nanosheets as a novel drug carrier for chemo-photothermal therapy. Colloids Surf B Biointerfaces 2019; 176: 300-8.
[http://dx.doi.org/10.1016/j.colsurfb.2019.01.015] [PMID: 30640130]
[3]
Chen J, Ning C, Zhou Z, et al. Nanomaterials as photothermal therapeutic agents. Prog Mater Sci 2019; 99: 1-26.
[http://dx.doi.org/10.1016/j.pmatsci.2018.07.005] [PMID: 30568319]
[4]
Sharma H, Kumar K, Choudhary C, Mishra PK, Vaidya B. Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug. Artif Cells Nanomed Biotechnol 2016; 44(2): 672-9.
[http://dx.doi.org/10.3109/21691401.2014.978980] [PMID: 25406734]
[5]
Ungor D, Dékány I, Csapó E. Reduction of tetrachloroaurate(Iii) ions with bioligands: Role of the thiol and amine functional groups on the structure and optical features of gold nanohybrid systems. Nanomaterials (Basel) 2019; 9(9): 1229.
[http://dx.doi.org/10.3390/nano9091229] [PMID: 31470660]
[6]
Soto KF, Carrasco A, Powell TG, Garza KM, Murr LE. Comparative in vitro cytotoxicity assessment of some manufacturednanoparticulate materials characterized by transmissionelectron microscopy. J Nanopart Res 2005; 7(2-3): 145-69.
[http://dx.doi.org/10.1007/s11051-005-3473-1]
[7]
Li N, Georas S, Alexis N, et al. A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): Why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. J Allergy Clin Immunol 2016; 138(2): 386-96.
[http://dx.doi.org/10.1016/j.jaci.2016.02.023] [PMID: 27130856]
[8]
Trigueros S. Nanoscale metal particles as nanocarriers in targeted drug delivery system. J Nanomed Res 2016; 4(2): 2-7.
[http://dx.doi.org/10.15406/jnmr.2016.04.00086]
[9]
Girigoswami K. Toxicity of metal oxide nanoparticles. Adv Exp Med Biol 2018; 1048: 99-122.
[http://dx.doi.org/10.1007/978-3-319-72041-8_7] [PMID: 29453535]
[10]
McNamara K, Tofail SAM. Nanoparticles in biomedical applications. Adv Phys X 2017; 2(1): 54-88.
[http://dx.doi.org/10.1080/23746149.2016.1254570]
[11]
Boudreau MD, Imam MS, Paredes AM, et al. Differential effects of silver nanoparticles and silver ions on tissue accumulation, distribution, and toxicity in the sprague dawley rat following daily oral gavage administration for 13 weeks. Toxicol Sci 2016; 150(1): 131-60.
[http://dx.doi.org/10.1093/toxsci/kfv318] [PMID: 26732888]
[12]
Jabbar AH, Hamzah MQ, Mezan SO, Binti Ameruddin AS, Agam MA. Green synthesis of silver/polystyrene nano composite (Ag/PS NCs) via plant extracts beginning a new era in drug delivery. Indian J Sci Technol 2018; 11(22): 22.
[http://dx.doi.org/10.17485/ijst/2018/v11i22/121154]
[13]
Patil MP, Kang MJ, Niyonizigiye I, et al. Extracellular synthesis of gold nanoparticles using the marine bacterium Paracoccus haeundaensis BC74171T and evaluation of their antioxidant activity and antiproliferative effect on normal and cancer cell lines. Colloids Surf B Biointerfaces 2019; 183110455
[http://dx.doi.org/10.1016/j.colsurfb.2019.110455] [PMID: 31493630]
[14]
Cappellini F, Hedberg Y, McCarrick S, et al. Mechanistic insight into reactivity and (geno)toxicity of well-characterized nanoparticles of cobalt metal and oxides. Nanotoxicology 2018; 12(6): 602-20.
[http://dx.doi.org/10.1080/17435390.2018.1470694] [PMID: 29790399]
[15]
Elsaesser A, Howard CV. Toxicology of nanoparticles. Adv Drug Deliv Rev 2012; 64(2): 129-37.
[http://dx.doi.org/10.1016/j.addr.2011.09.001] [PMID: 21925220]
[16]
Grzelczak M, Liz-Marzán LM, Klajn R. Stimuli-responsive self-assembly of nanoparticles. Chem Soc Rev 2019; 48: 1342-61.
[http://dx.doi.org/10.1016/j.addr.2019.04.008] [PMID: 31022434]
[17]
Muhr V, Wilhelm S, Hirsch T, Wolfbeis OS. Upconversion nanoparticles: From hydrophobic to hydrophilic surfaces. Acc Chem Res 2014; 47(12): 3481-93.
[http://dx.doi.org/10.1021/ar500253g] [PMID: 25347798]
[18]
Elci SG, Jiang Y, Yan B, et al. Surface charge controls the suborgan biodistributions of gold nanoparticles. ACS Nano 2016; 10(5): 5536-42.
[http://dx.doi.org/10.1021/acsnano.6b02086] [PMID: 27164169]
[19]
Poon W, Zhang Y-N, Ouyang B, et al. Elimination pathways of nanoparticles. ACS Nano 2019; 13(5): 5785-98.
[http://dx.doi.org/10.1021/acsnano.9b01383] [PMID: 30990673]
[20]
Liu J, Feng X, Wei L, Chen L, Song B, Shao L. The toxicology of ion-shedding zinc oxide nanoparticles. Crit Rev Toxicol 2016; 46(4): 348-84.
[http://dx.doi.org/10.3109/10408444.2015.1137864] [PMID: 26963861]
[21]
Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev 2019; 143: 68-96.
[http://dx.doi.org/10.1016/j.addr.2019.04.008] [PMID: 31022434]
[22]
Tripathy N, Hong TK, Ha KT, Jeong HS, Hahn YB. Effect of ZnO nanoparticles aggregation on the toxicity in RAW 264.7 murine macrophage. J Hazard Mater 2014; 270: 110-7.
[http://dx.doi.org/10.1016/j.jhazmat.2014.01.043] [PMID: 24561323]
[23]
Albanese A, Chan WCW. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 2011; 5(7): 5478-89.
[http://dx.doi.org/10.1021/nn2007496] [PMID: 21692495]
[24]
Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett 2018; 13(1): 44.
[http://dx.doi.org/10.1186/s11671-018-2457-x] [PMID: 29417375]
[25]
Zhao X, Ng S, Heng BC, et al. Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent. Arch Toxicol 2013; 87(6): 1037-52.
[http://dx.doi.org/10.1007/s00204-012-0827-1] [PMID: 22415765]
[26]
Dai Q, Wilhelm S, Ding D, et al. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano 2018; 12(8): 8423-35.
[http://dx.doi.org/10.1021/acsnano.8b03900] [PMID: 30016073]
[27]
Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater 2016; 1(5): 16014.
[http://dx.doi.org/10.1038/natrevmats.2016.14]
[28]
Tsoi KM, MacParland SA, Ma X-Z, et al. Mechanism of hard-nanomaterial clearance by the liver. Nat Mater 2016; 15(11): 1212-21.
[http://dx.doi.org/10.1038/nmat4718] [PMID: 27525571]
[29]
Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science 2006; 311(5761): 622-7.
[http://dx.doi.org/10.1126/science.1114397] [PMID: 16456071]
[30]
Fu PP, Xia Q, Hwang HM, Ray PC, Yu H. Mechanisms of nanotoxicity: Generation of reactive oxygen species. j Food Drug Anal 2014; 22(1): 64-75.
[PMID: 24673904]
[31]
Abdal Dayem A, Hossain MK, Lee SB, et al. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci 2017; 18(1): 120.
[http://dx.doi.org/10.3390/ijms18010120] [PMID: 28075405]
[32]
Xia T, Kovochich M, Brant J, et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 2006; 6(8): 1794-807.
[http://dx.doi.org/10.1021/nl061025k] [PMID: 16895376]
[33]
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 2014; 94(3): 909-50.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[34]
Du B, Yu M, Zheng J. Transport and interactions of nanoparticles in the kidneys. Nat Rev Mater 2018; 3(10): 358-74.
[http://dx.doi.org/10.1038/s41578-018-0038-3]
[35]
McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J Food Drug Anal 2014; 22(1): 116-27.
[PMID: 24673909]
[36]
Barras F, Fontecave M. Cobalt stress in Escherichia coli and Salmonella enterica: Molecular bases for toxicity and resistance. Metallomics 2011; 3(11): 1130-4.
[http://dx.doi.org/10.1039/c1mt00099c] [PMID: 21952637]
[37]
Macomber L, Hausinger RP. Mechanisms of nickel toxicity in microorganisms. Metallomics 2011; 3(11): 1153-62.
[http://dx.doi.org/10.1039/c1mt00063b] [PMID: 21799955]
[38]
Dupont CL, Grass G, Rensing C. Copper toxicity and the origin of bacterial resistance--new insights and applications. Metallomics 2011; 3(11): 1109-18.
[http://dx.doi.org/10.1039/c1mt00107h] [PMID: 21984219]
[39]
Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 1995; 18(2): 321-36.
[http://dx.doi.org/10.1016/0891-5849(94)00159-H] [PMID: 7744317]
[40]
Hoshino N, Kimura T, Yamaji A, Ando T. Damage to the cytoplasmic membrane of Escherichia coli by catechin-copper (II) complexes. Free Radic Biol Med 1999; 27(11-12): 1245-50.
[http://dx.doi.org/10.1016/S0891-5849(99)00157-4] [PMID: 10641717]
[41]
Winterbourn CC. Toxicity of iron and hydrogen peroxide: The fenton reaction. Toxicol Lett 1995; 82-83: 969-974, 969-974.
[http://dx.doi.org/10.1016/0378-4274(95)03532-X] [PMID: 8597169]
[42]
Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Arch Toxicol 2013; 87(7): 1181-200.
[http://dx.doi.org/10.1007/s00204-013-1079-4] [PMID: 23728526]
[43]
Chang YN, Zhang M, Xia L, Zhang J, Xing G. The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials (Basel) 2012; 5(12): 2850-71.
[http://dx.doi.org/10.3390/ma5122850]
[44]
Xie C, Zhang J, Ma Y, et al. Bacillus subtilis causes dissolution of ceria nanoparticles at the nano-bio interface. Environ Sci Nano 2019; 6(1): 216-23.
[http://dx.doi.org/10.1039/C8EN01002A]
[45]
Naatz H, Lin S, Li R, et al. Safe-by- design of CuO nanoparticles via Fe-doping, Cu-O bond lengths variation, and biological assessment in cells and zebrafish embryos. ACS Nano 2017; 11: 501-15.
[http://dx.doi.org/10.1021/acsnano.6b06495] [PMID: 28026936]
[46]
Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine 2016; 12(3): 789-99.
[http://dx.doi.org/10.1016/j.nano.2015.11.016] [PMID: 26724539]
[47]
Gunsolus IL, Mousavi MPS, Hussein K, Bühlmann P, Haynes CL. Effects of humic and fulvic acids on silver nanoparticle stability, dissolution, and toxicity. Environ Sci Technol 2015; 49(13): 8078-86.
[http://dx.doi.org/10.1021/acs.est.5b01496] [PMID: 26047330]
[48]
Mousavi MPS, Gunsolus IL, Pérez De Jesús CE, et al. Dynamic silver speciation as studied with fluorous-phase ion-selective electrodes: Effect of natural organic matter on the toxicity and speciation of silver. Sci Total Environ 2015; 537: 453-61.
[http://dx.doi.org/10.1016/j.scitotenv.2015.07.151] [PMID: 26284896]
[49]
Hudson-Smith NV, Clement PL, Brown RP, Krause MOP, Pedersen JA, Haynes CL. Research highlights: Speciation and transformations of silver released from Ag NPs in three species. Environ Sci Nano 2016; 3(6): 1236-40.
[http://dx.doi.org/10.1039/C6EN90025A]
[50]
Hang MN, Gunsolus IL, Wayland H, et al. Impact of nanoscale lithium nickel manganese cobalt oxide (NMC) on the bacterium Shewanella oneidensis MR-1. Chem Mater 2016; 28(4): 1092-100.
[http://dx.doi.org/10.1021/acs.chemmater.5b04505]
[51]
Moore MN. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 2006; 32(8): 967-76.
[http://dx.doi.org/10.1016/j.envint.2006.06.014] [PMID: 16859745]
[52]
Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR. Silver nanoparticles: Behaviour and effects in the aquatic environment. Environ Int 2011; 37(2): 517-31.
[http://dx.doi.org/10.1016/j.envint.2010.10.012] [PMID: 21159383]
[53]
Tu Y, Lv M, Xiu P, et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat Nanotechnol 2013; 8(8): 594-601.
[http://dx.doi.org/10.1038/nnano.2013.125] [PMID: 23832191]
[54]
Mensch AC, Hernandez RT, Kuether JE, et al. Natural organic matter concentration impacts the interaction of functionalized diamond nanoparticles with model and actual bacterial membranes. Environ Sci Technol 2017; 51(19): 11075-84.
[http://dx.doi.org/10.1021/acs.est.7b02823] [PMID: 28817268]
[55]
Hussain S, Garantziotis S, Rodrigues-Lima F, Dupret J-M, Baeza-Squiban A, Boland S. Intracellular signal modulation by nanomaterials. Adv Exp Med Biol 2014; 811: 111-34.
[http://dx.doi.org/10.1007/978-94-017-8739-0_7] [PMID: 24683030]
[56]
Bondarenko O, Ivask A, Käkinen A, Kurvet I, Kahru A. Particle-cell contact enhances antibacterial activity of silver nanoparticles. PLoS One 2013; 8(5)e64060
[http://dx.doi.org/10.1371/journal.pone.0064060] [PMID: 23737965]
[57]
Petersen EJ, Nelson BC. Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA. Anal Bioanal Chem 2010; 398(2): 613-50.
[http://dx.doi.org/10.1007/s00216-010-3881-7] [PMID: 20563891]
[58]
von Moos N, Slaveykova VI. Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae--state of the art and knowledge gaps. Nanotoxicology 2014; 8(6): 605-30.
[http://dx.doi.org/10.3109/17435390.2013.809810] [PMID: 23738945]
[59]
Mensch AC, Buchman JT, Haynes CL, Pedersen JA, Hamers RJ. Quaternary amine-terminated quantum dots induce structural changes to supported lipid bilayers. Langmuir 2018; 34(41): 12369-78.
[http://dx.doi.org/10.1021/acs.langmuir.8b02047] [PMID: 30184424]
[60]
Lai L, Li S-J, Feng J, et al. Effects of surface charges on the bactericide activity of CdTe/ZnS quantum dots: A cell membrane disruption perspective. Langmuir 2017; 33(9): 2378-86.
[http://dx.doi.org/10.1021/acs.langmuir.7b00173] [PMID: 28178781]
[61]
Williams DN, Pramanik S, Brown RP, et al. Adverse interactions of luminescent semiconductor quantum dots with liposomes and Shewanella oneidensis. ACS Appl Nano Mater 2018; 1(9): 4788-800.
[http://dx.doi.org/10.1021/acsanm.8b01000] [PMID: 30931431]
[62]
Ahamed M, Siddiqui MA, Akhtar MJ, Ahmad I, Pant AB, Alhadlaq HA. Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem Biophys Res Commun 2010; 396(2): 578-83.
[http://dx.doi.org/10.1016/j.bbrc.2010.04.156] [PMID: 20447378]
[63]
Bahadar H, Maqbool F, Niaz K, Abdollahi M. Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 2016; 20(1): 1-11.
[PMID: 26286636]
[64]
Shin SW, Song IH, Um SH. Role of physicochemical properties in nanoparticle toxicity. Nanomaterials (Basel) 2015; 5(3): 1351-65.
[http://dx.doi.org/10.3390/nano5031351] [PMID: 28347068]
[65]
Klingberg H, Oddershede LB, Loeschner K, Larsen EH, Loft S, Møller P. Uptake of gold nanoparticles in primary human endothelial cells. Toxicol Res 2015; 655-66.
[http://dx.doi.org/10.1039/C4TX00061G]
[66]
Buchman JT, Hudson-Smith MV, Landy KM, Haynes CL. Understanding nanoparticle toxicity mechanisms to inform redesign strategies to reduce environmental impact. Acc Chem Res 2019; 52(6): 1632-42.
[http://dx.doi.org/10.1021/acs.accounts.9b00053]
[67]
Gatoo MA, Naseem S, Arfat MY, Dar AM, Qasim K, Zubair S. Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. BioMed Res Int 2014; 2014498420
[http://dx.doi.org/10.1155/2014/498420] [PMID: 25165707]
[68]
He X, Aker WG, Fu PP, Hwang H-M. Toxicity of engineered metal oxide nanomaterials mediated by Nano–Bio–Eco–interactions: A review and perspective. Environ Sci Nano 2015; 2(6): 564-82.
[http://dx.doi.org/10.1039/C5EN00094G]
[69]
Campisi L, Cummings RJ, Blander JM. Death-defining immune responses after apoptosis. Am J Transplant 2014; 14(7): 1488-98.
[http://dx.doi.org/10.1111/ajt.12736] [PMID: 24903539]
[70]
Frank D, Vince JE. Pyroptosis versus necroptosis: Similarities, differences, and crosstalk. Cell Death Differ 2019; 26(1): 99-114.
[http://dx.doi.org/10.1038/s41418-018-0212-6] [PMID: 30341423]
[71]
Wang Q, Wang Y, Ding J, et al. A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature 2020; 579(7799): 421-6.
[http://dx.doi.org/10.1038/s41586-020-2079-1] [PMID: 32188939]
[72]
Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 2018; 9: 1050-74.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[73]
Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res Int 2013; 2013942916
[http://dx.doi.org/10.1155/2013/942916] [PMID: 24027766]
[74]
Shvedova AA, Pietroiusti A, Fadeel B, Kagan VE. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress. Toxicol Appl Pharmacol 2012; 261(2): 121-33.
[http://dx.doi.org/10.1016/j.taap.2012.03.023] [PMID: 22513272]
[75]
Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 2014; 11(1): 11.
[http://dx.doi.org/10.1186/1743-8977-11-11] [PMID: 24529161]
[76]
Yah CS, Iyuke SE, Simate GS. A review of nanoparticles toxicity and their routes of exposures. Iran J Pharm Res 2012; 8(1): 299-314.
[77]
Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle uptake: The phagocyte problem. Nano Today 2015; 10(4): 487-510.
[http://dx.doi.org/10.1016/j.nantod.2015.06.006] [PMID: 26640510]
[78]
Almeida JPM, Chen AL, Foster A, Drezek R. in vivo biodistribution of nanoparticles. Nanomedicine (Lond) 2011; 6(5): 815-35.
[http://dx.doi.org/10.2217/nnm.11.79] [PMID: 21793674]
[79]
Sengul AB, Asmatulu E. Toxicity of metal and metal oxide nanoparticles: A review. Environ Chem Lett 2020; 18(5): 1659-83.
[http://dx.doi.org/10.1007/s10311-020-01033-6]
[80]
Raftis JB, Miller MR. Nanoparticle translocation and multi-organ toxicity: A particularly small problem. Nano Today 2019; 26: 8-12.
[http://dx.doi.org/10.1016/j.nantod.2019.03.010] [PMID: 31217806]
[81]
Xu F, Piett C, Farkas S, Qazzaz M, Syed NI. Silver nanoparticles (AgNPs) cause degeneration of cytoskeleton and disrupt synaptic machinery of cultured cortical neurons. Mol Brain 2013; 6(1): 29.
[http://dx.doi.org/10.1186/1756-6606-6-29] [PMID: 23782671]
[82]
Cha K, Hong HW, Choi YG, et al. Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol Lett 2008; 30(11): 1893-9.
[http://dx.doi.org/10.1007/s10529-008-9786-2] [PMID: 18604478]
[83]
Ferreira GK, Cardoso E, Vuolo FS, et al. Effect of acute and long-term administration of gold nanoparticles on biochemical parameters in rat brain. Mater Sci Eng C 2017; 79: 748-55.
[http://dx.doi.org/10.1016/j.msec.2017.05.110] [PMID: 28629076]
[84]
Yang C, Guo C, Guo W, Zhao X, Liu S, Han X. Multifunctional bismuth nanoparticles as theranostic agent for PA/CT imaging and NIR laser-driven photothermal therapy. ACS Appl Nano Mater 2018; 1(2): 820-30.
[http://dx.doi.org/10.1021/acsanm.7b00255]
[85]
Streit WJ, Xue Q-S. Life and death of microglia. J Neuroimmune Pharmacol 2009; 4(4): 371-9.
[http://dx.doi.org/10.1007/s11481-009-9163-5] [PMID: 19680817]
[86]
Panyala NR, Peña-Méndez EM, Havel J. Gold and nano-gold in medicine: Overview, toxicology and perspectives. J Appl Biomed 2009; 7(2): 75-91.
[http://dx.doi.org/10.32725/jab.2009.008]
[87]
Ikegawa H, Yamamoto Y, Matsumoto H. Cell death caused by a combination of aluminum and iron in cultured tobacco cells. Physiol Plant 1998; 104(3): 474-8.
[http://dx.doi.org/10.1034/j.1399-3054.1998.1040324.x]
[88]
Tan KX, Barhoum A, Pan S, Danquah MK. Risks and toxicity of nanoparticles and nanostructured materialsEmerging applications of nanoparticles and architecture nanostructures. Amsterdam: Elsevier 2018; pp. 121-39.
[http://dx.doi.org/10.1016/B978-0-323-51254-1.00005-1]
[89]
Fischer HC, Chan WC. Nanotoxicity: The growing need for in vivo study. Curr Opin Biotechnol 2007; 18(6): 565-71.
[http://dx.doi.org/10.1016/j.copbio.2007.11.008] [PMID: 18160274]
[90]
Annangi B, Bach J, Vales G, Rubio L, Marcos R, Hernández A. Long-term exposures to low doses of cobalt nanoparticles induce cell transformation enhanced by oxidative damage. Nanotoxicology 2015; 9(2): 138-47.
[http://dx.doi.org/10.3109/17435390.2014.900582] [PMID: 24713074]
[91]
George S, Lin S, Ji Z, et al. Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 2012; 6(5): 3745-59.
[http://dx.doi.org/10.1021/nn204671v] [PMID: 22482460]
[92]
Hua J, Vijver MG, Richardson MK, Ahmad F, Peijnenburg WJGM. Particle-specific toxic effects of differently shaped zinc oxide nanoparticles to zebrafish embryos (Danio rerio). Environ Toxicol Chem 2014; 33(12): 2859-68.
[http://dx.doi.org/10.1002/etc.2758] [PMID: 25244315]
[93]
Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: Gold nanoparticles for biomedicine. Chem Soc Rev 2012; 41(7): 2740-79.
[http://dx.doi.org/10.1039/C1CS15237H] [PMID: 22109657]
[94]
Dugosz O, Szostak K, Staro A, Pulit-Prociak J, Banach M. Methods for reducing the toxicity of metal and metal oxide NPs as biomedicine. Materials(Basel) 2020; 13(2): 279.
[http://dx.doi.org/10.3390/ma13020279] [PMID: 31936311]
[95]
Huang Y, Keller AA. EDTA functionalized magnetic nanoparticle sorbents for cadmium and lead contaminated water treatment. Water Res 2015; 80: 159-68.
[http://dx.doi.org/10.1016/j.watres.2015.05.011] [PMID: 26001282]
[96]
Liu G, Men P, Perry G, Smith MA. Nanoparticle and iron chelators as a potential novel Alzheimer therapy. Methods Mol Biol 2010; 610: 123-44.
[http://dx.doi.org/10.1007/978-1-60327-029-8_8] [PMID: 20013176]
[97]
Mahendra S, Zhu H, Colvin VL, Alvarez PJ. Quantum dot weathering results in microbial toxicity. Environ Sci Technol 2008; 42(24): 9424-30.
[http://dx.doi.org/10.1021/es8023385]
[98]
Arima H, Miyaji T, Irie T, Hirayama F, Uekama K. Enhancing effect of hydroxypropyl-beta-cyclodextrin on cutaneous penetration and activation of ethyl 4-biphenylyl acetate in hairless mouse skin. Eur J Pharm Sci 1998; 6(1): 53-9.
[http://dx.doi.org/10.1016/S0928-0987(97)00068-7] [PMID: 16256708]
[99]
Wen H, Jung H, Li X. Drug delivery approaches in addressing clinical pharmacology-related issues: Opportunities and challenges. AAPS J 2015; 17(6): 1327-40.
[http://dx.doi.org/10.1208/s12248-015-9814-9] [PMID: 26276218]
[100]
Lu AH, Salabas EL, Schüth F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew Chem Int Ed 2007; 46(8): 1222-44.
[http://dx.doi.org/10.1002/anie.200602866] [PMID: 17278160]
[101]
Wei L, Lu J, Xu H, Patel A, Chen Z-S, Chen G. Silver nanoparticles: Synthesis, properties, and therapeutic applications. Drug Discov Today 2015; 20(5): 595-601.
[http://dx.doi.org/10.1016/j.drudis.2014.11.014] [PMID: 25543008]
[102]
Zeng Y, Zhang D, Wu M, et al. Lipid-AuNPs@PDA nanohybrid for MRI/CT imaging and photothermal therapy of hepatocellular carcinoma. ACS Appl Mater Interfaces 2014; 6(16): 14266-77.
[http://dx.doi.org/10.1021/am503583s] [PMID: 25090604]
[103]
Ahmed TA, Aljaeid BM. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des Devel Ther 2016; 10: 483-507.
[http://dx.doi.org/10.2147/DDDT.S99651] [PMID: 26869768]
[104]
Nayak D, Minz AP, Ashe S, et al. Synergistic combination of antioxidants, silver nanoparticles and chitosan in a nanoparticle based formulation: Characterization and cytotoxic effect on MCF-7 breast cancer cell lines. J Colloid Interface Sci 2016; 470: 142-52.
[http://dx.doi.org/10.1016/j.jcis.2016.02.043] [PMID: 26939078]
[105]
Laksee S, Puthong S, Kongkavitoon P, Palaga T, Muangsin N. Facile and green synthesis of pullulan derivative-stabilized Au nanoparticles as drug carriers for enhancing anticancer activity. Carbohydr Polym 2018; 198: 495-508.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.119] [PMID: 30093027]
[106]
Woźniak A, Malankowska A, Nowaczyk G, et al. Size and shapedependent cytotoxicity profile of gold nanoparticles for biomedical applications. J Mater Sci Mater Med 2017; 28(6): 92.
[http://dx.doi.org/10.1007/s10856-017-5902-y] [PMID: 28497362]
[107]
Mohammadzadeh R. Hypothesis: Silver nanoparticles as an adjuvant for cancertherapy. Adv Pharm Bull 2012; 2(1): 133.
[PMID: 24312783]
[108]
Gref R, Lück M, Quellec P, et al. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): Influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 2000; 18(3-4): 301-13.
[http://dx.doi.org/10.1016/S0927-7765(99)00156-3] [PMID: 10915952]
[109]
Mori A, Klibanov AL, Torchilin VP, Huang L. Influence of the steric barrier activity of amphipathic poly(ethyleneglycol) and ganglioside GM1 on the circulation time of liposomes and on the target binding of immunoliposomes in vivo. FEBS Lett 1991; 284(2): 263-6.
[http://dx.doi.org/10.1016/0014-5793(91)80699-4] [PMID: 2060647]
[110]
Cerchiara T, Abruzzo A, di Cagno M, et al. Chitosan based micro- and nanoparticles for colon-targeted delivery of vancomycin prepared by alternative processing methods. Eur J Pharm Biopharm 2015; 92: 112-9.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.004] [PMID: 25769679]
[111]
Luo M, Shen C, Feltis BN, et al. Reducing ZnO nanoparticle cytotoxicity by surface modification. Nanoscale 2014; 6(11): 5791-8.
[http://dx.doi.org/10.1039/C4NR00458B] [PMID: 24740013]
[112]
Kuskov AN, Kulikov PP, Goryachaya AV, et al. Amphiphilic poly-N-vinylpyrrolidone nanoparticles as carriers for non-steroidal, anti-inflammatory drugs: in vitro cytotoxicity and in vivo acute toxicity study. Nanomedicine 2017; 13(3): 1021-30.
[http://dx.doi.org/10.1016/j.nano.2016.11.006] [PMID: 27884639]
[113]
Reznickova A, Slavikova N, Kolska Z, et al. PEGylated gold nanoparticles: Stability, cytotoxicity and antibacterial activity. Colloids Surf A Physicochem Eng Asp 2019; 560: 26-34.
[http://dx.doi.org/10.1016/j.colsurfa.2018.09.083]
[114]
Wen Y, Wang L, Mettenbrink EM, De Angelis PL, Wilhelm S. Nanoparticle toxicology. Annu Rev Pharmacol Toxicol 2021; 61: 269-89.
[115]
Taton T, Mirkin C, Letsinger R. Scanometric DNA array detection with nanoparticle probes. Science 2000; 289: 1757-60.
[116]
Furxhi I, Murphy F, Mullins M, Poland CA. Machine learning prediction of nanoparticle in vitro toxicity: A comparative study of classifiers and ensemble-classifiers using the Copeland Index. Toxicol Lett 2019; 312: 157-66.
[http://dx.doi.org/10.1016/j.toxlet.2019.05.016] [PMID: 31102714]
[117]
Oh E, Liu R, Nel A, et al. Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nat Nanotechnol 2016; 11(5): 479-86.
[http://dx.doi.org/10.1038/nnano.2015.338] [PMID: 26925827]
[118]
Kolanjiyil AV, Kleinstreuer C, Kleinstreuer NC, Pham W, Sadikot RT. Mice-to-men comparison of inhaled drug-aerosol deposition and clearance. Respir Physiol Neurobiol 2019; 260: 82-94.
[http://dx.doi.org/10.1016/j.resp.2018.11.003] [PMID: 30445230]
[119]
Ha MK, Trinh TX, Choi JS, Maulina D, Byun HG, Yoon TH. Toxicity classification of oxide nanomaterials: Effects of data gap filling and PChem score-based screening approaches. Sci Rep 2018; 8(1): 3141.
[http://dx.doi.org/10.1038/s41598-018-21431-9] [PMID: 29453389]
[120]
Shatkin JA. The future in nanosafety. Nano Lett 2020; 20(3): 1479-80.
[http://dx.doi.org/10.1021/acs.nanolett.0c00432] [PMID: 32105077]
[121]
Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. in vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 2005; 19(7): 975-83.
[http://dx.doi.org/10.1016/j.tiv.2005.06.034] [PMID: 16125895]
[122]
Lee J, Lilly GD, Doty RC, Podsiadlo P, Kotov NA. in vitro toxicity testing of nanoparticles in 3D cell culture. Small 2009; 5(10): 1213-21.
[PMID: 19263430]
[123]
Kumar G, Degheidy H, Casey BJ, Goering PL. Flow cytometry evaluation of in vitro cellular necrosis and apoptosis induced by silver nanoparticles. Food Chem Toxicol 2015; 85: 45-51.
[http://dx.doi.org/10.1016/j.fct.2015.06.012] [PMID: 26115599]
[124]
Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small 2008; 4(1): 26-49.
[http://dx.doi.org/10.1002/smll.200700595] [PMID: 18165959]
[125]
Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 2009; 69(22): 8784-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2496] [PMID: 19887611]
[126]
Evans BC, Nelson CE, Yu SS, et al. Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. J Vis Exp 2013; 73(73)e50166
[PMID: 23524982]
[127]
Elsabahy M, Wooley KL. Cytokines as biomarkers of nanoparticle immunotoxicity. Chem Soc Rev 2013; 42(12): 5552-76.
[http://dx.doi.org/10.1039/c3cs60064e] [PMID: 23549679]
[128]
Kirchner C, Liedl T, Kudera S, et al. Cytotoxicity of colloidal CdSeandCdSe/ZnS nanoparticles. Nano Lett 2005; 5(2): 331-8.
[http://dx.doi.org/10.1021/nl047996m] [PMID: 15794621]
[129]
Wörle-Knirsch JM, Pulskamp K, Krug HF. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 2006; 6(6): 1261-8.
[http://dx.doi.org/10.1021/nl060177c] [PMID: 16771591]
[130]
Lynch I, Dawson KA, Linse S. Detecting cryptic epitopes created by nanoparticles. Sci STKE 2006; 2006(327): pe14.
[PMID: 16552091]
[131]
Zhao J, Riediker M. Detecting the oxidative reactivity of nanoparticles: A new protocol for reducing artifacts. J Nanopart Res 2014; 16(7): 2493.
[http://dx.doi.org/10.1007/s11051-014-2493-0] [PMID: 25076842]
[132]
Balke J, Volz P, Neumann F, et al. Visualizing oxidative cellular stress induced by nanoparticles in the sub cytotoxic range using fluorescence lifetime imaging. Small 2018; 14(23)e1800310
[http://dx.doi.org/10.1002/smll.201800310] [PMID: 29726099]
[133]
Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF. Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010; 2(5): 544-68.
[http://dx.doi.org/10.1002/wnan.103] [PMID: 20681021]
[134]
Rajkumar KS, Kanipandian N, Thirumurugan R. Toxicity assessment on haemotology, biochemicaland histopathological alterations of silver nanoparticles-exposed freshwater fish Labeo rohita. Appl Nanosci 2016; 6: 19-29.
[135]
Yang Y, Qin Z, Zeng W, et al. Toxicity assessment of nanoparticles in various systems and organs. Nanotechnol Rev 2017; 6(3): 279-89.
[http://dx.doi.org/10.1515/ntrev-2016-0047]
[136]
Ye L, Yong K-T, Liu L, et al. A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nat Nanotechnol 2012; 7(7): 453-8.
[http://dx.doi.org/10.1038/nnano.2012.74] [PMID: 22609691]
[137]
Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond) 2016; 11(6): 673-92.
[http://dx.doi.org/10.2217/nnm.16.5] [PMID: 27003448]
[138]
Mohammed YH, Holmes A, Haridass IN, et al. Support for the safe use of zinc oxide nanoparticle sunscreens: Lack of skin penetration or cellular toxicity after repeated application in volunteers. J Invest Dermatol 2019; 139(2): 308-15.
[http://dx.doi.org/10.1016/j.jid.2018.08.024] [PMID: 30448212]
[139]
Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm Res 2016; 33(10): 2373-87.
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy